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Abstract. The Rayleigh-Fourier method and the method of Chandezon et al.
for the calculation of diffraction efficiency of sinusoidal metal, dielectric and
coated dielectric gratings are compared with respect to the threshold truncation
value and the thickness of the coating layer. For shallow gratings the convergence
of the two methods is practically one and the same. However, for deeper gratings
the method of Chandezon et al. is more powerful. It is shown that for coated
dielectric gratings the thickness of the layer imposes a limit on the truncation
value, the limitations being weaker for the method of Chandezon et al.

1. Introduction
During the last fifteen years considerable interest has been shown in the problem

of light diffraction from relief gratings. An extensive review on this subject is given in
references [1-4]. Today, rigorous electromagnetic theories based on the integral
[5-7] or the differential [8] formalism are the most trustworthy. These two
approaches, numerically implemented in a computer code, give accurate results for
arbitrary gratings in a large spectral range and through them the most complete
comparison is made with other theories and experimental data [1].

Another widely used approach is the Rayleigh method [9], especially its
Rayleigh-Fourier (RF) modification. Although the RF method is non-rigorous in a
mathematical sense [10], Wirgin [11, 12] shows that it gives accurate results for
sinusoidal gratings with half groove depth to period ratio hid five times greater than
the theoretical limit h/d= 0072 [10]. The diffraction efficiency curves, calculated by
the abovementioned methods for two-layer gratings have been studied extensively in
the literature. However, less attention has been devoted to more complicated
structures, for example, three-layer [13, 14], multilayered [15] dielectric gratings
and multicoated metallic gratings [16,17], where some new effects occur. In
particular, total reflection and selectivity of the zeroth order for three-layer gratings,
quite narrow anomalies for multilayered ones and reduction of the absorption from
the metal for multicoated gratings are observed. In this paper a detailed comparison
between the calculations of the diffraction efficiency curves for sinusoidal perfectly
conducting, metallic, dielectric and coated dielectric gratings, using the method of
Chandezon et al. [18] (C method) and the RF method is carried out. The choice of
the C method is not accidental. First, it is a rigorous vector electromagnetic method,
suitable for the treatment of multicoated gratings, and second, it gives accurate
results for very deep gratings with h/d-3 [18].

It is shown that for bare dielectric or metallic gratings the simpler RF method is
preferable at low and moderate values of hid. However, for deeper gratings the C
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method is more powerful and its convergence rate is much faster. An interesting
consequence is that in the case of coated gratings the thickness of the middle layer
introduces a further limitation on the value of hid which can be achieved for both
methods.

2. Formulation of the problem
A plane monochromatic wave with time dependence exp (iot) is incident at an

angle 0 on a three-layer grating (figure 1). Region 3 is filled with a metal or a
dielectric, the middle layer is a dielectric with a thickness t, and the upper layer is air.
The corrugation is one and the same for the two boundaries. Since the convergence
of the RF method decreases rapidly for non-sinusoidal gratings, we consider a
sinusoidal groove profile with a period d and a depth 2h.

The Floquet theorem states that for y -* + o the field can be represented as a sum
of propagating plane waves (diffraction orders). The electromagnetic field must
satisfy the Maxwell equations in the three media, the boundary conditions at the two
corrugated boundaries and the out-going wave conditions when y - ± co. A brief
review of the main mathematical aspects of the RF and C methods are given below in
order to compare their mathematical base and to introduce some notations to be
referred to.

2.1. RF method
This method has been discussed in detail by Maystre [2] and Wirgin [11]. We

have modified it to work for coated gratings too, as follows. In each medium 1, 2 and
3 (figure 1), the electromagnetic field can be represented in the form

F.(x,y)= [a'm exp(ih.,jy)+am- exp(- ihjy)]exp(ix), ()[a'.~~~~~~~ m Ay exp (ifimx),(1
m

where tim= o + mK, K=27r/d, io 0=nl sin, m= 0, + 1, +2, ... and
hRF _ -( t#2)1/2 k=2/. (2)
hm,=kn -- -=2x--j -- 2)/

a'. are the amplitudes of the field components and F, is the z component of the
electric or magnetic field vector for TE or TM polarization, respectively.

Figure 1. Schematic representation of the configuration under consideration.
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The boundary conditions are

F (x, y = f(x) + t) = F2(x,y = f(x) + t),

F.(x, y = f (x)) = Fz3(x, y = f (x)),

p1 aFz(x,y) p3 aF(x,y) 

an(x,y) y=(x) an(x,y) y=f(x)'

(3)

where Pi= 1 for the TE case, and P=nj 2 for the TM case.
Substituting (1) into (3), the RF method requires the development of

exp ( ± ih.Fif (x)) in Fourier series. The resulting equations can be written in a matrix
form:

M 1¢I = MR202(t)g2, 

2 MR3 (4)

where ~i is a column vector:

a2

MjI is a square matrix of a double infinite order:

R A'hB

where

· rd~

AJ p= J exp [ihF, f(x) + i(n-p)Kx] dx,

RF jjCp= hp = jAm,p+ pyF A m-4,p,
q

D =-hRF jB j FBD~, p' =' -- _p jB,, pZF -q,p,

(5)

q

Fq is the qth Fourier component of the derivative of the corrugation functionf (x) and
qSi is a diagonal matrix:

0q = K q° ]' (6)0 4qbi ,
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with j+ p(y)= m ,p exp ( ± ihjy) and 6m p is a Kronecker symbol. Using (4) a system
of linear algebraic equations can be obtained for the unknown amplitudes:

M 3 = M 2R 2(t)(MR) - 'MR'. (7)

From the out-going wave conditions

am =0, a- =6m,O, (8)

applied to the system (7) we obtain that the number of the equations in (7) is equal to
the number of the unknown amplitudes.

2.2. C method
The basic idea of this method lies in the introduction of a new coordinate system

S(, j, 2) with

x=x, =y-f(x), 2=z. (9)

In the boundary conditions are simplified because of the plane boundaries,
however, the form of the Maxwell equations becomes much more complicated a
system of second-order partial differential equations with non-constant coefficients.
The Fourier transformation applied to this system results in an infinite system of
ordinary differential equations. Similar to the RF method, the field in each medium
can be represented as a sum of exponentials

exp ( ihCjSy). (10)

However, now h',j are the eigenvalues of the characteristic matrix T of the infinite
system of ordinary differential equations. In the matrix form the solution can be
written as follows:

F{(9, ) = ( )McJ(y)J, (I1 )

where 1q is a row-vector with components exp (ifim); MC is the matrix of eigenvectors
of T and the other members are the same as in the Rayleigh-Fourier method. The
boundary conditions in lead to (7), substituting Mj, with Mc.

3. Numerical problems
An essential difference between the two methods is that in the RF method the

field is searched for in a form of a plane-wave expansion with preliminary stated
exponents (2) (non-rigorous treatment in the grating region), while in the C method
at first the exponentials (10) are calculated and after that the expansion of the field
into these exponentials is performed (rigorous treatment).

In fact, the two methods would be equivalent, if the infinite system (7) with MR or
Mc can be solved [18, 19]. For a numerical treatment, however, a truncation of the
matrices M R and Mc is necessary to be made up to a given order M=2N+ 1 with
-N<m,p,q < N.

When the corrugation depth tends to zero, the coordinate system S tends towards
the unperturbed coordinate system S thus hC f-hmj. Therefore up to a given small
value of the groove depth the two methods must give not only identical results, but
would have the same interstitial steps, too. This fact is of great important for testing
the computer codes.

As the corrugation depth is increased the two methods must have different
convergence rates and different limitations. There are no theoretical arguments to
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predict the tendencies with respect to the restrictions and the accuracy of the two
methods when aspecific system is considered.

In the following three sections a comparison between the convergence rates of the
two methods and the diffraction efficiences defined as

(12),lm = I a. I 2nj cos O./(n, Cos ),

is made for metal, dielectric and coated dielectric gratings. We have developed two
computer codes, based on the RF and C methods respectively. The calculations have
been performed on a computer with a wordlength of 32 bits. The eigenvalue and the
eigenvector problems were solved by a standard QR method (see, for example, [20])
for complex non-symmetrical matrices, using EISPACK. The matrix inversion,
necessary in the solution of (7) both for the RF and C methods, was performed by the
Gauss-Jordan scheme.

The normalization of the eigenvectors in the C method leads to well determined
non-singular matrices. For the RF method in the case of perfectly conducting
gratings the inner product in (5) results in numerical instability, due to the
truncation of the small matrix elements in MR in comparison with the large ones in a
floating-point computer arithmetic. This requires a special renormalization of the
matrix elements (5).
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Figure 2. Diffraction efficiency curves and total diffracted energy of a perfectly conducting
grating with d= 15 pm, 2h=6-83 pm as a function of a truncation parameter N at
constant deviation of 8-9° between -1 backscattered order and TE polarized incident
wave. Full curve, C method; broken curve, RF method. In the right-hand side the
results of Kalhor and Neureuther ( --- -) and Wirgin (- -- ) are taken from
figure 9 of [11].
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4. Numerical results

4.1. Metal gratings
The diffraction efficiencies and the total diffracted energy have been calculated

for a sinusoidal perfectly conducting grating using both computer codes. The
calculated values for different N are presented in figure 2 together with the set of
results obtained by Kalhor and Neureuther and by Wirgin, taken from figure 9 of
[11]. It is worth noting that our results for the RF method coincide with those of
Wirgin with the same convergence rate N= 4, while the stabilized values of the C
method occur (within 0 1 per cent relative error) for N= 3.

To test the possibilities of the two computer codes, as a second example we have
considered a normally incident plane wave on a perfectly conducting grating for the
two fundamental cases of polarization (figure 3). The calculations have been done by
the C method. Wirgin (figure 8 of [11]) gives the convergence rate of the RF method
for the same type of grating (right-hand side in figure 3) whose stabilized values
coincide with the results of the C method. A quite important difference is that the
threshold of the RF method is obtained for N= 15, while the same value for the C
method in N=7.

Further on the computer codes were generalized to work for real metal gratings
taking into account the finite conductivity of the metal. Figure 4 shows the efficiency
of an aluminium grating (n2 = 123+i6-95) with a period d=08#m and ratio
h/d=03. The results of the RF method are highly oscillatory for small N and the
threshold is reached for N= 10. 'T'he C method has a much faster convergence rate
(N= 5).

4.2. Dielectric gratings
Let us consider a normally incident TE polarized wave on a lossless dielectric

grating with a period d= 08 pm, half groove depth h=0173/lm and refractive index
of the lower medium n2 = 23. The upper medium is air (n1 = 1). At these conditions
three reflected ( a , + 1a ) and five transmitted (; ±+ 1s, 2') diffraction orders are
propagating. A convergence of the diffraction efficiency as a function of the
truncation parameter N is given in figure 5 only for the transmitted orders for the
sake of clarity. Both the RF and C methods have a convergence value of N= 6. The
same results for TE and TM polarizations at the same conditions as in figure except
for h = 024 #m (i.e. h/d= 03) are displayed in figure 6. It is interesting to notice that
the stabilized value N=10 for the RF method is the same as for the perfectly
conducting grating with h/d= 0 3 [11]. However, now the threshold value of the C
method is smaller (N= 7). Reducing the refractive index of the lower medium, the
number of the transmitted diffraction orders is decreased. The same grating as in
figure 6 with n2 =1 5 supports two orders less, + 2 ' orders are passing off. The
convergence for the two methods is better, but again the threshold value of N for the
C method is smaller than for the RF method (figure 7).

4.3. Coated dielectric gratings
In this section two gratings of the type presented in figure 1 are considered. The

first one is a grating on the glass substrate (n3 = 1-5) with a period d= 03 pm and ratio
h/d=017 covered with a dielectric layer (n2 =2-3). The dependence of the total
diffracted energy on the layer thickness t is given in figure 8. Due to the moderately
low hd ratio and that in the air and the substrate only the zeroth diffracted orders
exist, the convergence is achieved for N= 3.
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Figure 7. As figure 5 except for n2 = 15.
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Figure 8. Total diffracted energy of coated dielectric grating as a function of the layer
thickness at normal incidence. n=l, n2 =23, n3 =15, h/d=0167, A=06328pm,
d=03 #m.
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Above some critical layer thickness, different for the two methods, the total
energy diverges. Surprisingly, with increasing the N, the critical thickness is
reduced. The same tendency appears in figure 9 for a symmetrical structure. TE
polarized light is incident normally on the grating with period d=037pm and
h/d= 022. Although the rate of convergence N= 3 is one and the same for both
methods, the critical thickness for RF method is tR=0175,um, while for the C
method this value is four times greater (tc = 0625 /m). Again both tR and tc rapidly
decrease when N is increased.

z

CD

w
J

0
IF^
so

0.1 0.3 0.5 0.7 0.9 tlpm]

Figure 9. As figure 8 except for n3=l1, d=0-37/Mm, h/d=0216.
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Figure 10. Ratio p=HRNF/HN depending on the ratio hid.

5. Discussion
In [11] Wirgin has shown that the Rayleigh approximation in its RF form has

great advantages and overcomes the theoretically predicted limit of h/d 0-072. Our
results support this conclusion. Figure 3 extends the possibility of RF method up to
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ratio h/d= 0-35 for metal gratings and in figure 6 the results are given up to h/d = 0-3
for dielectric gratings. However, for moderate and high ratio h/d>0-25 the
convergence of the C method is better.

Increasing the groove depth the difference between the exponential factors hR.
and hCj becomes larger. Since the exponents in the C method are calculated from the
truncated equations, they would be 'better' ones in comparison with those of the RF
method, therefore a better convergence is ensured. This provides for shorter
computation times (and, if necessary, less memory requirements), which usually
compensates the sophistication of the computer code. In our opinion the simpler
RF method is more useful for gratings with ratio hid up to 025, while for deeper
gratings a more complicated rigorous method must be used. For example, the C
method is a rigorous one and does not require such sophisticated and time
consuming computer codes, as for instance the integral methods.

The application of the C method even for shallow gratings is preferable in
comparison with the RF method when coated gratings are investigated. The
divergence of the efficiency upon some critical thickness of the layer is due to the
finite computer wordlength. The existence of such a difficulty was mentioned by
Chandezon et al. [18], but no explanation was given.

For the propagating waves the modulus of the exponent in (6) is less than or equal
to unity. The evanescent waves have complex propagation factors thus in (6) real
exponential members are included. After matrix multiplication, if the real exponents
are large enough, the members of order of unity would be truncated leading to a
divergence of the calculations.

The values of h" j and hc -N < m < N, with N= 3 for the middle layer in the
case of figure 8 are presented in table 1. The computer wordlength of 32 bits means

Table 1.

hc_ _ _ _ _ hmFIk

m real imaginary real imaginary

0 2-2966 0 23 0
1 0-9171 0 09169 0
2 09987 2-8787 0 35365
3 09980 2'8791 0 5'8952

Table 2.

N H c MRN H~ H~

2 1843 3-537
3 2'879 5'895
4 3'985 8118
5 5-078 10293
6 6173 12-445
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that in the floating point arithmetic 23 bits are reserved for the mantissa of a given
number. If

maxllm(hm)l/k=HN, -N m N, (13)
m

then the maximum thickness tax for which the calculations would converge can be
given as

21ttmaxHN/I < n (223). (14)

The calculated values of tmax from (14) using table 1 are t=0'27pm
and tcax =0 56pm, while the critical thicknesses from figure 9 are 0-175 and 0-625 /m
respectively.

In table 2 the values of HNF and H c are represented for different N. As it can be
seen the ratio HRF/HHc2 is independent of N. From the fact that HRF>H its N ~ N H N > N i
directly follows that tm, < t even if the threshold values of N for the two methods
are equal. The calculated values of the ratio HRFIHI for the system of figure 8 areHN /HN frtesse ffgr r
displayed in figure 10; the same tendency of independence of the ratio on N is
obtained. With a solid circle the position of the results from table 2 is depicted.
Taking into account the more rapid convergence of the C method, the ratio tCax/tRF

would be even greater for deeper gratings. Therefore the C method enables to
investigate coated gratings with a layer thickness at least four times greater than with
the RF method (for h/d=0-32). Of course, using double precision, the maximum
values of the thickness are doubled but the ratio tRx /tCax remains the same.
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