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Abstract . The population dynamics of a strongly excited four-level quantum
system with allowed loss out of the system from the highest state are analysed .
This work has been stimulated by the paper of Cardimona et al . and represents
a more general treatment of the problem studied by them . In particular, we
show that the reduction in the ground-state population decay rate for large
losses is not a consequence of the two-level behaviour but is a more general
phenomenon. On the basis of numerical and analytical solutions we demon-
strate that for an arbitrary excitation regime, at sufficiently large decay rate, the
population loss dynamics of the four-level system is reduced to that of a slowly
damped three-level system . We demonstrate also that the detailed knowledge of
the coherent population dynamics enables us to predict the effect of decay rate
on the population's time evolution for arbitrary choice of dynamic parameters .

1 . Introduction
Details of the dynamics of multimode-laser excited N-level atoms and mole-

cules have been reported in numerous articles and monographs [1] and, at present,
considerable knowledge has accumulated . Since in strong resonance interaction of
light with matter the conventional perturbation theory is no longer adequate, non-
perturbative approaches are needed for interaction description which often give
results far from those expected intuitively . Thus in a paper by Cardimona et al .
(CSG) [2] a specific feature of the population dynamics of a strongly driven four-
level system with allowed decay out of the system at a rate y from the highest level
has been demonstrated. CSG observed a substantial decrease in the population
decay rate with increasing y, contrary to the intuitively expected by them fast
exponential decay . CSG have examined the damping of population probabilities of
a ladder-like four-level atom, excited in a regime of an effective two-level atom
between the ground and the uppermost level [3-5] . This enabled them to analyse
the effect of the decay width y on the system's population loss dynamics in terms
of a two-level damped atom [6] . Within the two-level approximation the deriva-
tion [2] has yielded that for values of y smaller than the effective Rabi frequency
the population decays at rate y, and, when y is greater than Q eff , the population
decay rate is 0eff/y . Because of the very small magnitude of S2eff (for the parameter
values chosen by CSG, S2eff is 0 .075) a drastic decrease in the ground-state
population decay rate has been observed in [2] .
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Although at first glance this is unexpected, in fact this result is well known in
the theory of resonant multiphoton ionization of atoms . It has been shown [7] that,
when stimulated pumping processes dominate the dynamics (strong-field limit),
the total bound-state population decays at a rate y and, when the ionization rate is
much larger than the laser intensities (weak-field limit), the population decays at a
rate Q'/y .

As one can see, the same decay rate constants for two extreme regimes of
excitation were obtained by CSG using a two-state system model . The work of
CSG [2, 6] (see also Vol . I, section 3 .10 of [1]) once again demonstrates how, based
on the simplest two-level model, fundamental relations and features of the
light-matter interaction can be obtained . Indeed, the simplicity of the model
allows greater physical insight into the ongoing processes than is generally
obtained from more complicated calculations . The addition of a loss mechanism to
the simple two-level system, as well as to the effective two-level system, leads to a
decrease in the coherent coupling between the ground and the excited state. When
the loss rate appreciably exceeds the Rabi frequency, the system is not yet in the
'Rabi regime', the coupling of states becomes insignificant and the population
which initially occupied the ground state almost does not leave this state . Precisely
this situation is demonstrated in figures 3 (c) and (d) in [2] . For the sets of
parameters chosen there, y exceeds neff by an order or more. That is why almost
the entire population remains trapped on the ground level from which there is a
very slow decay. This substantial reduction in the population decay rate CSG
explained with an effect originating only from the two-level behaviour, ignoring
any kind of multiphoton interference effects . Such an assertion is not quite correct,
because it is the competition between stimulated multiphoton processes and the
irreversible loss process which actually determines the temporal behaviour of
population probabilities .

In the present paper we shall show that the reduction in the population decay
rate is not a peculiarity of two-level behaviour but is of a more general nature . We
shall demonstrate that in the general case for sufficiently large y (exceeding the
values of all dynamic parameters substantially) the uppermost level is practically
decoupled from the rest of the levels . As a result, the dynamics of the four-level
system are reduced to those of a weakly damped three-level system with induced
losses from the third level at a rate Sl3/Y

The second question which we shall discuss is : what is a high or a low loss rate
in the case of a strongly driven four-level system? If for a two-level atom a
quantitative criterion for the two competitive processes can be defined, for a
multilevel system with more than two coupled levels, there is no longer a simple
connection between the magnitudes of the applied Rabi frequencies and the loss
rate. We shall show that the character of the damping process depends not so
much upon the magnitudes of the basic dynamic parameters (Rabi frequencies,
resonance detunings and loss rate) but upon the relationships between them . It is
precisely these relationships that make the original four-level system behave as an
effective two-, three- our four-level system . That is why, in order to predict the
effect of losses on the population damping dynamics, it is compulsory to take into
account multiphoton processes and their interference .

In the next sections we shall present examples illustrating the population loss
dynamics of a four-level system excited in different excitation regimes and shall
point out some of the regularities .
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2 . Atom-field model and equations of motion
The model of a four-level atom as well as the notation are the same as in the

paper of CSG [2], namely a ladder-like four-level atom is irradiated by three
sufficiently intense near-resonant laser fields, so that spontaneous decay and other
relaxation processes can be ignored . Decay out of the system only from the highest
state at rate y is allowed (figure 1) .

Under these assumptions, the probability amplitudes C;(t) obey the rotating-
wave approximation time-dependent Schrodinger equations with phenomenologi-
cally included decay [8] :

C 1

	

0

	

92 1

	

0

	

0

	

C 1

d C2

	

0 1 D1 Q2

	

0

	

C2
1 dt C3 = 0

22
D2

	

Q3

	

C3

	

(1)

0

	

0 '2 3 D3-ty- - C4 -
We would like to point out that using the notation in [2] we define the

on-resonance Rabi * frequencies as Q.j = 21 u jjE1/h I and the irreversible loss as 2y,
which differs by a factor of two from the commonly used notation [8] .

Our interest will be concentrated on the time evolution of the system's
population Pi(t) = j C;(t) 1 2 , being initially only on the ground state P 1(t= 0) =1 .

3 . Population dynamics
3.1 . Numerical solutions

In this section we present graphs of numerical solutions of equation (1) . In the
figures, together with level population histories we plot the time evolution of
losses, which for concretization will be referred to as ionization I(t)=1-LP1 (t) .

Let us start with some simplest cases of on-resonance excitation . It is known
[9, 10] that, at exact resonance conditions for all fields, the four-level atom behaves
as an effective two-level atom if one of the applied Rabi frequencies is much
greater than the two others . When one of the two external fields is much stronger
0 1 (or Q3)>S22 , 0 3 (or Q1 ), the system's population is localized only between the
first and the second levels and, when the intermediate field is much more intense
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Figure 1 . Ladder-like four-level atom pumped by three laser fields and allowed losses out
of the system from the highest level .
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Figure 2. Time evolution of the level's population P;(t) and ionization of a resonantly
excited four-level system with strong second Rabi frequency (Q 1 =1, Q2 =4 and
03 =1) for three loss rate values (a) y = 0 . 2 ; (b) y =1 ; (c) y =16 .

than the two external fields Q 2 > Q 1 , 03, the population is concentrated on the
ground and the final level . The time evolution of the level's population of these
two different schemes of an effective two-level systems is displayed for three
various values of y in figures 2 and 3 .

The first case (figure 2) when Q2 > f21Q3 is analogous to the case demonstrated
by CSG in [2] (in both cases the effective two-level system is realized between the
ground and the uppermost level from which a decay is allowed) . Therefore it must
be expected that the rate constants derived by CSG correctly describe the time
evolution of population probabilities presented in figure 2 . Indeed, for a decay rate
y much smaller than all Rabi frequencies and smaller than the effective Rabi
frequency (neff=Q1Q3/Q2) the ground-state population decays nearly exponen-
tially at a rate y (figure 2 (a)) . In figure 2 (b), in which y is greater than S2eff but less
than 522 , the population damps at a reduced rate Sleff/y . However, when y becomes
much larger than Q2 (figure 2(c)) the four-level atom behaves more like a damped

1.0

NO

0 .5 -

0 .0

Figure 3. The same as in figure 2, but for the case of a strong third Rabi frequency
(0 1 =1, Q2 =1 and Q3 =4) .
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three-level system, and not as a damped two-level system. The latter is quite
natural if one takes into account that the conditions for validity of the two-level
approximation are no longer valid for values of y exceeding 02 [4, 10] . We would
like to point out in particular that in a regime of an effective two-level behaviour
between the ground and the highest excited state, because the magnitude of the
effective Rabi frequency is very small (an order smaller than any of the incident
Rabi frequencies), fast ionization will be observed only for loss rate much smaller
than any of the Rabi frequencies .

The completely opposite case arises when the third Rabi frequency is very
strong and the system's population is localized between the ground and the second
level . Now, as one can see from figure 3 (a), the addition of a small loss from the
fourth level manifests itself as very slow damping in the oscillating population
between the first and second levels . It is not difficult to derive that for values of y
less than 03 the population decay rate is given by the expression yeff = (Q2/Q3)2Y
(see appendix). Since this effective decay rate is much smaller than the corres-
ponding effective Rabi frequency (yeff < Q,, for y < Q3 ), the population decay
becomes more pronounced with increasing y (as is illustrated in figure 3 (b)) .
However, an increase in y above 2513 leads to destruction of the condition for
validity of the two-level approximation and part of the population reaches the
third level. Again we observe in figure 3 (c) a reduction in the dynamics of the
four-level system to that of a damped three-level system .

In figure 4, another two schemes of resonantly pumped four-level system are
illustrated. In figure 4 (A) the lossless four-level system is prepared as an effective
three-level atom (the third level is not populated) and in figure 4(B) the popula-
tion of the loss-free four-level atom is almost evenly distributed between all
system levels .

Numerical experiments, presented in the above figures, clearly show some
pronounced regularities in the time evolution of the population loss dynamics .
First of all, we can see that the presence of losses much smaller than the Rabi
frequencies (y << Q.) does not alter the excitation regime . Thus the population loss
dynamics of the effective two-, three- or four-level atom continues to follow the
dynamics of the respective lossless atom and the corresponding Rabi oscillations
appear as exponentially declining oscillations . As long as the loss rate may be
treated as low (when stimulated processes dominate dynamics), we should expect
exponential enhancement of population damping with increasing y . However, it is
clearly seen that the value of the `low' loss rate itself is very different for each
concrete scheme of excitation . Losses which are small for the case illustrated in
figure 3 are still large for the case in figure 2 . Moreover, when the highest excited
state remains unpopulated during the pumping process (as in figure 3 and
presented below in figure 5), incorporation of a loss mechanism from this level
produces population decay at rate radically different from y and as a rule less than
y. (In the appendix, we shall demonstrate derivation of yeff for the two cases of
effective two-level systems illustrated in figures 3 and 5 .) When y increases and the
irreversible loss process successfully competes with the coherent processes, then
most of the population decays during the first cycle (e.g. figure 4(b)) . There is
always (for each arbitrary set of 01 and D 1 ) a loss rate value for which the
population damps most rapidly and hence the ionization occurs at the highest rate .
An increase in y above this optimum value leads to reduction in the ionization rate .
When y becomes much greater than any of the applied Rabi frequencies, the
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population loss dynamics strictly follow the dynamics of a three-level system,

undergoing decay from the third level at a rate Q3/y . Depending on the Qt and 52 2
magnitudes the population of this reduced three-level system will reside predom-

inantly on the first state if 92 2 exceeds Q1 by an order (figure 2 and figure 4(A)) ; if

92 1 > 02 , the population will be shared between first and second level (figure 4 (B))
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Figure 4 . Population loss dynamics of two different regimes of a resonantly excited
four-level atom for (A) 52 1 =1, 02 =4 and f2 3 =4 and (B) Q 1 =4, Q 2 =1 and 03 = 4 :
(a) y=0 . 3; (b) y=1 ; (c) y=10 .
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Figure 5 . Time evolution of the population and ionization of a four-level system prepared

as an effective two-level system between the first and third levels in the presence of y,
for 52 1 =1 .2, 0 2 =1, 52 3 =1 . 5, D1 =8, D2 =04 and D3 =5 : (a) y=0.2 ; (b) y=5 ;
(c) y=16 .
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and, for Q1 "522 , the population will be distributed amongst the three levels
(figure 3) .

It is clear that the regularities stated above will be valid for the more general
case of off-resonance excitation. It is evident that, in order to predict the history of
population loss dynamics, one must know the relationships between Rabi frequen-
cies and resonance detunings which determine one definite excitation regime . For
illustration, in figure 5 we present the time evolution of the level's population of a
four-level system pumped in a regime of effective two-level behaviour between the
first and third level . Such behaviour occurs at large cumulative detunings D 1 and
D3 [10] . This example is similar to that shown in figure 3, in the sense that in both
cases the uppermost state is not populated during the course of pumping . As is
seen, for small y the population of the effective two-level atom exponentially
damps at a rate given by the expression yeff=yQ3/(D3+y 2 ) (see equation (A 7)) .
With increase in y the ionization rate increases and, for value of y higher than all
the dynamic parameters (figure 5 (c)) the population loss dynamics again approach
those of a slowly damped three-level system .

3 .2 . Theoretical analysis
Here we shall derive analytically the conditions under which the uppermost

level decouples from the rest of the levels, as well as the dynamic parameters
characterizing the resulting three-level system .

For this purpose we apply a specific procedure based on time-independent
perturbation theory [11]. We shall restrict ourselves to exact resonance excitation .

Let us rewrite equation (1) in the following block form :

t c

	

V+ -iy I I a ,' d

	

Ca
d

	

Ha

b

where subsystem a consists of levels 1, 2, 3 and subsystem b of level 4 . The two
groups of levels are coupled to each other by the operator V containing the Rabi
frequency 0 3 .

The question arises : when it is possible to consider V as a small ('perturbative')
correction to the 'zeroth-order' block-diagonal Hamiltonian

Ho 0 H
=[Ha

0 1b
describing levels 1-4 as two uncoupled subsystems a and b. To resolve this
question we start by diagonalizing H o , using a block-diagonal unitary matrix

Here Ua is a 3 x 3 unitary matrix, diagonalizing Ha . It is not difficult to build Ua
from the normalized eigenvectors of Ha in the following explicit form [12] :

Q21G

	

01 /21 /26 52 1 /2 1 i 2G -

Ua =

	

0

	

-1/21/2

	

1 /2 1/2

-521/G 52 2/21 /2G Q2/2 1 / 2G
-

where G=(521+522) 1/2 .
The unitary transformation of equation (2) yields

(2)

(3)
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d
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where A1=0, 2 2 , 3 =±G are the eigenvalues of H a (these are the usual 'dressed-
atom' states of a resonantly driven three-level atom) and X14= - 'Y-

The transformed components of the operator V have the form

- Q1Q3/2G

V'=Ua 1 V= Q2Q3/23/2G .

	

( 5)

_ Q2f23/23/2G
-

Now that the 'zeroth-order' Hamiltonian is diagonal, we are able to write down
the well known conditions for applicability of the perturbation approach, namely
the matrix elements of the perturbative operator must be small compared with the
corresponding differences between the unperturbed eigenvalues :

I Va4 I < IA .-A4I,

	

for a=1, 2, 3 .

	

(6)

For the problem considered here, these conditions attain the following explicit
form :

0G3<y ;

	

02
3 <(G2 +7 2 ) 1/2 .

It is readily seen that conditions (6 a) are satisfied when

(1) y > G, y > 03 , that is the loss rate y is much greater than all the applied Rabi
frequencies (which is the weak-field limit) and

(2) G > y > 0 3 , that is when one or both of 92, and 0 2 is/are much larger than
Q3 , and y exceeds only Q3 (case of a weak third field) .

Below we shall determine the explicit form of the reduced effective Hamilton-
ians for these two cases and shall show that they describe different temporal
behaviours of the reduced three-level system .

Applying the standard technique of perturbation theory, we find the trans-
formed probability amplitudes with the first-order corrections in the form :
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Now, equation (4) expressed on the basis of these amplitudes can be symbol-
ically written in the form

d
dt

d
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Equations (7) show that up to terms of second order the subsystems a and b
may be considered as independent . The evolution of each subsystem can be
derived by separating equations (7) into two sets : one for Ca' ( a = 1, 2, 3) and the
second for C'4 .

Let us consider first the case of a high loss rate (y >Qj) . When third-order
terms are neglected in equation (7), the relevant equations of motion for ampli-
tudes Ca can be written in the form
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(8)

Now, in order to go back to the initial basis states Ca , we carry out the inverse
unitary transformation on equation (7) . In this way we obtain

0 Q 1

	

0

Q1 0

	

02

0 Q2 -1523/y -

Thus the dynamics of a four-level system with decay y much greater than the
largest of the Rabi frequencies is reduced to those of a three-level system with
losses from the third level at rate Q3/y . Population histories displayed in figures
2 (c), 3 (c), 4 (A) (c), 4 (B) (c) and 5 (c) are perfectly described by this effective 3 x 3
Hamiltonian .

Let us now turn to the second case when y exceeds only 0 3 . On applicaton of
an exactly similar procedure, as in the former case, the following set of equations
for the probability amplitudes Ca for the case of strong first and second Rabi
frequencies, is obtained :
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Figure 6 . Reduced population loss dynamics of a four-level system to dynamics of a
damped three-level system : (a) Q 3 < y << G, for f21=02=8, 03=1 and y=2-5 ;
(b) Y>03, G, for Q1=522=8, 03 = 1, and y=16 .

As one can see, in this case, simultaneously with the induced widths of
the levels, there appear non-zero off-diagonal elements corresponding to direct
coupling of levels 1 and 3 . This result was unexpected and non-trivial to us and
that is why we shall present the solutions of equation (10) in explicit form .

For the particular case 52 1 = Q2 = Q > y > 52 3 , the solutions of equation (10) can
be expressed (for a time interval which is not very long) approximately as

z
P1(t)=$[1 +cos (2 31252t)]+* exp

( Y )
- 023 t+I cos (2 112 52t)

P2(t)=4 [1-cos (2 312 52t)],
02

P3(t)=a[1+cos (2312Qt)]+1 exp (- Y3)
t-2 cos (21/20 t)

I(t)= Cl-exp (_3) t] .

02
exp C - 2Yl

	 31 t,

02
exp (- 2Y3) t,

These expressions show that the ionization probability increases until it is
saturated at 12 and the population of the second level remains insensitive to losses
(figure 6 (a)) . An inverse population is created in the channel 2-1 . When y becomes
comparable with Q the off-diagonal coupling between levels 1 and 3 can be
neglected completely and equations (10) are transformed into equation (9) .

4 . Summary
We have presented numerical as well as analytical solutions of the population

loss dynamics of a strongly excited four-level system with allowed decay out of the
system from the highest state . Our aim has been to show that population loss
dynamics essentially depend upon the relationships between the Rabi frequencies
and resonance detunings . These relationships determine the behaviour of the
original lossless four-level system to be as that of an effective two-, three- or four-
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level quantum system. It has been demonstrated how, on the basis of knowledge of
these relations, we are able to give not only a qualitative but also a quantitative
picture of the temporal behaviour of population dynamics and to explain the so-
called unexpected (at first glance) results .

The results obtained can obviously be regarded as generalization of some
results published earlier on the population loss dynamics of three-level systems
[8] . On the other hand, these results can be generalized to N-level atoms, strongly
driven by N-1 lasers .

In general, the observed regularities can be summarized as follows . The
presence of a small loss from the uppermost level does not alter the excitation
regime and population loss dynamics are closely related to those of coherently
driven lossless multilevel atom . So long as stimulated processes dominate dyna-
mics, the familiar Rabi oscillations damp almost exponentially at a rate y when the
ionization process is going from the final level, or at an effective loss rate when the
uppermost level is not directly involved in the ionization process . There is always
a loss rate value for which the decay proceeds most rapidly . An increase in y above
this optimum value leads to reduction in the population decay rate . For a loss rate
greater than all dynamic parameters, the dynamics of the N-level system reduce to
those of an (N-1)-level system with induced decay out of the system at a rate
oz
N-11y-

Finally, we would like once again to note that, if the N-level system is prepared
as an effective two-level system between the ground and the highest level, from
which the loss is added, because of the very small value of the effective Rabi
frequency a significant fraction of ionization can be expected only for a loss rate
several orders smaller than any of the applied Rabi frequencies . Otherwise, if y is
not sufficiently small, the system as a whole will remain insensitive to the incident
laser fields, as well as to the force causing the losses .
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Appendix
In this appendix we shall derive the expressions for the effective decay rates for

the cases demonstrated in figure 3 and figure 5 .
We follow the formalism developed by Shore and Cook [4] for extracting two-

level behaviour from a coherently driven N-level system .
Localization of the entire system population within two states only is mathe-

matically equivalent to reducing the set of equations (1) to two coupled equations
for probability amplitudes C 1 (t), Ck(t), for k = 2, 3, 4, which have the general form

1
a C

Cl

-C O
Ck

	

Qeff

Qeff

	

Cl

Jeff

	

[ck]
(A 1)

where Qeff and Jeff are the effective two-level Rabi frequency and the effective
resonance detuning respectively .

The Shore-Cook method, applied to a coherently driven four-level system,
leads to an analytically soluble problem for arbitrary strengths and detunings of
the incident fields . The conditions for validity of two-level behaviour, as well as
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the exact expressions for S2eff and Jeff for each of the level pairs 1-k (for k = 2, 3,
4), have been determined in [10] . Here we shall use the expressions from [10],
formally including the negative imaginary part to D 3 .

Firstly, when the population is localized between the ground and the second
level, equation (A 1) takes the form

C1

C2

The condition for validity of two-level approximation is

I2Jeff±[(2Jeff) 2 +Q1] 112 I4I - 2(D2 - D3)±[4(D2 -D3) 2 + g2
3] 1/2 I •

02 2
Jeff =- iy

	

=- lYeff,
3

D1

	

D3

I- 1~Yeff±(- Yeff+Ql) 1/2 I4I12Y±(- Y 2 + 0 3) 1 ' 2 I

(A 2)

The effective Rabi frequency coincides with the first Rabi frequency and the
effective resonance detuning is

Jeff=D1-Qi

	

D3
2 •

	

(A3)
D2D3 - ~3

(A 4)

Substituting D 3 by D3 _'Y, for the exact resonance case displayed in figure 3,
equations (A 3) and (A 4) become

(A 5)

(A 6)

Equations (A 5) and (A 6) show that the resonantly excited four-level system
with allowed decay at a rate y from the highest level and the third Rabi frequency
much greater than the first behaves as a damped effective two-level system with
induced decay from the second level at rate yeff =y(S2 2 /S2 3 ) 2 as long as y < 252 3 . For
values of y exceeding 252 3 the condition (A 6) is violated and the system departs
from the effective two-level behaviour . Now the conditions (6) are satisfied and the
temporal evolution of the system is governed by the set of equation (9) .

Secondly, in the limit of a two-level approximation between the first and third
levels the probability amplitudes C l and C3 satisfy equations (Al) for k=3 with
effective Rabi frequency QCff=Q1Q2/Dl and effective detuning

2

	

2

	

2

	

2

	

2
Jeff=D2 f ~1- ~2 - 3 1-~+y2~-iD~+y2 .

	

(A7)

The condition for validity of two-level behaviour here is

I2Jeff±[(2Jeff) 2 + Qeff] 1/2 I<ID1I> D31

	

(A 8)

As one can see, in this case, the presence of y introduces not only a negative
imaginary part but also a real part to Jeff . For small y (y 4D 3) the real part can be
neglected and only the presence of the effective decay rate modifies the temporal
behaviour of the effective two-level system, causing damping at a rate yeff
zy(Q 3/D3 ) 2 . For values of y , D3, Jeff becomes larger than S2eff, that is the
condition for effective population of the upper level in a two-level atom is not
satisfied and the population occupies mainly the ground state . We see that for
values of y exceeding all the dynamic parameters the condition (A 8) remains valid
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and at the same time the conditions (6) are also valid . Therefore the population
time evolution is equally well described by the set of equations (A 1) with Jeff
given by equation (A7), as well as by the set of equations (9) with non-zero
diagonal matrix elements DI and D2 -iS23/y respectively .
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