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Analysis of mode coupling in planar optical waveguides
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Abstract. Coupling between the modes in a planar optical waveguide induced
by a boundary step discontinuity, by a single groove and by a grating with
arbitrary cross section, is investigated theoretically. Analytical expressions for the
coupling mode coefficients are obtained by the mode-matching method, contain-
ing the angular dependence in explicit form for both TE and TM incidence. An
analogy of Brewster's law for a planar waveguide with a single step boundary
discontinuity is obtained. The results for gratings are compared with the
coupled-mode theory and the total field analysis.

1. Introduction
The problem of mode coupling in a planar optical waveguide on a material

boundary is of great importance in integrated optics. The phenomenon is observed
in strip waveguides, slab waveguide edges, thin film lenses and prisms, modulators
with a buffer layer under the electrodes, gratings, etc. However, surface relief
gratings are widely used as input-output couplers [1], reflectors for semiconductor
lasers [2], demultiplexers and filters [3,4] and phase-matching elements [5].
Numerical calculations of the co-linear coupling between the modes have been
carried out for near-field [6] and far-field [7] radiation patterns of a tapered slab
waveguide and for edge scattering in a planar waveguide [8]. Normal incidence of the
waves on the grating has been considered by Marcuse [9] and Kogelnik [10]. Two
approaches have been developed-an ideal-mode and a local-mode analysis [9],
which give identical results for TE incidence. However, the results differ for TM
incidence, because the boundary conditions are not satisfied.

The more general (and more interesting) case is that for oblique incidence of the
modes on a material boundary in the waveguide. Some new effects, such as
conversion of the mode polarization and the appearance of leakage and resonance
effects, have been discussed elsewhere [11]. Recently much attention has been
devoted to the oblique incidence of the guided waves on relief gratings [12-18]. The
most commonly used approach is the perturbation analysis [12, 14-16] where the
change in refractive index is introduced into the Maxwell equations as a perturb-
ation, to give a set of coupled-mode equations for the mode amplitudes. In the case of
a corrugated waveguide, however, the geometry changes the problem and must be
taken into account. The vector field representation in [12, 14, 16] does not satisfy
new boundary conditions at the corrugation. Explicit expressions for the coupling
coefficients have been obtained up to a first order in terms of the groove depth [13],
but the plane-wave expansion of the field in the grating region is valid only in some
restricted cases [19].
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A precise analysis of obliquely incident guided waves scattered on a surface
grating is proposed by Stegeman et al. [17]. An additional, 'growing-wave' field is
included in a plane-wave expansion in order to satisfy both the Maxwell's equations
and the boundary conditions. How this method can be extended to the graded-index
waveguides is not evident. The collinear or the contralinear coupling can be
represented as a particular case of the oblique incidence as the angle between the
direction of propagation and the direction normal to the boundary becomes zero.
However, it is important to know the angular dependence of the coupling coefficients
between different modes, as well as the dependence of these coefficients on the
configuration parameters at various angles of incidence. The difficulties in the
oblique incidence treatment follow from the fact that this case is a three-dimensional
one and a set of Maxwell equations must be considered, while in a normal incidence a
wave equation can be used. Furthermore, in a collinear case the boundary conditions
at the transverse boundary are easily satisfied because the electromagnetic field has
only three vector components for each TE and TM polarizations. However, for
oblique incidence this number increases to five [11]. In this paper we present
analytical results for the mode coupling of obliquely incident waves on a surface step
discontinuity and on a grating with an arbitrary cross-section in a waveguide with an
arbitrary refractive index profile. We use a so-called mode-matching approach,
whose basic conditions are described in 2. Evidence of this method has been
demonstrated magnificently by Peng and Oliner [11].

In § 2 we give an expansion of the field in different regions and apply the mode-
matching procedure at the step boundary to obtain a set of equations for the mode
amplitudes. We consider step height which is small when compared to the
waveguide effective thickness, because of its importance in the practical cases
mentioned above. In § 3, the different types of coupling TE-TE, TE-TM,
TM-TE and TM-TM are considered. The angular dependence of the coupling
coefficients is expressed in explicit form up to the first order for small step height.
Mode coupling by a groove on a planar optical waveguide is discussed in § 4. The
results are applied to gratings in § 5 where explicit analytical expressions for the
coupling coefficients and their angular dependence are obtained. A waveguide with a
step refractive index profile is examined as a special case in §6. Some peculiar
consequences, including TE-TE, TE-TM and TM-TM coupling are treated in § 7.
An interesting result is the existence of Brewster's law analogy in planar optical
waveguides with a step discontinuity, which to our knowledge has not been
previously discussed. Comparison with the total-field [17] and the local-mode [9]
analysis for surface relief gratings in § 7 shows that the results are identical for normal
incidence. For oblique incidence our results differ from those of Stegeman et al. [17].

2. Mode-matching procedure
Let us consider the configuration shown schematically in figure 1. Generally, in a

planar optical waveguide (II) with an arbitrary refractive index profile there is a
semi-infinite layer with a refractive index n i and height d. We assume that the
waveguide, the substrate and the superstrate media are lossless. Guided waves are
incident obliquely on the step structure at an angle Ov (figure 1). The media 1 and 2
differ in their refractive indices in the step structure region only. When the guided
waves with TE or TM polarization propagate along the z direction, the step junction
excites scattered waves with the same polarization [1 1, 20, 21]. In the case of oblique
incidence the electromagnetic field has five components and the modes are neither
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pure TE nor pure TM. The hybrid nature of the modes involves other types of
coupling [11, 20, 21], and in particular TE-TM and TM TE conversion.

For a description of this problem we need an electromagnetic field represent-
ation, satisfying the following conditions:

(a) The Maxwell equations in each region.
(b) The boundary conditions at the boundary between regions I, II and III.
(c) The boundary conditions at the boundary between media 1 and 2.

To solve the boundary-value problem by the mode-matching approach, an
eigensolution for the Maxwell equations and separate boundary conditions for media
1 and 2 are necessary. The general solution then can be represented as a
superposition of eigensolutions with constant coefficients. These coefficients (in our
case the mode amplitudes) are determined from the boundary conditions at the
boundary between the two media. This formalism is quite general and is not
restricted by the waveguide and step structure parameters. A set of equations,
satisfying conditions (a) and (b) have solutions which are the mode fields of the
infinite waveguides corresponding to medium 1 or 2 (see for example [9, 10]). The
general solution in each medium 1 or 2 can be represented as a summation over v of
every TE, and TM v mode with constant amplitudes a and b respectively.
Furthermore all possible directions of propagation of the modes must be included,
i.e. an integral over the angle of propagation 0 must be taken. The electric field
components may be written as

EL 2n'E' = f E [a4() vx(y) cos 0 exp (- i(x sin 0 + z cos 0))
J0 v

+ b(0)G=(y) sin 0 exp (- i7ff(x sin 0 + z cos 0))] dO,

E' = { E bk()°Jvy(y) exp (-iFJv(x sin 0 + z cos 0)) dO
do v

E' = | 2[- aJv(O)j(y) sin 0 exp (- ifv(x sin 0 + z cos 0))
o v

+ bjV(O)[JV(y) cos 0 exp ( -i~,(x sin 0 + z cos 0))] dO,

(1)

where j= 1,2 is a medium index. Similar expressions can be obtained for the
magnetic field components. Mode eigenfunctions gv.(y) and fv (y) are solutions of
the scalar wave equations for TE and TM polarization respectively. The other field
components satisfy the relations

1 dt v,(y) _ , I df,(y)
= ion (y) dy ip 0 d (2)

(2)
=- twon0((y) Vx(Y ,,= f- ), 

where %( and are vacuum permeability and permittivity, o is the angular
frequency, n is the corresponding refractive index for each region, 0, is the angle of
propagation of the vth mode, fl, is the TE, propagation constant and the overbar
refers to TM modes. It must be pointed out that the mode spatial distributions of,
f,., f;V=, , , v are related to the eigen coordinate system connected with the

direction of propagation (figure 1). The sum over v contains a sum over a discrete
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Figure 1. Planar optical waveguide with a step structure on a superstrate.

spectrum and an integral over a continuous spectrum of eigenmodes. The next step is
to apply the boundary condition (c) to the field components.

Usually the satisfaction of the boundary conditions means the continuity of the
field components tangential to the boundary over which the refractive index is
discontinuous. This is fulfilled for condition (b). The situation is more complicated
for condition (c), because the boundary between media and 2 is not completely
physical, i.e. the refractive index is discontinuous only in the step region of the
boundary. This means that a more precise examination of the normal field
components is needed. This has not been attempted before. The normal field
components Ez and Hz must be continuous at the boundary z = 0 in the regions
y > t + d and y < t (see figure 1), because the two media are identical in these regions.
In the Appendix it is shown that the continuity of E and Hz follows directly from the
continuity of E, Ey, Hx, Hy and thus does not give a new set of equations. The
requirement of the continuity of the tangential field components over the whole 1-2
boundary leads to this set of four equations,

r2

o [a,(O)°9 (y)cos 0 exp (- ifiVx sin 0) + b( (O)(y) sin exp (-iTx sin 0)] dO
f o V

rr

= E [a2(O)g2x(y) cos 0 exp (- i2x sin )
0 v

+ bv2(0)2(y) sin exp (- iv2x sin 0)] dO, (3 a)

{,b()&y(y) exp (- i]x sin ) dO =es d
J b'l(0)zvl Y. exp(-igxsin0)dO = j b2()) 2y(y) exp (-i/x sin 0) dO, (3 b)

0 VI_ 0 1fo Vfo5
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E [bV(O)f (Y) cos 0 exp ( - iffx sin 6) + a (O).Yf '(y) sin 0 exp (- if/x sin 0)] dOf v

= Z [b(6). x(y) cos 0 exp ( - ix sin 0)
0

+ av2( )V,2(y) sin exp (- if2x sin 6)] dO, (3 c)

'2f E a' (O)-Y*(y) exp (- iflx sin 0) dO

= |2 a2(6)V2 (y) exp (-ifi2x sin 0) dO, (3d)
do 

where the upper indexes refer to the media 1 and 2. Multiplying (3 a) by
(#fl/47rO)po)&* exp (iflx sin 0) and integrating over the infinite x-y cross-section we
obtain

(al + -a -) cos 0, +(b v + b -)sin UxZV

__ aV2+ 2 -) COS 02K2V (4)
-Z(av -a-) cosV +Y(b2 + +b2) sin O2K2, (4)

I V

xV = ' g , *(y)g'(y) dy,

2K p0, ,(y)v2(y) dy,

ME,V = 2 A1 0 t~#(Y~tvod

MV 9(, I ®2 = ,,, el (y).g2(y) dy

1P~~ ~ (5)

-~ru -

and the asterisk denotes complex conjugation.
In the derivation of (4) the following orthogonality relations between the mode

fields and the propagation factors have been used:

( o (y)&x(y) dy = P110, (6)f (6

V ~~~~~~~~~~~~~~~(7)- n2 (y) .YV,(y)dy=2o e0 (7)

and

1 ®
exp [-i(Pi sin 0 -l' sin 0')x] dx = (V sin 0-fl' sin 0). (8)

Here 6 ,v is a Kronecker symbol and o is a Dirac o function. In the right-hand side of

(6) and (7) the energy flow is normalized to 1 W per unit cross-section perpendicular

to the mode propagation direction.
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From (8) we obtain Snell's law in the planar case,

/7. sin (1 = ~v sin ~v = 2 sin n2 =l sin 0 = i 0, (9)

which determines the angles of reflection and transmission for each TE and TM

mode.
The modes in (4) are divided into two kinds with '+' and '-' indices which

correspond to the 'positive' or 'negative' direction of propagation with respect to the

z axis. This is because the angle 0 between the z axis and the direction of propagation

is measured from the positive or negative direction of z axis (figure 1). Multiplying

(3 c) by ('47E2t 0 )X1(y)/[n'(y)]2 exp (i,'x sin ) and repeating the same proce-
dure as with (3 a), the result is

(b + - b-) cos .+ ,(al + + a -) sin 0'v
v

2-)O 2-1 2 2- 02 2

=(b'+ - b-) cos + +a)sinVK,,, (10)where .. v s,., (10)
Vwe

where

f n r *(y)12 ()dy,

flX f '0 , ?' l0X)z(Y) y- 

1 = 2oe0o n (y)] 2 v(y) dy,

-1 = 2 ( ()] -. (y) dy.KtV 2oeo -: [n 1(y)] 2 V,1 oo 1

(11)

Similar considerations for (3 b) and (3 d), using (2), lead to

fi,(b + b -)=(b 2 + +b 2)ffK~ v (12)

and

+ a}-) =(a 2 + a )/vKA,' (13)
v

where

Kv 2wro 2 T (y)]2 ( dv (14)

The mode-matching equations (4), (10), (12) and (13) are a system of 4N equations
for 4N unknown amplitudes {a, -, b -, + }, where N is the number of modes
taken into account. The modes with amplitudes {a +, bl +, a2-, b2-} are incident on

the step structure. Further we shall consider a practically interesting case of a small
step height, compared to the waveguide effective thickness. In a first order
approximation the expansion of all quantities characterizing medium 2 in series of d
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are as follows:

V + {#d2o' f &,-*()2x(Y) dy]

-1_ { i, [nl(y) 2Vx(Y) dY] 
K~~v=Xvd 2opi ljYuv,( d= 2V = 6,UV + d 2t J [n1(y)] 2 v (y ) d y'

f 1~~~~~~~d=0'

K, = Zv + d 7 2 &( )2 (y) dy 
2 o/to -oo o v )

Mv: = + d '>ru _ [l() 2 (Y) dy268 0 o [n2(y)] 2 V.0

+- ] } (Y*t)( 2 2
K2v-6r+ a2 dyO)

i2 =Vi 1 ' d Oflv(l = 8 Id| =o

sin 2=sinf d o)

cos 02 = cos O1 + l tan2 °v d)-d d= J°

(15)

(16)

where ni, i= 1 3 are the refractive indices of regions I-III. For TM polarization the
quantities in (16) should be overbarred. Substitution of (15) and (16) in (4), (10), (12)
and (13) after regrouping the terms containing a and b leads to the required first order
mode coupling system,

a l++al =Z(a 2+ +a2 )FV(l + d)+c,: d], (17a)

a1 +-al =(aV2+-aV2-) 6,(1 +Xv tan 2 (3d) + c.V COS V d]

+ d si 01 (bT 2+ b bv(Kpv 2HvD) X,(cV + dV): (17b

and

b + + b (b 2 + + b 2 6,v(1 + Fvd ) + (v + ,,) gv d], ( 8 a)

bl + -bl =(b2 + 2 -) 2 5v(l + v tan2 Ovd) + V COS d
~~~~P a vN i I ++ - V (cos 0

sin O~~~~, L 6 K 2~~~~- (17b)
co0Z(b2 + +62-) ,5~K-zv~-,(~+d ~:)

and

b,'}+b b±+b)LM(1 d)±- - +6 V)d ' (18a)

-b,'7=Z( 2+2-F~~~2g~-cost J1d
M+-C =Zby -bv)LMV(+ Jtan~a)+c5. co

-sinOv 2 + 2-1b+dZslT (a~ +a~ 6v v2vv)-vv (18 b)
v COS 1 Irv
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where

1 a2
v-t ad Id = o'

j 1 ad2

CV- fli [*(Y)2(Y) dy],

-2w% 0 Ld

k2(ao d J [n'(y)] 2 , d

2(oc£L, t)J2 fn.(t)]

KV id Li P(Y)v2 (y) dy

K = lI [a a Jz d y 1
Equations (17) and (18) have been obtained for a boundary z=0. The field
amplitudes a± and bJ+ for an arbitrary boundary z = A must be replaced by
a4

± exp (+ ifiJA cos OJ) and bl exp ( ivA cos M).

3. Evaluation of the mode amplitudes
Let us consider the case when only one TE N mode with amplitude a + is incident

on the step discontinuity. All other incident modes are taken equal to zero so that

a2- = b2 - =b l + = O , al+=6 a+ (20)A P A'WI P '7

The amplitudes of the incident at + and the transmitted a2 + modes in (17) are of the
zeroth order in terms of d, while the reflected modes and the transmitted modes with
mode number different from ?1 are of higher order. Substituting (20) in (17) and
omitting the terms of higher than the first order, the amplitudes can be expressed in
explicit form:

an2+ = a +[l1-d(c"M+½g"(1 +tan2 0,))]= a1 ?I~ ~ [ 1 2d~ c + { ¾ ( + t a nf o r T E T E , c o n v e r s i o n , ( 2 1 )
a - = a + (d/2)~.(1 -tan2 0O)

a = _ a " 2 't,(B cos O,) 
d [i, cos 0

=aI+ -d ~#,7 cos 0,,for TE.-TE5 conversion (-r), (22)

'7 2'- '7/3 cos O0

and

b}b =2 + ( -8i---a')
2+ d a sinO /' --X- cv~-b + = 2 a7 co

+ K -2f Z,,,A A ~~cos %\ #2~ 

for TE,-TM, conversion.

(19)

272
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The same procedure applied to TM incidence leads to:

b2 + = b+[1dZ 1 a tand 2 ) 

for TM,-TM, conversion, (24)

b,-=b+ ¢[-l,(1-tan2t)+ad,,]

-l g~ 2-+ - + 6,

b 2+ = -bl+d 2 (t cosT) to ]

A F/ 2 Al F" for TMu-TM, conversion (p/q)

bl -=bl+v___-/ ph 1- (25)pi-b 2L"7 -cos0~ filcos-)+CW7 h

and

a =a+ =bl+ K,1- sin 
a 2 cos K- /

for TM, TE, conversion. (26)

The mode-matching system (17) and (18) is a linear inhomogenous algebraic system
for unknown amplitudes. The linearity of the inhomogenous part leads directly to
the fulfilment of the superposition principle. Therefore, when a superposition of
modes is incident on the step boundary, scattered mode amplitudes can be
represented as a linear combination of the scattered modes amplitudes for a single
mode incidence.

4. Mode coupling by a groove
Consider now a guided wave obliquely incident on a rectangular groove placed on

the top of a planar optical waveguide (figure 2). The incident wave excites all possible
modes at the boundary 1-2. In a first-order approximation the amplitudes of the
scattered modes are of order d-times of the incident wave amplitude. On the second
boundary 2-3 the modes scattered at the first boundary excite modes with
amplitudes of order d2. A diagrammatic representation of the mode coupling is
shown in figure 3. In the first order approximation the second order coupling in
figure 3 is neglected. Applying equations (21-26) for the boundaries 1-2 and 2-3 and
omitting the terms of higher than the first order in d, for the amplitudes of the
transmitted and reflected modes we obtain:

a - = a + ,,( -tan 2 0,,) (exp (-2ifip, cos O,,A) -exp (-2ipi cos 0hA2))

(27)
a3+ = a + exp (-id~JJ. cos 0,(1 + tan 2 0) (A2 - A1 ))

for TE-TE, coupling,
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Figure 2. Schematic diagram of the planar optical wvaveguide with a surface groove.

Q a,

Aj. 1 Aj

Figure 3. Mode coupling diagram on rectangular groove, with ( ) zeroth order coupling,
(-) first order coupling and (---) second order coupling.

a' a - c /, coSO,, [CxL' ( - i(/,, Cos (,, + /,, Cos ,)A )M ?2 (#"K /,Cos 0,,)

- exp (- i(fl, cos 0, + 13, cos0

a 3 = atn 2 c'll(fl + cos O ) [ exp (--i(f, os 0,- flcos 0)A,)

2A~~~-exp (- i( .cos 0- eos 0)A2) ]
- exp (- i(/3,, cos 0, - /3,, ~os0,A)

(28)

for TE, TE, coupling ( Aq)
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b d sinO -bl-=-al+ 2 ?cos O R [ e x p ( - i ( /q Cos 01 + cos t )A l)

-exp (- i(fl, cos 0,, + f cos )A2) ]

b3 +=_ l+sin0,db a+ ,2 RJ exp(-i(,,cos ,,-, (cos ,)At)

- exp (- i(f,, cos 0,, - cos tf)A2)]

(29)

for TEN,-TM coupling, where

(30)

Similar expressions are obtained for TM,-TM,, TM,,- TM,, and TM,-TE .
coupling by multiplication of the amplitudes (24-26) with the corresponding to the
type of polarization exponentials.

The groove with an arbitrary profile (figure 4) is divided into rectangles, each
with an infinitesimal base and height d, which is small in comparison to the
waveguide effective thickness. For each rectangle the change in the mode amplitude
is proportional to

(31)

where

A , = lB Cos 0, ,f, os 0#. (32)

The symbols + and - refer to positive and negative directions of propagation. After
summation over all rectangles in (31), the amplitude change of the guided wave
scattered by the whole groove becomes proportional to

Ao+A

iA,,, J [f(z) - t] exp (- iA,,z) dz,
JAo

because the width of the rectangles is infinitesimal. Where y =f(z) (the groove profile
function) and

d =f(Aj_ I )-t. (34)

Figure 4. Approximation of the groove profile with rectangular slides.
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Similar consideration for the transmission amplitude leads to

3+ =a+ exp(-ie,) (35)

where

rAO+A

e = fl,, cos 0,7 (1 + tan 2 07) ° [f(z)-t] dz.
tAo

For a TI\l case the corresponding quantities in (31), (32), (33) and (35) should be
overbarred.

5. Mode coupling by a grating
The geometry of the problem under consideration is shown in figure 5. A TE,, or

TM,, guided wave is incident at an angle 0,, on the relief surface grating with a profile
function

y =f(z) = t + d(z) (36)

From § 4 it is evident that the first-order approximation in groove depth is equivalent
to a small change of the incident wave amplitude. This is true for grating single
groove coupling; however, the amplitude of the wave diffracted by the whole grating
can be comparable with the incident wave in the case of phase synchronism. Using
the periodicity of the grating, equation (33) can be represented as

idA ,, Fm[ exp (ilk,,,mA)- 1]/it5', mA, (37)
m

where

A

Fm = A- 1 f (z)exp(-imKz)dz, K= 27r/A, 
Jo 0 (38)

All m o=mK-A1,n m=, +1, +2,... 

We shall consider further the interesting practical case of Bragg diffraction, when the
only significant term in the sum (37) which remains is one which deviates only
slightly from the Bragg condition

#p = i,1 +mK. (39)

In this case (37) becomes idA.,,lFmexpi(J,,,, mZ and substituting A(a,b),/A with
d(a, b),/dz in (27 29) we obtain the coupled-mode equations

d cl(z) -j 
- = ijF.(z) exp i z,
cz I (40)

d c,(z) .
d = iF I c~,(z) exp (- irS~..mZ),

where c1=as,, c2=bA and the coupling coefficients F are given in the table, with

R.,, = K,, - 2 X,,? ,,- 5 +v C', 

Equations (40) are valid for both reflection and transmission cases. The angles 0 in
the table are measured from the positive direction of z axes (i.e. for reflected waves
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L

reflected
wave

incident
wave

Figure 5. Schematic representation of the surface relief grating.

Coupling coefficients for different kinds of coupling.

Coupling Coupling coefficients

TEn-TEn n,, =dFm,,,s, co
cos 20,

TE ITE, F5 -l _ = 2 mc -ln os (OO
TE,-TE, 11 - m 2 COS 0_2t cos O,

TEn-TM, F2 in 0I)
2 m cos U

12 d sin (0- -n)
TM,-TE, F 2 =-F.RYi, cos 0

2 JTMn TM n F,2' =dFmc,[, , cos,,, s 

d~~~' Cos F-T ~--~~~(-h f/ sin~f.-f)TM,-TM,, F 2 2F c #,2 IF t-aRt sn 

the angles are obtuse). For the reflection case coupling coefficients F,, and F have
opposite signs and the solution of (40) is represented by hyperbolic functions. For
the transmission case the coefficients have the same signs and the solution is
represented by trigonometric functions [10].

6. Waveguide with a step refractive index profile
The expressions for F in the table are valid, to a first-order approximation in d,

for a waveguide with an arbitrary refractive index profile and for a grating with an
arbitrary cross-section. For a waveguide with a step refractive index profile the
coupling coefficients for TE-TE and TM-TM coupling can be obtained in closed
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form from the wave equations by integration in parts. The calculations are tedious so
we give only the final results,

d 1____ 2[n 2 cos ( -O)
FTETE=2 2u Fmk2 [n2 n2] (t) (t)C°S 0

FETE*'- 2 20/2 p 2cyoCos0,

d 2 I qq2 (41)
#' +qq, 1 os (0-- 7u

F'TMTM = 2 2 Fmn 2

Here q2 = _ k2n2, k is the wave-vector, n1 is the superstrate refractive index, n2 is
the waveguide refractive index and o,.4(t), J..(t) are the values of the mode
eigenfunction at the waveguide-superstrate boundary.

7. Discussion
Despite the amount of work on this subject there is no common opinion

regarding the angular dependence of the TE,-TE,1 coupling coefficients for the case
of an obliquely incident wave on a grating [12,13,16,18]. From the table it is clear
that TE,,-TE, coupling vanishes if the angle of incidence is 7r/4. This is the well-
known Brewster's law analogy for Bragg reflection by planar gratings. It is important
to notice that this phenomenon is a result of a corresponding effect on a single step
boundary. From (21) we see that the coupling also vanishes at a step discontinuity if
the angle between the reflected and the transmitted modes is 90°. This phenomenon
corresponds to Brewster's law in bulk optics. Such an analogy, however, exists only
for a small step height, of first order in d. In the general case system equations (4, 10,
12 and 13) must be considered, so that the excitation of each mode is performed
through all possible modes. Higher order coupling (figure 3) gives rise to the indirect
energy transfer from the incident to the reflected wave through other modes.
Another interesting point is that the angular dependence of the coupling coefficients
is not influenced by the waveguide or grating parameters.

Stegeman et al. [17] have presented a review of the results for the coupling
coefficients obtained by different methods. In the case of normal incidence our
results for TE-TE and TM-TM coupling in a step index waveguide coincide with
those of Stegeman et al. and those of the local mode approach [9]. However, for the
case of oblique incidence and the above mentioned kinds of coupling our results
differ from those of Stegeman et al. by the cosine in the denominator of the angular
dependence term (see the table). This term is responsible for interaction length
= A cos- 0 of the /th mode in the single grating groove. Unlike normal incidence

where the mode coupling is accomplished with a polarization conservation [9, 10], in
oblique incidence a polarization conversion is possible because of the hybrid nature
of the modes. If, for example, a TE guided wave hits a boundary at an angle 0, the fx
component transverse to the propagation direction excites the longitudinal electric
vector component in the scattered modes which corresponds to a TM polarization.

The backscattering case with polarization conversion (TE-TM and TM-TE
coupling) has been discussed in [17] and results similar to ours have been obtained
without the cosine denominator shown in the table. It is important to note that the
mode fields g,(y) and 6=(y) in [17], as well as ,x(y)/n2 and .F,,(y) are taken to be
mutually orthogonal, thus the overlapping integrals, in our notations XV and Z4, are
cancelled. In fact this is inaccurate. The orthogonality relations (6) and (7) refer to
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the TE and TMII eigenfunctions separately, and there is no such orthogonality
relation between TE and TM eigenfunctions. Orthogonality between TE and TM
modes propagating in different directions in an infinite slab waveguide is satisfied
due to the different propagation factors. The existence of a boundary cancels this
orthogonality. In collinear and contralinear coupling TE and TM fields have
mutually transverse vectors, but in the case of oblique incidence the vectors are non-
transverse and the overlapping of mode fields causes energy exchange between all
possible modes. Direct evaluation for the case of waveguide with a step refractive
index profile confirms that X,v and Zv are non-zero for both = v and p v

2_#2 -f 2 ff. 2k2 2
iXlv = _ 2k2 [& (t)v'(t)(i2-A2) + (0) (0) (2n2)]fll~~~~l I 13 ~~~~~~~2 ~ (42)

x f = i' flu 2 S2zvx(t) x(t) n 2 ) + (0)~F*(O) ')]
Z~,,,-- fki2 [' n2kn 2

The summation over all possible modes in the right-hand side of (30) can be
abbreviated to a summation over modes adjacent to the incident and the scattered
mode.

Appendix
From the Maxw\ell equations e have

n 2 EZ= 1 (aHY aHN1
nz itmEo( x x' l (A 1)

H= 1 (ax Ex) J

The continuity of E and Hy and Snell's law (9) ensure the continuity of Ey/ax and
Hy1/x. Consider now the continuity requirement for Ex/ay and H,,/y at z= 0

_E ~ aE 
ay Z= z x0 av L(A 2)
by .-=o (ay [==o'

aHi aH 2
ayx l ayZ l (A3)

a~y Lo ~o

Multiplying (A 2) by

(fl~/47ropo) exp (ifllx sin 0,) f (y) dy

and (A 3) by

(P, /4n(og) exp (iffx sin ,) f( (y)/[n(y)] 2) dy,

after integration in parts over the infinite x-y cross section we get (4) and (10).
Therefore the normal field components E and H are continuous at the boundary
z = 0 in the regions y < t and y > t + d, where the refractive index of the medium does
not change.
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