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The basic idea of the differential methods consisits in projecting the electromagnetic field on 
a set of basic functions in order to reduce Maxwell partial differential equations into a set of 
ordinary differential equations. When working in a Cartesian coordinates, the natural basis 
consists of exponentials, using the periodicity of the optogeometrical parameters. Diffraction 
by a single aperture requires working in the basis of cylindrical Bessel functions [7.1], while 
diffraction by an arbitrary-shaped single object requires vector spherical functions [7.2] as a 
basis. 

The first studies using the differential method [7.3] appeared in the late 1960s, initiated 
by the birth of the computers. These studies concerned the modeling of diffusion of particles 
in nuclear potential by using the separation of variables of the radial Schrödinger equation. 
The method was called “optical method” due to the similarity between the Schrödinger and 
the Helmholtz equations. The first applications to grating diffraction appear in 1969 [7.4], but 
accurate and converging results required combining the differential method with conformal 
mapping techniques [7.5]. The classical differential theory as known nowadays was 
formulated in [7.6, 7.7]. One can find a detailed review on the classical differential method in 
[7.8] 

It appeared that the classical differential theory suffered from severe numerical 
problems in transverse magnetic (TM) polarization, as well as for deep gratings. The first 
breakthrough was made in the first half of the 1990s, by introducing orthonormalization of the 
differential equations during their integration [7.9] and followed later by the so-called R-
matrix or S-matrix propagating algorithms [7.10]. The second breakthrough improved 
considerably the convergence in TM polarization for lamellar gratings, by introducing the 
correct factorization rules (see further on), at first by chance [7.11] and after that using 
theoretical arguments [7.12], closely followed by a generalization to arbitrary profiles [7.13]. 
A detailed review can be found in [7.14]. 

   

7.1. Maxwell equations in the truncated Fourier space 
Let us consider a structure with two-dimensional periodicity along the x- and y-axis (Fig.7.1) 
with periods equal to dx and dy. The modulated (grating) region extends in z from zmin to 
zmax. Inside that region, for a given value of the vertical coordinate z, the permittivity ε and 
permeability µ are periodic functions in x and y that can be projected on exponential Fourier 
basis: 

mailto:e.popov@fresnel.fr
http://www.fresnel.fr/perso/popov
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m,n x y

m,n

m,n x y
m,n

(x, y, z) (z)exp(imK x inK y)

µ(x, y, z) µ (z)exp(imK x inK y)

+∞

=−∞

+∞

=−∞

ε = ε +

= +

∑

∑
 (7.1) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Fig.7.1. Schematical representation of a structure having two-dimensional periodicity in x and y-
directions, consisting of truncated pyramids with height h. 

 
where x xK 2 / d= π  and y yK 2 / d= π . We shall deal with a monochromatic (wavelength λ) 
plane wave incident on the structure with a wavevector: 

 
 inc 0 0 0k ( , , )= α β −γ



 (7.2) 
 

with components related to the incident polar angle θ (between the incident direction and the 
grating normal) and azimuthal angle ϕ (between the plane of incidence and the xOz-plane): 

 

 
0 0 0 0

2 2 2 2
0 0 inc 0 0 0

k sin cos , k sin cos ,

k n , k 2 /

α = θ ϕ β = θ ϕ

γ = − α −β = π λ
 (7.3) 

 
where ninc is the refractive index of the cladding. 

The existence and uniqueness of the solution of the diffraction problem is an interesting 
problem that is not discussed here. The reader can refer to several basic works (see for 
example [7.15, 7.16]. What is important to conclude is that the electromagnetic field is 
pseudo-periodic, so that similarly to eq.(7.1), the electric E



 and magnetic H


field vectors can 
be represented in pseudo-Fourier series: 

 

dx 

dz 

x 

z y 

θ 

 

zmax 

h 

zmin 

incidence 
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m,n 0 x 0 y
m,n

m,n 0 x 0 y
m,n

E(x, y, z) E (z)exp i( mK )x i( nK )y

H(x, y, z) H (z)exp i( mK )x i( nK )y

+∞

=−∞

+∞

=−∞

 = α + + β + 

 = α + + β + 

∑

∑

 

 

 (7.4) 

In what follows, we use the notations: 
 
 m 0 x n 0 ymK , nKα = α + β = β + . (7.5) 

From a numerical point of view, it is necessary to truncate the series in eqs.(7.1) and (7.4), 
introducing truncation parameters Nx and Ny, which limit the lower and the upper boundaries 
in the series. 

Maxwell equations written in Fourier space take the form, assuming exp( i t)− ω  time 
dependence with circular frequency ω : 

 

 

m,n z,m,n y,m,n x,m,n

x,m,n m,n z,m,n y,m,n

m,n y,m,n m,n x,m,n z,m,n

m,n z,m,n y,m,n x,m,n

x,m,n m,n z,m,n y,m,n

di E (z) E (z) i B (z)
dz

d E (z) i E (z) i B (z)
dz
i E (z) i E (z) i B (z)

di H (z) H (z) i D (z)
dz

d H (z) i H (z) i D (z)
dz
i

β − = ω

− α = ω

α − β = ω

β − = − ω

− α = − ω

m,n y,m,n m,n x,m,n z,m,nH (z) i H (z) i D (z).α − β = − ω

 (7.6) 

 
As can be observed, the third and the sixth equations are not differential equations, and they 
are used to eliminate the z-components of the fields, as shown further on. It has to be stressed 
out that the equations with different (m,n) numbers are coupled through the Fourier 
components of D E= ε

 

 and B H= µ
 

.  
The next step is to factorize the products D E= ε

 

 and B H= µ
 

. In this chapter we 
assume media with linear dielectric and magnetic properties and without spontaneous 
polarizations. The problem of Fourier transform of the product of two functions  

 

m,n 0 x 0 y
m,n

D(x, y, z) D (z)exp i( mK )x i( nK )y
+∞

=−∞

 = α + + β + ∑
 

 (7.7) 

 
is, in generally, solved theoretically by convolution of the Fourier transformers of the two 
functions, using the so-called Laurent’s rule: 

 

 m,n m m ,n n m ,n
m ,n

D (z) (z) E (z)
+∞

′ ′ ′ ′− −
′ ′=−∞

= ε∑
 

. (7.8) 

 
However, there are several problems in the numerical application of this rule: 
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First, numerical applications are simplified when using matrix notations. However, 
most of the standard routines use single-rank vectors and rectangular (2-ranks) matrices, while 
the vectors D and E in eq.(7.8) have two indexes, and the matrix ε depend on four indexes. In 
the case of classical grating with one-dimensional periodicity, this problem does not exist. 
Fortunately, for structures having 2D periodicity, a reduction to standard arrays is possible by 
introduction of a single index instead of the double for the vectors, by the following 
substitution: 

 x y yp (m N )(2N 1) (n N 1)= + + + + +  (7.9) 
so that when m varies between –Nx and +Nx and n varies between –Ny and +Ny, p varies 
between 1 and Pmax = (2Nx+1)(2Ny+1). Using these notations, we can introduce standard 
arrays in the following manner: 

 

p m,n p m,n

p p m m ,n n

D (z) D (z), E (z) E (z), etc. for H and B,

(z) (z)′ ′ ′− − −

= =

ε = ε

     

 (7.10) 

 
so that eq.(7.8) takes the standard truncated form 

 

 
maxP

p p p p
p 1

D (z) (z) E (z)′ ′−
′=

= ε∑
 

. (7.11) 

 
That can be written in matrix notations in the form 

 
 

 

D(z) (z) E(z)   = ε   
 

, (7.12) 
 

where double square brackets stand for the Toepliz matrix. 
In addition, two diagonal matrices are useful: 
 

 
p,p p,p m

p,p p,p n

′ ′

′ ′

α = δ α

β = δ β
, (7.13) 

 
with p,p′δ  being the Kronecker’s symbol. 

Second, due to the vectorial character of the fields, the matrix form in eq.(7.12) has to 
be interpreted in a block form: 

 

 

[ ]

[ ]
 

[ ]

[ ]

x x

y y

z z

D (z) E (z)

D (z) (z) E (z)

D (z) E (z)

   
   

   = ε      
      
   

, isotropic media (7.14) 

[ ]

[ ]

   

   

[ ]

[ ]

xx xy xzx x

y yx yy yz y

z zzx zy zz

(z) (z) (z)D (z) E (z)

D (z) (z) (z) (z) E (z)

D (z) E (z)(z) (z) (z)

 ε ε ε           = ε ε ε              ε ε ε    

 

 
 

     

     
     

 

 
 

, anisotropic media. (7.15) 
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The third problem linked with the truncation of eq. (7.8) has limited the use of the 
differential methods (including RCW method) for more than 30 years, and has been solved for 
lamellar gratings in the late 90s [7.11, 7.12], and for arbitrary-profile gratings in the start of 
the 2000s [7.13]. The problem is due to the very slow convergence with respect to the number 
of Fourier components in the truncated sum of eq. (7.8), when the two functions in the 
product are discontinuous. As demonstrated by Li [7.12], four different cases can be 
distinguished with respect to eq.(7.12): 

1. Both ε and E are continuous functions of x and y. 
2. ε is discontinuous, but E is continuous. This is the case of the tangential component of 

E. 
3. Both ε and E are discontinuous, but their product D is continuous, as it happens for the 

normal component of D. 
4. All three functions are discontinuous. 

In the first and second case, Laurent’s rule assures relatively rapid convergence. In the 
third case, more rapidly converging scheme can be obtained through the following 
considerations for isotropic media.  

If D = εE is continuous, then it is possible to factorize the product between D 
(continuous) and 1/ε (discontinuous) using the Laurent’s rule (called by Li direct rule):  

 

 1E(z) D(z)
(z)

   =   ε

 
 

 

 

 

 

, (7.16) 

 
wherefrom the so called inverse rule is formulated: 

 

 
1

1D(z) E(z)
(z)

−

   =   ε

 
 

 

 

 

 

, (7.17) 

 

which can be applied if the matrix 1
(z)ε

 

 

 

 

 

 is not singular, a requirement that can create 

numerical problem for highly conducting gratings having small imaginary part of ε. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.7.2.Convergence of the classical and the FFF version of the differential theory in the case of a 
dielectric sinusoidal grating with high contrast. Squares, old version of the differential theory for 
TM polarization; open triangles, new version, TM polarization; solid triangles, TE polarization 
(after [7.13]). 
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When infinite series are considered, eq.(7.17) is identical with eq.(7.12). However, as 
shown in Fig.7.2, the correct use of the direct or the inverse rules improves drastically the 
convergence of the differential methods with respect to the truncation parameter. Similarly to 
the abbreviation FFT, standing for Fast Fourier transformation, we have introduced the term 
Fast Fourier factorization (FFF) to name the correct use of the direct and the inverse rules, 
when applied numerically in the truncated Fourier space.   

In the fourth case, neither the direct, nor the inverse rule result in acceptable 
convergence, so that this case must be avoided. Fortunately, this can be done by considering 
separately the electromagnetic field components, tangential or normal to the grating profile 
and taking into account that the electric field components tangential to the surface separating 
two different permittivities are continuous, in the same way as the normal components of the 
displacement D.  

 

7.2. Differential theory for crossed gratings made of isotropic materials 

In the isotropic case, the displacement vector D


 can easily be separated into a continuous part 

N ND E= ε
 

, normal to the profile surface, and T TD E= ε
 

 that contains the continuous function 

TE


. Let us define a unit vector N


, normal to the grating profile. Although it is well defined 
on the profile (except edges), it is necessary to generalize its definition all over the grating 
region, which cannot be done in a unique manner. Different choices are shown further on for 
specific gratings having 1D or 2D periodicity. Using this generalized vector, the relations 
between E



 and D


 can be decomposed into two terms, for each of which we can apply the 
direct or the inverse factorization rules, skipping the explicit writing of the z-dependence: 

 
 ( ) ( )N TD E E N N E E N N E = ε + ε = ε ⋅ + ε − ⋅ 

         

. (7.18) 

 
The first term is a product of type 2 and requires the direct rule. The second term is of type 3, 
demanding the inverse rule, so that: 

 

 
 

  ( ) ( )

1

T N

1

1D E E

1E N N.E N N.E .

−

−

     = ε +     ε

   = ε − +   ε

  
 

 

 

 

      
 

 

 

 

 (7.19) 

 
Introducing a square matrix representing a tensor product denoted ( )NN

 

 with elements given 

by NiNj, we obtain: 
 

 
   

11D E NN E Q E
−

ε

 
       = ε + − ε =         ε 

     
 

 

 

 

  

 

, (7.20) 

 
where the matrix Qε has the form: 

 

 
   

11Q NN
−

ε

 
= ε + − ε  ε 

 
 

 

 

 

  

 

. (7.21) 



E. Popov: Differential Theory of Periodic Structures         7.7 

In a similar manner for magnetic materials, we can find the link between magnetic field 
and induction in the truncated Fourier space: 

 

 
   

µ

1

µ

B Q H ,

1with Q Q µ µ NN
µ

−

ε

   =   
 
 = = + −
 
 

 

 
 

  

   

 

 

 

 (7.22) 

 
Eq.(7.20) allows eliminating Ez in the system (7.6): 

 

[ ] [ ] [ ]( )
[ ]

[ ]

1
z ,zz z ,zx x ,zy y

y x1
,zz ,zx x ,zy y

E Q D Q E Q E

H H
Q Q E Q E

−
ε ε ε

−
ε ε ε

 = − −  

  α −β   = − + +   ω 

 (7.23) 

 
where the matrices α and β are defined in eq.(7.13). 

Repeating the procedure for Hz: 
 

[ ]
[ ]

[ ]y x1
z µ,zz µ,zx x µ,zy y

E E
H Q Q H Q H−

  α −β   = − −   ω 
, (7.24) 

 
it is also eliminated from eqs. (7.6). 

For non-magnetic media, the last expression is further simplified: 
 

 [ ]
[ ]y x

z
0

E E
H

µ

 α −β =
ω

. (7.25) 

 
Thus the system (7.6) is replaced by a system of ordinary differential equations: 

 

 

[ ]

[ ]

[ ]

[ ]

x x

y y

x x

y y

E E

E Ed iM
dz H H

H H

   
   

         =   
   
            

. (7.26) 

 
This equation can be expressed in a compressed form: 

 

 d F(z) iM(z)F(z)
dz

=  (7.27) 

 
 
Here the matrix M has 4x4 blocks: 
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1 1
11 ,zz ,zx ,yz µ,zzM Q Q Q Q− −

ε ε µ= −α − β  
1 1

12 ,zz ,zy ,yz µ,zzM Q Q Q Q− −
ε ε µ= −α + α  

1 1
13 ,yz ,zz ,zx ,zz ,yxM Q Q Q Q Q− −

µ µ µ ε µ
α

= −ω + β + ω
ω

 

1 1
14 µ,yz µ,zz µ,zy ,zz µ,yyM Q Q Q Q Q− −

ε
α

= −ω − α + ω
ω

 

1 1
21 ,zz ,zx ,xz µ,zzM Q Q Q Q− −

ε ε µ= −β + β  
1 1

22 ,zz ,zy ,xz µ,zzM Q Q Q Q− −
ε ε µ= −β − α  

1 1
23 µ,xz µ,zz µ,zx ,zz µ,xxM Q Q Q Q Q− −

ε
β

= ω + β − ω
ω

 

1 1
24 µ,xz µ,zz µ,zy ,zz µ,xyM Q Q Q Q Q− −

ε
β

= ω − α − ω
ω

 

 (7.28) 
1 1

31 ,yz ,zz ,zx µ,zz ,yxM Q Q Q Q Q− −
ε ε ε ε

α
= ω − β − ω

ω
                         

1 1
32 ,yz ,zz ,zy µ,zz ,yyM Q Q Q Q Q− −

ε ε ε ε
α

= ω + α − ω
ω

 

1 1
33 µ,zz µ,zx ,yz ,zzM Q Q Q Q− −

ε ε= −α − β  
1 1

34 µ,zz µ,zy ,yz ,zzM Q Q Q Q− −
ε ε= −α + α  

1 1
41 ,xz ,zz ,zx µ,zz ,xxM Q Q Q Q Q− −

ε ε ε ε
β

= −ω − β + ω
ω

 

1 1
42 ,xz ,zz ,zy µ,zz ,xyM Q Q Q Q Q− −

ε ε ε ε
β

= −ω + α + ω
ω

 

1 1
43 µ,zz µ,zx ,xz ,zzM Q Q Q Q− −

ε ε= −β + β  
1 1

44 µ,zz µ,zy ,xz ,zzM Q Q Q Q− −
ε ε= −β − α . 

 
This form looks like the form of the M-matrix obtained by Lifeng Li for crossed anisotropic 
(electrically and magnetically) gratings with profiles invariant with respect to z [7.17]. 

Whatever the form of the matrix M, eq.(7.26) represents a linear set of first-order 
ordinary differential equations. It can be solved numerically (with several problems, discussed 
further on), using well developed numerical schemes. In the case of vertical invariance of the 
optogeometrical parameters of the system inside the modulated region, the elements of the M-
matrix becomes constant in z, so that the solution of eq. (7.26) can be found through the 
eigenvectors and eigenvalues of M, a technique known under the name of Fourier modal 
method, or Rigorous coupled wave (RCW) method. 

The solution of (7.26) gives a linear link between the field in the substrate and in the 
cladding 

 max minF(z ) T F(z )= , (7.29) 
 

where T is called transmission matrix. 
The advantage of this presentation comes from the fact that the field components 

participating in the calculations are tangential to the interfaces between the substrate and the 
modulated region, and between the cladding and the modulated region, so that they are 
continuous across these interfaces (in the absence of surface charges). 



E. Popov: Differential Theory of Periodic Structures         7.9 

 

7.3. Electromagnetic field in the homogeneous regions – plane wave expansion 
In most case, the substrate and cladding are homogeneous isotropic media. The 
electromagnetic field there can be expressed as a sum of plane waves. In particular, if the x 
and y-dependencies are given as in eq.(7.7), the z-dependence is explicitly known, for 
example for the electric field it takes the form: 

 
 p p p p pE (z) A exp(i z) A exp( i z)+ −= γ + − γ

 

 (7.30) 
 

of two waves propagating upwards (sign +) and downwards (sign –) along the z-axis, with p 
given in eq.(7.9). Each diffraction order with a given p propagates independently of the 
others, the coupling is effective inside the grating region. 

The z-propagation constant γ depends on the medium properties: 
 

 2 2 2
p p pγ = ω εµ − α −β . (7.31) 

 
Equations (7.6) enable us to express the magnetic field components through the electric ones: 

 

 

2 2
p p p p

x,p x,p y,p
p

2 2
p p p p

y,p x,p y,p
p

1H E E

1H E E

 α β β + γ
 = − +
 ±γ ωµ ωµ 

 α + γ α β
 = +
 ±γ ωµ ωµ 

 (7.32) 

 
where the sign of γ determines the direction of propagation in along z-axis. 

With this link in mind, the column vector F in eq.(7.27) takes the form: 
 

 

[ ]

[ ]

x

y

x

y

E

E
F A A

H

H

+ + − −

 
 

   ≡ = Ψ + Ψ 
 
    

, (7.33) 

 
where the column vectors 

 
x

y

A
A

A

±
±

±

  
  =      

 (7.34) 

 
contains the amplitudes of Ex and Ey propagating in positive or negative direction of the z-
axis, matrices ±Ψ  are block-diagonal:  

 



7.10               Gratings: Theory and Numeric Applications, 2012 

xx xy

yx yy

,±
± ±

± ±

 
 
 

Ψ =  Ψ Ψ
 
 Ψ Ψ 




 (7.35) 

with diagonal blocks 
 

 

pp

2 2
p p p p

xx,pp xy,pp
p p

2 2
p p p p

yx,pp yy,pp
p p

1,

,

,

± ±

± ±

=

α β β + γ
Ψ = Ψ =

γ ωµ γ ωµ

α + γ α β
Ψ = ± Ψ = ±

γ ωµ γ ωµ

 



 (7.36) 

 
found from eq.(7.32) 

Let us consider the case of a single incident wave from the cladding. The grating 
generates different diffraction order that propagate upwards in the cladding and downwards in 
the substrate. We attribute number 1 to the substrate and number 3 to the cladding. The total 
number of unknown diffracted field amplitudes will be equal to 4Pmax, two sets of 1

x,pA −  and 
1
y,pA −  transmitted in the substrate, and two sets of 3

x,pA +  and 3
y,pA + . These unknown amplitudes 

are subjected to 4Pmax number of linear algebraic equation in (7.29).  
In order to obtain the T-matrix, the numerical integration of eq.(7.26) is made by using 

the so-called shooting method, which consists of choosing 2Pmax linearly independent 
representatives of the transmitted field. These representatives must correctly reflect the link 
between the electric and magnetic field components, as given by eqs.(7.32). A typical 
example for the shooting vectors starting from the substrate is that matrix 1+Ψ , which has 
2Pmax linearly  independent columns. Here again, the number 1 indicates the substrate. 

Thus the F column vector at z = zmin can be formally written as a linear combination of 
the unknown amplitudes A1-: 

 
 1 1

minF(z ) A− −= Ψ , (7.37) 
 

Assuming that there is no incidence from the substrate side. Here the tilde indicates that the 
vector F is not yet the true solution of the diffraction problem. 

The result of the numerical integration from zmin to zmax will provide the values of F  at 
z = zmax , which are also a linear combination 1

maxF(z )A −
  of A1-, due to the linearity of the 

problem. On the other side, the column vector F at the upper interface is equal to 
3 3 3 3A A+ + − −ψ + ψ , according eq.(7.33), thus a linear set of algebraic equations for the 

unknown amplitudes 1A −  and 3A +  is obtained, with the free part determined by the wave 
incident from the cladding side: 

 
 3 3 3 3 1

maxA A F(z )A+ + − − +ψ + ψ =  . (7.38) 
 

Once this system is solved, all field components can be calculated. 
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Unfortunately, this simple procedure creates enormous numerical problems that can be 
explained by using two different arguments: 

First, it is known (but no quite well) in the theory of systems of ordinary differential 
equations, that numerical integration could become instable after a specific integration length, 
due to the fact that the set of shooting vectors can lose its linear independence during the 
integration. In other words, if the initial choice covers a vector space of 2Pmax dimensions, 
this space could shrink during the numerical integration to reduce its dimensions, so that the 
final algebraic system (7.38) could become singular. A solution of the problem based on this 
understanding was proposed in 1990 by G. Tayeb by using intermediate orthonormalization 
procedures during the numerical integration. 

 The second argument is based on the fact that inside the modulated region, as well as in 
the homogeneous regions, electromagnetic field contains components that propagate both in 
the positive and in the negative z-direction. During the integration, they both are treated in the 
same manner. As far as the solution requires taking into account the evanescent orders in 
addition to the propagating ones, a part of the former grows exponentially in z-direction, 
while the other part decreases exponentially. Due to the limited length of computer words, the 
ones that decrease substantially will be lost with respect to the ones that grow rapidly, even if 
the former could bring physical information. During the 90s, several different algorithms were 
proposed for solving the problem, based on a different treatment of the diffraction orders 
propagating upwards and downwards [7.9, 7.10]. Among them, to so called S-matrix 
propagation algorithm [7.10c] is probably the easiest to implement. Moreover, it can be used 
with methods other than the differential one in, for example, treating a stack of layers by the 
integral method, or by methods based on a transformation of the coordinate system. Interested 
reader can find in Appendix 7.1 a brief description of the S-matrix algorithm. 
 

7.4. Several simpler isotropic cases 
In practice most applications use non-magnetic materials, for which the form of M-matrix is 
considerably simplified, taking into account that then Qµ  is diagonal and equal to 0µ . 
Furthermore, several specific cases are of great interest for application, and they lead to a 
further simplification of the M-matrix. 

 

7.4.1. Classical grating with one-dimensional periodicity, example of a sinusoidal profile 
Let us consider a classical grating with grooves parallel to the y-axis and surface profile given 
by the equation z = g(x). The vector normal to the surface is given by 

 
( )

2

1N g (x), 0,1 , if g (x) exists,
1 g (x)

N (1,0,0), if not

′ ′= −
′+

=





. (7.39) 

 
where the prime stands for a derivative with respect to x. In case of vertical walls 
N (1, 0, 0).=


 Thus the easiest way to generalize the normal vector to the entire modulated 
region is just to make it equal to eq.(7.39) not only on the profile z = g(x), but everywhere 
inside the grating region for min[g(x)] z max[g(x)]≤ ≤ . The advantage of this choice is that 
N


 does not depend on z, and the Fourier transformation of the tensor NN
 

 is done only once.  
If the derivative of the profile function does not exist, or if the function is a multivalued 

one (e.g., circular or elliptical rods), but the interface can be expressed as a two-variable 
function: 
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 g(x, y) 0= , (7.40) 
the normal vector is easily defined as the gradient of the profile function 

[ ] [ ]N grad g(x, z) grad g(x, z)=


. 

The Qε matrix takes the form: 
  

     

 

     

1 1
2 2
z x x z

1 1
2 2

x z x z

1 1N N 0 N N

Q 0 0

1 1N N 0 N N

− −

ε

− −

  
 ε + − ε  ε ε  
 

= ε 
   − ε ε +   ε ε  

   

   

   

   

   
   

   

   

   

   

   

   
   

   

 (7.41) 

 
where it is taken into account that 2 2

x zN N 1+ = . The fact that the normal vector components 
participate in the form of products in couples is important, because it leads to the conclusion 
is that the choice of the sign of N



 plays no role. 
Further simplification of the M-matrix comes if limited to non-conical diffraction with 

β0 = 0: 
 

 

1 1
,zz ,zx ,zz 0

0

0
1 1

,xz ,zz ,zx ,xx ,xz ,zz

Q Q 0 0 Q µ

0 0 µ 0
M

0 0 0
µ

Q Q Q Q 0 0 Q Q

− −
ε ε ε

− −
ε ε ε ε ε ε

α −α − α + ω ω 
−ω 

=  αα
− ω ε 

ω 
  −ω + ω − α 




 (7.42) 

 
This shows that the system to integrate decouples into two subsystems, corresponding to the 
two fundamental polarizations, transversal with respect to the plane of incidence, transverse 
electric (TE): 

 
[ ]

[ ]
 

y 0 x

2

x y
0

d E i µ H
dz
d H i E
dz µ

  = − ω 

 α  = − ω ε    ω 

 (7.43) 

 
and transverse magnetic (TM): 

 

[ ] [ ]

( )[ ]

1 1
x ,zz ,zx x ,zz 0 y

1 1
y ,xx ,xz ,zz ,zx x ,xz ,zz y

d E i Q Q E i Q µ H
dz
d H i Q Q Q Q E iQ Q H
dz

− −
ε ε ε

− −
ε ε ε ε ε ε

α   = − α − α − ω   ω 

   = ω − − α   

 (7.44) 
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7.4.1.1. Fourier transformation of the permittivity  

The set of ordinary differential equations to be integrated contains the Fourier transforms of ε, 
1/ε, µ, 1/µ, 2

xN , and 2
zN . In general, Fast Fourier transform (FFT) techniques can be easily 

applied. As already discussed with respect to eq.(7.39), the normal vector components must 
be transformed only once, if chosen to be independent on z. On the other hand, the 
permittivity and permeability depend on z and their Fourier components have to be calculated 
for each value of z during the numerical integration. Fortunately, in the 1D case, it is possible 
and recommended to use analytical formulae for the Fourier transforms of ε, 1/ε, µ, 1/µ, 
which give faster more accurate results. This can be done because for a given value of z, they 
are piecewise constant functions of y. Fig.7.3 presents schematically a grating with a period d 
that separates two homogeneous media with permittivities ε1 and ε3. For a given value z0 of 
z, the Fourier transform of, for example, the permittivity intside the modulated region 
0 z h≤ ≤  is given by 

 

2 1
x x

1 2

1 2
x

x d x
imK x imK x31

m
x x

2 1 x xx imk
2

1 3 3 m,0

e dx e dx
d d

x xsin mK
2( ) e

m

+
− −

+
−

εε
ε = +

− 
 
 = ε − ε + ε δ

π

∫ ∫
 (7.45) 

 
so that the two integrals can be solved analytically, once 1x  and 2x  are determined from the 
inverse of g(x): 

 1
1,2 0x g (z )−= . (7.46) 

 
If the inverse of g(x) has more than two solutions, the sum of integrals (7.45) will contain 
several more terms. The same equations can be used to obtain the Fourier transforms of the 
inverse of the permittivity. 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.7.3.Piecewise constant representation of the permittivity for a one-dimensional grating 
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In the case of a sinusoidal profile: 
 

 [ ] 0
x 1,2

2zhz 1 sin(K x) x arcsin( 1)
2 h

= + ⇒ = − . (7.47) 

 
 

7.4.1.2. Fourier transformation of the normal vector  
As already explained, the Fourier transformation of the normal vector requires its continuation 
all over the space. If the grating profile can be represented as a single-value function, we can 
use eq.(7.39) for N



 and calculate the Fourier components of the tensor  TNN
 

 by use of the 
Fast Fourier transform (FFT) technique once for all z-values. For a sinusoidal grating having 
a profile defined in eq.(7.47), the normal vector takes the form: 
 

 ( )
x

2 2
2

x

h cos(K x),0,1
1 dN g (x), 0,1

1 g (x) h1 cos (K x)
d

π − 
 ′= − =

′+ π +  
 



 (7.48) 

. 

7.4.2. Classical isotropic trapezoidal or triangular grating 
A trapezoidal grating is shown schematically in Fig.7.4 with two flat regions L at the top and 
the bottom of the groove and two different, in general, groove angles ψ. The Fourier 
transform of the permittivity and its inverse are calculated using eq.(7.45) with: 
 

 1 0 1

2 C 0 2

x z cotg
x x z cotg

= ψ

= − ψ
 (7.49) 

 
with C 2x d L= − . For the normal vector, the period can be divided in four regions A to D, as 
shown in the figure: 
 

 

y

x 1 x 2

z 1 z 2

x

z

N 0

N sin N sin
in A, in C,

N cos N cos

N 1
in B and D,

N 0

=

= ψ = ψ 
 = − ψ = ψ 

= 
= 

 (7.50) 

 
Their Fourier components do not depend on z and can be represented as a sum of several 
analytical terms, similar to eq.(7.45): 
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Fig.7.4. Trapezoidal profile with parameters. The normal vector direction is given in red arrows. 

 

( )
1 1 1

x x

1

2
x x

1 1 2

h cotg h cotg L2
imK x imK x2 1

x m
0 h cotg

d L d2
imK x imK x2

h cotg L d L

sin 1N e dx e dx
d d

sin 1e dx e dx
d d

ψ ψ +
− −

ψ

−
− −

ψ + −

ψ
= +

ψ
+ +

∫ ∫

∫ ∫
 (7.51) 

( )
1 2

x x

1 1

h cotg d L2 2
imK x imK x2 1 2

y m
0 h cotg L

cos cosN e dx e dx
d d

ψ −
− −

ψ +

ψ ψ
= +∫ ∫  (7.52) 

( )
1 2

x x

1 1

h cotg d L
imK x imK x1 2

x y m
0 h cotg L

sin 2 sin 2N N e dx e dx.
2d 2d

ψ −
− −

ψ +

ψ ψ
= − +∫ ∫  (7.53) 

 
A triangular-groove grating can be considered as a particular case of a trapezoidal 

profile with no flat regions, 1 2L L 0= = , Cx d= . Moreover, the profile given in Fig.7.4 also 
includes the case with vertical facets, and some more exotic profiles with hanging back walls, 
Fig.7.5. 

  
 

 
 

Fig.7.5. Two different profiles with slanted grooves 
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7.4.3. Classical lamellar grating 
Lamellar profile with vertical walls is most easy to treat, because the normal to the profile 
vector has only one non-zero component, Nx = 1. The Qε matrix takes the form: 

 

 
 

 

11 0 0
Q

0 0
0 0

−

ε

 
 

ε =  ε
  ε 

 

 

 

   (7.54) 

 

 

   

   

 

1 1
0 0

2
1 10 0

0

2

0
0 0

1 2
0 0

0 0

0 0 µ

0 0 µ

M
0 0

µ µ

1 0 0
µ µ

− −

− −

−

α α ε β − ε α + ω ω ω 
β β 

ε − ω − ε α ω ω =  α α
− β − ω ε ω ω 

 β β ω − α ε ω ω 

 

 

 

 







 (7.55) 

 
In non-conical diffraction, when β0 = 0, the two fundamental polarizations are decoupled and 
can be solved independently of each other. The M-matrix is simplified to obtain an 
antidiagonal block form: 

 

 

 

1
0

0
2

0
1

0 0 0 µ

0 0 µ 0

M 0 0 0
µ

1 0 0 0

−

−

α − ε α + ω ω 
−ω 

 α=  − ω ε
 ω
 
 

ω ε 

 

 

 

 





 (7.56) 

 
thus the two sets of differential equations for each polarization become: 

 

 
[ ]

 

[ ]

1
x 0 y

1

y x

d E i µ H
dz

d 1H i E
dz

−

−

α   = ω − ε α   ω 

  = ω  ε

 

 

 

 


 (7.57) 

and 

 
[ ]

[ ]
 

y 0 x

2

x y
0

d E i µ H
dz
d H i E
dz µ

  = − ω 

 α  = − ω ε    ω 

 (7.58) 
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Even in the case of conical diffraction, it is possible to define two other polarizations, 

for which the differential system decouples. These are the electric and magnetic polarizations 
that are transverse with respect to the x-axis. Let us denote the two polarization with 
superscripts (e), when Ex = 0, and (h), when Hx = 0. For (e) case, it is possible to express Hy 
as a function of Hx from eq.(7.26) and the first line of the M-matrix in eq.(7.55): 

 
   

1
1 1(e) (e)

y 0 0 xH µ H
−

− −α α    = − ω − ε α ε β    ω ω 
  (7.59) 

 
which can be simplified into: 

 

 
 ( ) 1(e) 2 2 (e)

y 0 0 xH µ H
−

   = −α ω ε − α β     (7.60) 

 
The second line of the matrix M then results in: 

  

     ( )
2 2 11 1(e) 2 2 2 (e)0 0

y 0 0 x
d E i µ µ H
dz

−− − β β   = ε − ω + ε α ω ε − α    ω ω 
  (7.61) 

 
This expression can be further simplified, and together with the third line of eq.(7.55) (when 
Ex = 0) gives a set of equation for (e) polarization: 

 

 
 ( )

 ( )

1(e) 2 2 2 (e)
y 0 0 0 x

(e) 2 2 (e)
x 0 y

0

d E i µ µ H
dz
d iH µ E
dz µ

−    = ω β ω ε − α −     

   = α − ω ε   ω


 (7.62) 

 
Similar procedure for (h) case when (h)

xH 0= , result in another system of differential 
equations, decoupled from the (e) case: 

 

 ( )
 ( )

1 11(h) 2 2 (h)
y 0 0 x

1(h) 2 (h)
x 0 y

d 1H i µ E
dz

d iE µ H
dz

− −−

−

 
   = ω + β α ε α − ω    ε  

   = ω − α ε α   ω

 

 

 

 





 (7.63) 

 
In non-conical mount, β0 = 0 and eqs.(7.62) and (7.63) become equivalent to eqs.(7.58) and 
(7.57). 

Both conical and nonconical cases of diffraction by lamellar gratings are solved by 
eigenvector technique, due to the fact that the coefficients of the differential equations are z-
independent. Moreover, due to the separation of the two fundamental polarizations, it is 
possible to further reduce by half the size of the matrices, by dealing with second-order 
differential equations. For example, eq. (7.57) can be written in the form: 
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[ ]

[ ]

x 14 y

y 41 x

d E iM H
dz
d H iM E
dz

 =  

  = 

 (7.64) 

Thus 

 
[ ] [ ]

2

x 14 41 x2

2

y 41 14 y2

d E M M E
dz
d H M M H
dz

= −

   = −   

 (7.65) 

Les us denote with 2
pρ  the eigenvalues of the product 14 41M M  and with V the matrix 

with its eigenvectors arranged in columns. The solution of the first eq.(7.65) can be written as: 
 
 [ ] [ ]1

x xE (z) V (z)V E (0)−= Φ  (7.66) 
with 

 pp pp p(z) exp( i z)′ ′Φ = δ ± ρ  (7.67) 
which shows that the elementary solutions along z (called modes, wherefrom the names 
Fourier modal method or Rigorous coupled waves method) exist in pairs that can propagate 
upwards or downwards with the same propagation constants. 

By integrating the second eq.(7.65), we obtain that: 
 
 1

y yH (z) W (z)W H (0)−   = Φ     (7.68) 
 

with W  that can be written in different forms, because the eigenvectors are defined within an 
arbitrary factor. For example, if we take into account the second eq.(7.64), 1

41W i M V−= ρ , 
where the diagonal matrix ρ has elements equal to ρp. Another possibility, that is quite 
convenient in TM polarization described by eq.(7.57), is at first to calculate the eigenvectors 
of 41 14M M , instead of 14 41M M   (their eigenvalues are the same). Then the link between V 

and W contains the inverse of 41M , which is just equal to 1 1
ω ε

 

 

 

 

, so that i 1W V= ± ρ
ω ε

 

 

 

 

. 

7.4.4. Crossed grating having vertical walls made of isotropic material 
Most of the recent applications of the Fourier modal method are devoted to studies of light 
diffraction by structures with 2D periodicity and piecewise invariant in the third direction. 
This popularity has several reasons. First, extraordinary light transmission was found in the 
late 90s by Ebbesen [7.18] for such structures, namely metallic sheets with periodical hole 
arrays, and it attracted a lot of attention (see Chapter 1). Second, the technology of such 
structures has significantly advanced in the last 20 years. Third, the Fourier modal method is 
relatively simple to implement, and much faster than most of the other methods, because of 
the eigenvalue/vector technique of integration.  

Detailed study of these structures will be described in a separate chapter. However, due 
to its importance, we are discussing different aspects of this theory, as it presents a particular 
case of the more general geometry, that is characterized by a constant value of the z-
component of the normal vector on each cross-section having z = const. The prolongation of 
the normal vector within the entire grating cell is discussed in sections 7.6.2.2. 
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7.5. Differential theory for anisotropic media 
If we consider anisotropic media that do not extend inside the grating structure, there is not 
necessary to reformulate the diffraction theory, only that in the general case it is not possible 
to separate the problem into two independent polarizations, and it is necessary to work with 
the complete 4Pmax vectors and matrices. 

In the case of anisotropic medium that lies inside the grating, the equations linking the 
M-matrix with the Qε and Qµ matrices remain the same, eq.(7.28) for isotropic and 
anisotropic media. The difference comes from the fact that the Q-matrices take more complex 
form, because the link between the normal and tangential components of the couples E and D 
and H and B is made through the tensors of permittivity and permeability, which are not 
scalars. Let us establish this link in detail for E and D. As far as the continuous and 
discontinuous field components must be factorized differently, we construct a column vector 
Fε, which contains the continuous field components ET and DN. There are two tangential 
components to the grating surface, and only a single normal: 

 

 

( )
1

2

N x

T 1 y

2 zT

N ED E
F E T E U E

T E EE
ε ε

   ⋅ ε       = = ⋅ =       ⋅        

 

 

 

 (7.69) 

 
where the double bar indicates a second-rank tensor with 3 dimensions, and the matrix Uε has 
the form:  

 

( ) ( ) ( )x y z

1x 1y 1z

2x 2y 2z

N N N

U T T T

T T T
ε

 ε ε ε
 
 =
 
 
 

  

 (7.70) 

with N ε


 representing a tensor product with contraction of indices, for example, 

( ) x xx y yx z zxx
N N N Nε = ε + ε + ε


, etc. 

The vectors 1 2N,T ,and T
  

 are defined on the grating surface, but for their further Fourier 
transform, it is necessary to choose a suitable continuation. The necessary conditions are that 
(i) they are continuous on the surfaces where ε and µ are discontinuous, and (ii) they form an 
orthonormal triad. 

Since ε  never vanishes, the determinant of Uε represents a quadric non-null form, 
equal to: 

 ( ) ( )1 2 i ij j
i, j x,y,z

det U N T T N Nε ε
=

ξ ≡ = ε ⋅ × = ε∑
  

 (7.71) 

since 1 2N T T= ×
  

. 

Thus Uε has an inverse invUε  in the form: 
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( ) ( )
( ) ( )
( ) ( )

x 2 1x x
inv

y 2 1y y

z 2 1z z

N N T N T
1U N N T N T

N N T N T

ε
ε

    − ε × ε ×    
 

   = − ε × ε ×    ξ  
    − ε × ε ×     

   

   

   

 (7.72) 

 
It is not evident to derive this form, but it can easily be verified by using the equivalence 

invU Uε ε =   and the fact that 1 2N T T= ×
  

. For example, the product of the second line of Uε 

with the second column of invUε  can be written in vectorial form: 
 

( ) ( ) ( ) ( ) ( ) ( )inv
1 2 2 1 2 1yy

U U T N T N T T N T T N Nε ε ε ε
   ξ = − ⋅ ε × = − ε × ⋅ = − ε ⋅ × = ε ⋅ = ξ   

          

(7.73) 

 
Going back to the vector Fε, it is continuous across the grating surface, whereas the 

Cartesian components of the electric vector are, in general discontinuous, as well as the 
components of Uε. Thus for their Fourier transform, it is necessary to apply the inverse 
factorization rule: 

 

 [ ]
1invF U E

−
ε ε  =  



 

 

 

 (7.74) 

At the other hand, 
 
 inv invE U F D U Fε ε ε ε= ⇒ = ε

 

 (7.75) 
 

with Fε  being continuous, so that the Fourier transform of  D


 requires the direct factorization 
rule: 

 
1inv invD U U E

−
ε ε   = ε   

 

  

  

  

 (7.76) 

i.e.,  
 

 
1inv invQ U U

−
ε ε ε= ε  

  

  

 (7.77) 

 
For gratings having anisotropic magnetic properties, the corresponding Qµ matrix is 

obtained from eqs. (7.71), (7.72), and (7.77) by replacing invUε  by inv
µU  and ε  by µ . 

 

7.5.1. Lamellar gratings made of anisotropic material 
Such gratings are analyzed in the chapter devoted to the Fourir modal method by using more 
direct approaches, but here we want show how the corresponding equations can be obtained 
from the general eqs.(7.72). To this aim it is sufficient to realize that 

 

 1

2

N (1,0,0)

T (0,1,0)

T (0,0,1)

=

=

=







 (7.78) 
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so that  
 

 

( )
( )
( )

2 xy xx

1 xz xx

xx

N T ( , ,0)

N T ( ,0, )

N N

ε × = ε −ε

ε × = −ε ε

ε ⋅ = ε

 

 

 

 (7.79) 

 
and eq.(7.72) takes the form: 

 

 

xy xz

xx xx xx

inv

1

U 0 1 0

0 0 1

ε

ε ε
− − ε ε ε 

 
 =
 
 
 
 
 

 (7.80) 

 

with a determinant equal to 
xx

1
ε

 

 

 

 

 

. Thus 

 
 

1 1 1
xy xz

xx xx xx xx xx

1inv

1 1 1

U 0 0

0 0

− − −

−
ε

 ε ε 
ε ε ε ε ε 

 
 

=  
 
 
 
 
 

        

        

        

        

        

 

 

 





 (7.81) 

 
 

The second matrix that is required takes the form: 
 

 yx yx xy yx xzinv
yy yz

xx xx xx

zx xyzx zx xz
zy zz

xx xx xx

1 0 0

Uε

 
 
 
 ε ε ε ε ε
 ε = ε − ε −

ε ε ε 
 ε εε ε ε ε − ε − ε ε ε 

 (7.82) 

 
This form is valid even when the permittivity tensor is not symmetric, as happens in the 
modeling of magnetooptical effects. 

The Qε matrix takes the form obtained in [7.19], using a completely different approach: 
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1inv invQ U U

−
ε ε ε= ε  

  

  

 (7.83) 
1 1 1

xy xz

xx xx xx xx xx
1 1

yx yx xy yx xy yx xz
yy yz

xx xx xx xx xx xx xx

1 1 1

1 1

− − −

− −

ε ε
ε ε ε ε ε

ε ε ε ε ε ε ε
= ε − + ε −

ε ε ε ε ε ε ε

        

        

        

        

        

           

          

          

          

           

1
yx xz

xx xx xx
1 1

zx xy xyzx zx zx xz zx
zy zz

xx xx xx xx xx xx xx xx

1

1 1

−

− −

ε ε
+

ε ε ε

ε ε εε ε ε ε ε
ε − + ε − +

ε ε ε ε ε ε ε ε

     

      

      

      

     

            

            

            

           

            

1
xz

xx xx

1
−

 
 
 
 
 
 
 
 

ε 
 ε ε 

   

   

   

   

   

 

7.6. Normal vector prolongation for 2D periodicity; Fourier transform 
As observed, the proper use of the direct and the inverse factorization rules requires that the 
vector normal to the interfaces between different media is defined not only on these 
interfaces, but throughout the entire grating cell. In the case of classical gratings with one-
dimensional periodicity, the prolongation of the normal vector can be done quite easily, as 
shown in sec.7.4.1. For two-dimensional periodicity, the choice depends on the geometry, but 
also on its mathematical representation. Several different solutions have to be considered, 
without pretending to be exhaustive.  

In general, the cross-section profile changes with z, so that the matrices Qε, Qµ, and M 
have to be recalculated for each value of z. If the geometry is z-invariant, this must be done 
only once. Concerning the Fourier components of the normal vector, there are two different 
classes of grating profiles that has to be treated separately. The first class consists of surfaces 
that can be expressed all over the unit cell (containing a single period in x and z) as an 
analytical (at lease piecewisely) function Sz g(x, y)= , where S indicates that the point lies on 

the interface. In this case, it is possible to have a unique extension of N


 whatever the values 
of z. In addition, it is not necessary to calculate the cross-section of the surface(s) with a plane 
perpendicular to the z-axis for each value of z. This case also includes multilayered 
homomorphous structure with constant layer(s) thickness in the z-direction. We consider this 
class of cases in sec.7.6.1. 

The second class of surfaces includes surfaces that cannot be expressed through single-
valued functions, as the example given on the right-hand side of Fig.7.12. In that case, it is 
necessary for each fixed value of z to know the cross-section function of the grating surface 
with the plane z = const. Subsection 7.6.2 presents general analysis, some important specific 
cases are considered further in the following subsections. 

 

7.6.1. General analytical surfaces 
If the interface representing the structure can be expressed as a single-valued function, 
analytical over the entire unit cell (this is also valid if different analytical functions can be 
defined over different regions of the cell): 

 
 Sz g(x, y),=  (7.84) 
 

then the components of the vector normal to the surface defined on the surface have the form: 
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2

g g, ,1
x y

N(x, y) .
1 grad g(x, y)

 ∂ ∂
− − ∂ ∂ =
+



 (7.85) 

 
It can immediately be extended to whatever the values of z inside the modulated region. 
Moreover, its values do not depend on z, as it was a case of the classical one-dimensional 
grating already discussed in sec.7.4.1. 

The permittivity and its inverse can easily be obtained on a mesh (x,y) covering the 
grating cell for each z: 

 

 3

1

g(x, y) z (x, y)
g(x, y) z (x, y)

< ⇒ ε = ε

≥ ⇒ ε = ε
 (7.86) 

 
where 1 and 3 are the indexes representing respectively the inferior and the superior regions 
separated by the grating surface (as it was done in Fig.7.3). If the cross-section of the grating 
surface with the planes z = const are ellipses (or circles), and if zN  does not depend on (x,y) 
at each z, it is possible to replace the numerical Fourier transform by an analytical formulae. 
One important particular case is the z-invariant grating with elliptical cross section; another 
case includes the gratings having a rotational symmetry, as shown in Fig.7.12. 

The same extension (7.85) for the normal vector is valid for a stack of layers having 
homogeneous thicknesses in the z-direction: 

 
 S, j jz g(x, y) t= +  (7.87) 

 
The permittivity and its inverse inside the intermediate layers are simply given as: 
 

 S, j 1 S, j jz (x, y) z z (x, y) (x, y) .− < ≤ ⇒ ε = ε  (7.88) 
 

7.6.2. Irregular general surfaces 
If the case does not fit into the preceding section, the interface is expressed through the more 
general function Su(x, y, z ) 0= , and the vector N



 has to be determined for each inclusion: 

 S
S

S

u u u,
x y z

N(x, y, z )
grad u(x, y, z )

 ∂ ∂ ∂
 ∂ ∂ ∂ =



 (7.89) 

 
However, these values are well defined on the grating surface (except on its edges), and 

have to be extended over the entire cell. When considerintg a cross-section of the profile with 
a plane at z = const., several different cases exist: 

 

7.6.2.1. Single-valued radial cross-section 

At first, we shall consider that the cross section function S Sf (x , y ) 0=  defines a single 
curve, and that curve can be expressed in cylindrical coordinates as 
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 S S( )ρ = ρ ϕ  (7.90) 
where 

 
[ ]

2 2
S S C S C

S C S C

(x x ) (y y )

arctan (y y ) / (x x )

ρ = − + −

ϕ = − −
 (7.91) 

 
 
 
 
 
 
 
 
 
 
 
 
Fig.7.6. Single-curve cross-section of the grating surface at z = const.  

 
and xC and yC represent a “central” point of the curve, Fig.7.6. Here we assume that the 
values of Sρ  are unique for each ϕ. The other case is analyzed further on. 

It is possible to extend to the entire cell the values of the normal vector, defined only on 
the curve, by assuming that it is constant for each fixed angle ϕ. This prolongation requires 
the following procedure: 

1. Fixing the pair (x,y). 
2. Calculating the angle [ ]C Carctan (y y ) / (x x )ϕ = − − . 
3. Calculating S S( )ρ = ρ ϕ  from eq.(7.91). 
4. Calculation of S Sx cos= ρ ϕ , and S Sy sin .= ρ ϕ  
5. Determining zN , together with Nx and Ny from eq.(7.89). 

6. Attributing these values of the components of S SN(x , y )


 to the pair (x,y). 
7. Fast Fourier transform after the normal vector components are determined for all the 

pairs (x,y) on a mesh inside the grating cell. 
The procedure can be simplified for most of the typical diffracting objects, as shown further 
for objects with elliptical or circular cross-section. 

If the grating profile varies with z, the calculations of the Fourier components of the 
permittivity and its inverse has to be made at each value of z, both for the analytical profiles, 
for which the normal vector prolongation can be chosen z-invariant, or for the irregular 
surfaces. For each (x,y) pair of the mesh used in the FFT method, it is possible to determine 
whether the point lies within or outside the cross-section part of Fig.7.6: 

 

 S inside

S outside

( ) ( ), (x, y)
( ) ( ), (x, y)

ρ ϕ < ρ ϕ ε = ε

ρ ϕ ≥ ρ ϕ ε = ε
 (7.92) 

 

with 2 2
C C(x x ) (y y )ρ = − + − . 

 

y 

x 

 

 
  

 
ϕ 

 



E. Popov: Differential Theory of Periodic Structures         7.25 

7.6.2.2. Objects with polygonal cross section 
A typical example of such objects is presented in Fig.7.1. Its surface consists of different 
plates, and for their treatment the condition Nz = const. for fixed z is fulfilled, because N



 is 
constant at each plate. Another possible surface consists of plane ribbons with curvature in z-
direction, Fig.7.7. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.7.7. Surface made of plane ribbons 

 
As shown in Fig.7.8, the cross-section represents a polygon. On each of its sides the 

modulus of the in-plane component of the normal vector is known:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.7.8. Object with a polygonal cross-section. 

 
 

 2
//, z,N 1 N= −i i  (7.93) 

 
and its direction is perpendicular to the segment. If the i-th segment is located between the 
angles ϕi  and 1+ϕi , we can extend the definition of the normal vector all over the unit cell 
situated within the range ( ϕi , 1+ϕi ), delimited by the bold dot-dashed lines in Fig.7.8, by 

 

y 

x 

 

 
  

 
ϕ 

segment i 
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assuming that N N=
 

i . The normal vector extension will be continuous everywhere, except on 
the sector border lines (bold dot-dashed lines) and thus the only points where both 
permittivity (and/or permeability) and N



 are simultaneously discontinuous are at the 
polygonal corners, where anyway N



 is never continuous. 
The procedure to follow requires that for each value of z the polygon corners (x i, yi) 

and the z-components of N


 for each segment are determined, as well as fixing some “central” 
point C C(x , y ) . Then the angular ranges of each segment with respect to that central point are 
calculated: 

 C

C

y yarctan
x x

−
ϕ =

−
i

i
i

 (7.94) 

For each pair (x,y), the azimuthal angle is given as [ ]C Carctan (y y ) / (x x )ϕ = − − , which 
value determines the number of the segment, say j, within the point lies. The unknown in-
plane part of the normal vector is perpendicular to the j-th segment: 

 

 

( )
( ) ( )

( )
( ) ( )

2
z, j

x, j j 1 j 2 2
j 1 j j 1 j

2
z, j

y, j j 1 j 2 2
j 1 j j 1 j

1 N
N y y

y y x x

1 N
N x x

y y x x

+

+ +

+

+ +

−
= −

− + −

−
= − −

− + −

 (7.95) 

 
The expression in the square root comes from the normalization of N



. 
The value of the permittivity depends on whether the point (x,y) lies inside or outside 

the polygon. The calculations of (x, y)ε  and 1 ε  are made simultaneously with the normal 
vector calculus. After the angular segment in which the point (x,y) of the mesh in grating cell 
is determined (say the j-th one, as in eq.(7.95)), we can find the length of Sρ  between the 
central point and the polygon segment, shown in Fig.7.8. For this sake we show in Fig.7.9 the 
enlarged segment: 

 
Fig.7.9. The j-segment of Fig.7.8 together with notations 

 
The sine theorem gives the possibility to determine the angle ζ : 
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( ) ( ) ( ) ( )2 2 2 2
j 1 j j 1 j j 1 C j 1 C

j 1 j

x x y y x x y y

sin( ) sin( )
+ + + +

+

− + − − + −
=

ϕ − ϕ ζ
 (7.96) 

 
wherefrom the radius Sρ  is given as: 
 

 
( ) ( )2 2

C j C j
S

j

x x y y
sin( )

sin( )

− + −
ρ = ζ

π − ζ − ϕ + ϕ
 (7.97) 

 
Eq.(7.92) enables us to obtain the values of the permittivity (and its inverse): 
 

 S inside

S outside

( ) ( ), (x, y)
( ) ( ), (x, y)

ρ ϕ < ρ ϕ ε = ε

ρ ϕ ≥ ρ ϕ ε = ε
 (7.98) 

 

with 2 2
C C(x x ) (y y )ρ = − + − . 

 
 
 
 
 
 
 
 
 
 

Fig.7.10. Schematic presentation of corner rounding 

 
Concerning the edges, in reality the surfaces never have such, as etching always ends by 

rounding the corners, as shown in Fig.7.10. Let us consider that the rounding between the 
segments numbered i-1 and i is made preserving the values of Nz, and that in the cross-plane z 
= const., the rounding can be considered as circular, having a center in C C(x , y )

i i
 and radius 

ri .The in-plane component of the normal vector follows the curvature radius and thus is given 
by equations, similar to eq.(7.95):  
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 (7.99) 
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The prolongation is more complicated, if the consecutive values of Nz at the two sides of the 
rounded corner differ significantly. In that case a linear interpolation of Nz between ϕi  and 
ϕ + ∆i i  can be applied. 

 
7.6.2.3. Mutlivalued cross-sections 
If the cross-section cannot be represented as a radial function, nother possibility arises if it is a 
piecewise analytical function in x (or y), as shown in Fig.7.11, where we can use two different 
functions of x.  We assume again that zN  is known, as it happens for z-independent profiles, 
for which it is simply null. In the upper part of the figure, for each value of x it is possible to 
calculate the normal vector on the profile: 
 

 
( )1 z

1 2 2
1 z

f (x),1, N
N

1 f (x) N

′−
=

′+ +



 (7.100) 

 
We can take this value to be the same for each y in the upper region 1A , so that the numerical 
Fourier transform is made only once in 1A  and once in 2A .  

 
 
 
 
 
 
 
 
 
 
 
 
Fig.7.11. Piecewise analytical c ross-section of the grating surface at z = const.  

 
The permittivity has to be calculated at each (x,y) mesh point:  

 S inside

S outside

y y , (x, y)
y y , (x, y) .

< ε = ε

≥ ε = ε
 (7.101) 

 

7.6.4. Objects with cylindrical symmetry 
Many periodic systems consist of inclusion having rotational cylindrical symmetry, like 
spheres, vertical cylinders, or ellipsoids with axe of rotation parallel to the z-axis, but also 
smooth surfaces, as presented in Fig.7.12. 

These structures are characterized by a circular cross-section of the surface with the 
horizontal planes at z = const., but also with an independence on x and y of the values of Nz 
on each horizontal plane. In addition, due to the circular cross-sections, the angular 
component Nϕ = 0 everywhere. Once z is fixed, the variation of the interface in the vertical 

y 

x 

 
 

 
 



E. Popov: Differential Theory of Periodic Structures         7.29 

direction fixes the value of Nz, for example through eq.(7.89), wherefrom the radial normal 

vector component 2
zN 1 Nρ = − . For each pair of (x,y) then: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.7.12. Several profiles with cylindrical symmetry. 

 

 

C
x 2 2

C C

C
y 2 2

C C

(x x )N
N (x, y)

(x x ) (y y )
(y y )N

N (x, y)
(x x ) (y y )

ρ

ρ

−
=

− + −

−
=

− + −

 (7.102) 

In addition, for profiles invariant in z-direction, Nz = 0 and N 1ρ = .  
The permittivity is given as a piecewise constant function: 
 

 
2 2 2

inside C C
2 2 2

outside C C

(x, y) , if (x x ) (y y ) R (z),

(x, y) , if (x x ) (y y ) R (z)

ε = ε − + − <

ε = ε − + − ≥
 (7.103) 

 
where R(z) is the radius of the profile surface for a given z.  

Having obtained the values of the normal vector components and permittivity for each 
x,y enables us to calculate their Fourier transforms, either by Fast Fourier transform (FFT), or 
analytically. 

 

7.6.5. Objects with elliptical cross-section 
Similar simplification is possible for systems with elliptical cross-sections that have Nz = 
const. for z fixed. Such are the inclusions of vertical cylinders with elliptical cross-section, 
ellipsoids with one of the axes orientated in z-direction, but also all types of the structures 
shown schematically in Fig.7.12 that have elliptical or circular cross-sections. 

Let us assume that the ellipse axes are parallel to the x and y-axes.. The cross-section 
curve for z = const. is given by the equation: 
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2 2
2S C S Cx x y y R

a b
− −   + =   

     (7.104) 

In order to obtain results similar to eq.(7.102), we introduce an elliptical coordinates, defined 
as: 

 

C

C

x xx
a

y yy
b

−
=

−
=





 (7.105) 

 
Using these notations, the ellipse becomes a circle, for which the considerations of the 
previous subsection apply. Thus  
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x x y y
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x x y y
a b

ρ

ρ

−

=
− −   +   

   
−

=
− −   +   

   

 (7.106) 

 

with 2
zN 1 Nρ = − , which remains constant for each fixed z. 

Concerning the permittivity, it is determined in the same way as in eq.(7.103) for 
circular profile: 

2 2
2C C

inside

2 2
2C C

outside

x x y y(x, y) , if R (z),
a b

x x y y(x, y) , if R (z)
a b

− −   ε = ε + <   
   

− −   ε = ε + ≥   
   

 (7.107) 

 
 with R(z) given by eq.(7.104). 
 

Remark on the prolongation of the normal vector 
Special attention has recently been paid to the numerical implementation of the differential 
method for gratings having 2D periodicity formed by vertical holes or bumps that are 
invariant in z, and that have arbitrary cross-section in the xOy plane. A detailed study in the 
case of z-invariant geometry that applies for an eigenvalue/eigenvector technique of 
integration (FM or RCW method) is given in ref.[7.20], followed by several other works 
[7.21, 7.22]. It is necessary to note that the technique of prolongation of the normal vector as 
discussed in [7.20] can be applied also for z-dependent profiles with similar cross section; the 

difference is the renormalization factor 2
z1 N−  for each z. 
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The authors compare several different formulations of the Fourier Modal method 
applied to structures with rectangular, circular, or elliptical cross-sections. These formulations 
include the classical formulation of Moharam and Gaylor that uses only the direct 
factorization rule, the formulation given by Lifeng Li [7.23] that introduces two different 
Fourier transforms of the permittivity ε, namely  ε      and  ε     , which are calculated by 
applying at first the inverse rule along one of the coordinates, and then the direct rule along 
the other one. This second formulation was made for rectangular and parallelogram cross-
sections. For circular or elliptical (or other smooth) forms, it introduces a stepwise treatment 
of the profile, which appears more slowly convergent than the special techniques developed 
after. 

              
(a)       (b) 

Fig.7.13. Two different prolongations of the normal vector for a circular inclusion. (a) Radial 
prolongation. (b) Electrostatic continuation of the normal vector for a circular cross-section 
inclusion inside a square grating cell (after [7.20]). 

The third approach to the problem requires a prolongation of the normal vector (NV) to 
the profile within the entire grating cell. As already stressed, there are several possibilities to 
make this. A typical example is the radial prolongation, Fig.7.13a, which has been discussed 
in Sec.7.6.2.1 and 7.6.4 and it includes discontinuities of the normal vector on the cell 
boundaries, where the permittivity is continuous. Another approach proposed in [7.20] is the 
electrostatic one, which insures the continuity all over the cell and on its boundaries, except 
for on single points inside, Fig.7.13b. 

Fig.7.14 shows the convergence rates for the transmitted zeroth order of a grating 
consisting of dielectric cylindrical inclusions with a circular cross-section with refractive 
index n = 1.5, in normal incidence from the substrate. The grating period is 2λ, the width of 
the grooves is λ, and the grating depth is λ/(2n−1). The graph presents the diffraction 
efficiency in transmission as a function of the truncation order N using the three considered 
formulations: Moharam’s original formulation, Li’s formulation, and the formulation using 
the normal vector (NV) field. As usual the Fourier series run from – N to N, which yields 
2N+1 Fourier coefficients for each of the two directions of periodic continuation, or 2(2N 1)+  
coefficients in total. As can be expected, both the original approach and the formulation by Li 
have worse convergence than when correctly taking into account the factorization rules for the 
tangential electric field and normal displacement components to the profile, where the 
permittivity is discontinuous [7.20]. It is necessary to stress that the difference in the 
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convergence rates is even more pronounced for metallic inclusions, having much larger 
optical contrast. 

 
Fig.7.14. Convergence rates with respect to the truncation of the Fourier series for four different 
approaches used to model the diffraction by a cylindrical inclusion with circular cross-section. 

 
Recently, Weiss et al. [7.24] proposed another alternative approach to treating smooth 

inclusions, by changing the coordinate system, so that its planes are parallel to the profile and 
to the grating sell walls (see Fig.7.15). If the transformed system is orthonormal, its 
coordinate lines are automatically tangential or perpendicular to the physical walls. If not, the 
Maxwell equations have to be rewritten in covariant vector form using the covariant and 
contravariant vector components. 

 
 

(a)       (b) 

Fig.7.15. Coordinate lines and surfaces according to (a) [7.20] and (b) [7.24] 

 
This approach is somehow equivalent to the normal vector prolongation, due to two 

main reasons: 
(i) The NV approach defines in an unambiguous manner the normal vectors on the 

profile, giving a liberty to continue them all over the cell. The coordinate 
transformation is also defined on the profile and the outside boundaries, but can be 
chosen in different ways around the grating cell. 
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(ii) The change of the coordinate system introduces in the Maxwell equations the 
metric tensor   that multiplies the electric displacement and magnetic induction 
in the right-hand side of eq.(7.6), so that for the electric field we obtain the 
substitution: 
 D E E.= ε → ε

  

  (7.108) 
 
The normal vector approach acts in a similar manner by introducing the matrix 
Q ,ε  given in eq.7.21, which makes the following substitution in the Fourier space, 
eq.(7.20): 
 D E Q E .ε     = ε →     

  

 (7.109) 
 

7.6.6. Multiprofile surfaces 
A grating with multiple bumps (or inclusions) inside the single cell could be treated by 
separation the cell into sub-cells, not necessarily rectangular, containing a single inclusion, as 
shown in  Fig.7.16, where a specific cross-section at z = const. is separated into three regions 
A, B, and C. As far as the Fourier components of the normal vector, of the permeability and 
the permittivity have to be calculated for each value of z (if they depend on z), the separation 
into subcells can vary with z. 

 
 
 
 
 
 
 
 
 
 
 
 
 Fig.7.16. Cross-section at z = const. of a grating having different inclusions. The three different 
regions to be treated independently are separated by dashed lines. 

 
The case schematized in Fig.7.17a can result from a surface covered by a thin layer of 

another substance, a layer that cannot be treated using eq.(7.87). The simplest possibility is to 
have different continuation of the normal vector inside each region. At first, the angle 

[ ]C Carctan (y y ) / (x x )ϕ = − −  for the point with coordinates (x, y) is calculated, and it is 
necessary to determine to which region the point belong. If it lies inside the innermost region 
C, the values of 1N(x, y) N ( )= ϕ

 

, where 1N ( )ϕ


 is determined using one of the procedures 
discussed above for a single interface that is defined by the inner profile function. 

If the point (x, y) lies in the outermost region, we take 2N(x, y) N ( )= ϕ
 

, where 2N ( )ϕ


 
corresponds to the second interface. In-between, we have two possibilities. The first choice is 
to divide the region into two subregions as indicated in Fig.7.17a with the dashed line. In each 
of them, N(x, y)



 is taken to be equal to its values on the adjacent profile, so that it is 
continuous everywhere where the permittivity and/or permeability are discontinuous. 
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   (a)         (b) 

Fig.7.17. Structures with interpenetrating cross-section profiles 

 
The second possibility is to introduce a linear interpolation inside region B, but it is 

necessary to know the distances 1ρ  and 2ρ  between the central point and the profiles along 
the ray with [ ]C Carctan (y y ) / (x x )ϕ = − −  fixed. Then: 

 

 
2 2
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B 1 2 1
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(x x ) (

) ,

with y y )

ρ − ρ = ϕ + ϕ − ϕ  ρ

− + −

− ρ

ρ =

   

 (7.110) 

 
Another specific case that appears in the studies of magnetic resonators is presented in 

Fig.7.17b. In can be treated in the same way is for the case in Fig.7.17a, but it is necessary to 
introduce a separate region D indicated in the figure and containing the opening, for which 
N (0,1, 0)=


, for example.  
 

7.7. Integrating schemes 
Numerical solution of a system of ordinary differential equations is a mature domain due to 
the enormous amount of physical and technical applications. Unfortunately, the grating 
problem represents one of the worst tasks for the theory of ordinary differential equations, 
because the system to be integrated is a stiff one. To better understand the problem, let us 
consider the case of a homogeneous layer that introduces no coupling between the diffraction 
orders. The solution of the diffraction problem contains waves propagating up- and 
downwards (in z-direction). These are plane waves, propagating or evanescent inside the 
layer. In lossless medium, their constant of propagation in z can be real, or imaginary, 
depending on the number of diffraction order under consideration: 
 

 2 2
m 0 m(k n)γ = ± − α , (7.111) 

with 
 m 0 mKα = α + . (7.112) 

The real values of γ are bounded by 0k n , but the imaginary parts are not bounded, as their 
asymptotic values for large |m| are given by: 

 
 mIm( ) | m | Kγ = ± . (7.113) 
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From the point of view of the theory of ordinary differential equations this means that 
the eigenvalues of the system differ significantly in magnitude, i.e., the differential system is 
stiff. The greater the difference, the more unstable the solution. On the other hand, the solution 
of the diffraction problem requires sufficient number of Fourier components of the profile 
function and electromagnetic field to be correctly represented by the truncated Fourier series, 
thus the necessity to work with large number of Fourier components, and thus the 
increasingly greater the stiffness of the differential system, i.e., more instable the solution 
with respect to the length and number of integration steps. The theory concludes that the so 
called explicit integration schemes are most instable for such problem, whatever their order, 
and implicit methods have to be used. The problem with the implicit methods is that they need 
one matrix inversion and several more matrix operations on each integration step, when 
compared with the explicit methods, so that the choice is not evident to ensure the most 
efficient integration scheme. 

Let us recall the basic principle of the first-order explicit and implicit schemes. In a 
first-order approximation, the solution of the differential system:  

 d F(z) M(z)F(z)
dz

= . (7.114) 

between two consecutive points jz z=  and j 1z z +=  can be searched in developing in series: 

 j 1 j j 1 jF(z ) F(z ) (z z )M(z)F(z)+ += + − . (7.115) 
If M(z)  and F(z) are evaluated in jz z= , this leads to the first-order explicit integration 

(Euler’s) scheme: 
 j 1 j jF(z ) hM(z ) F(z )+  = +  . (7.116) 

where   is the unit matrix, and j 1 jh (z z )+= − . 
If M(z)  and F(z) are evaluated in j 1z z += , we obtain the first-order implicit (inverted 

or backward Euler’s) scheme: 

 
1

j 1 j 1 jF(z ) hM(z ) F(z )
−

+ + = −  . (7.117) 
The theory says that this scheme is more stable, but it needs one matrix inversion on 

each step. A combination of the two must provide even better results, because it uses a half of 
the previous step: 

 
1

j 1 j 1 j j
1 1F(z ) hM(z ) hM(z ) F(z )
2 2

−

+ +
   = − +      
  . (7.118) 

However, we need one additional matrix multiplication. In what follows we use these 
two single-point first-order methods under the names Expl 1 (single point explicit Euler 
integration) and Impl 1, eq.(7.118) and compare the convergence with respect to the total 
number of integration points with several other more sophisticated integration schemes for 
two different metallic gratings in TM polarization, the most difficult combination when using 
the differential method. 

The advantage of these formulations is that they all are single-step ones, and do not 
need a storage of the intermediate results on several integration steps. They can be easily 
programmed and don’t need additional memory storage at each step. However, if we refer to 
one of the most relevant sources [7.25], we see that “this is the generic disease of stiff 
equations: We are required to follow the variation in the solution on the shortest length scale 
to maintain the stability of the integration, even though accuracy requirements allow a much 
larger stepsize.” This means that a priori choice of the integration step without adaptive 
control and change in the step length cannot produce stable and relevant results. 
Unfortunately, it is quite difficult to use adaptive-step methods, because they require much 
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longer computation times, as it is necessary to repeat the integration process several times 
when changing the integration step length. This is why we concentrate our attention to fixed-
step algorithms. 

Fixed-step multistep explicit methods have been used from decades in the differential 
method programming. The best results have been obtained when combined with an implicit 
correction by using a predictor-corrector scheme, as described further on. However, referring 
again to [7.25], “high order does not always mean high accuracy.” It will be more useful, if 
larger integration step is obtained with high order or multistep methods, which is not obvious, 
as we observe on several numerical examples. 

We have used three simple integration schemes, the single-point implicit or explicit 
scheme, as well as a 4-point predictor-corrector method (PCM 4). It contains two steps, the 
first one representing an Adams-Bashforth explicit 4-point scheme [7.26], described by the 
equation 

j 5 j 4

j 4 j 3 j 2 j 1 j

F(z ) F(z )

1901 1387 108 637 251h F (z ) F (z ) F (z ) F (z ) F (z )
720 360 30 360 720

+ +

+ + + +

=

 ′ ′ ′ ′ ′+ − + − +  

. (7.119) 

with 
 j j jF (z ) M(z )F(z )′ = . (7.120) 
The corrector step is a 4-point Adams-Moulton integration: 

j 4 j 3

j 4 j 3 j 2 j 1 j

F(z ) F(z )

251 646 264 106 19h F (z ) F (z ) F (z ) F (z ) F (z ) ,
720 720 720 360 720

+ +

+ + + +

=

 ′ ′ ′ ′ ′+ + − + −  

 (7.121) 

which is an implicit scheme [7.27]. However, contrary to the other explicit schemes (BDF), it 
does not require inverting a matrix, it just makes one step back as a corrector. 
 An extension of eq.(7.117) to a multistep algorithm results in multistep implicit method, 
called also backward differentiation formulae (BDF) [7.28]. Typical 3-point and 5-point 
formulae take the form: 

1
j 3 j 3 j 2 j 1 j

18 9 2BDF3: F(z ) hM(z ) F(z ) F(z ) F(z )
11 11 11

−
+ + + +

  = − − +    
 . (7.122) 

j 5

1
j 5 j 4 j 3 j 2 j 1 j

BDF5 : F(z )

300 300 200 75 12hM(z ) F(z ) F(z ) F(z ) F(z ) F(z )
137 137 137 137 137

+

−
+ + + + +

  = − − + − +    


. (7.123) 

It is evident that BDF3 (called further on Impl 3) requires a starting method for the first two 
points, and BDF5 (Impl 5), for the first 4 points. The same is valid for PCM in eqs.(7.119) –  
(7.121). 

The second-order Runge-Kutta method is given in the form: 
 

 

1 j j

2 j 1 2 j 1

j 1 j 2

k hM(z )F(z )

1k hM(z ) F(z ) k
2

F(z ) F(z ) k

+

+

=

 = +  
= +

 (7.124) 

which has an error proportional to 3h . It is also called a midpoint point, because it requires 
the evaluation of the functions at the middle of the step, i.e., twice the number of the steps of 
the other tree methods discussed above. 

The classical fourth-order Runge-Kutta method also uses midpoint values: 
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=
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 = +  
 = + 

= + + + +

 (7.125) 

with an error of the order of 5h . These two methods are higher-order explicit methods that do 
not need matrix inversions during the integration. However, as already stressed, higher order 
does not mean larger steps. 

The highest possible order in h can be obtained theoretically, by using the 
eigentechnique: 

 ( )h 1
j 1 jF(z ) V e V F(z )γ −
+ =  (7.126) 

where V is a matrix containing the eigenvectors of M and the exponential term in the round 
brackets represents a diagonal matrix constructed using the eigenvalues γ of M. In practice, 
this method does not increase the stability, because it remains a single-point explicit method. 
Moreover, it requires much longer computation time because of the requirement to solve an 
eigenvalue/eigenvector problem at each integration step. 

The first example concerns a typical commercial sinusoidal aluminum grating that has 
very high efficiency in TM polarization. It supports a single diffracted order in -1st order 
Littrow mount and has a modulation depth-to-period ratio of 40%. Fig.7.20 presents a 
numeric test of the efficiency calculated for a different number of integration points using 
several integrations schemes. Due to the polarization and the grating material, it is necessary 
to separate the integration into several slices (5 in this case) in order to avoid numerical loss 
of precision, the results of the integration in two consecutive slices connected to each other by 
the use of the S-matrix algorithm. In Fig.7.20b we have presented a part of the results, 
obtained with 20 slices, instead of 5. The comparison between the two cases show that 5 
slices are sufficient, the weaker oscillation for 20 slices are due mainly to the fact that the 
horizontal scale is less dense, because the step in the total number of integration points is an 
integer times the number of slices. The truncation parameter N = 20, i.e., totally 41 Fourier 
harmonics of the field are used in the calculations. 

As can be concluded, an absolute precision within 1% is rapidly obtained whatever the 
method used, with the total number of points of the order of 200. However, the predictor 
corrector method is less stable when the number of points is smaller than 300. Implicit 
methods are more stable, as expected, and result in an error smaller than 0.1% even for the 
number of points less than 200. It is interesting to observe than the first-order implicit method 
is more stable than the higher implicit methods, probably because it contains a middle-point 
evaluation of the field derivative, as seen in eq.(7.118). It requires a little bit longer 
computation time than the other two implicit methods, because of the additional matrix 
multiplication. The explicit method, which is the fastest one, shows slower convergence, as 
expected, whereas the performance of the higher-order RK methods competes with the 
implicit methods. 
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Fig.7.18. Aluminum grating with period 0.5 µm and depth 0.2 µm used in -1st order Littrow mount 
at 0.6328 µm wavelength in TM polarization. Convergence with respect to the total number of 
integration points, truncation to 41 Fourier harmonics and using 5 (a) and 20 (b) slices in the S-
matrix algorithm. The acronyms for the methods are defined in the text. 

 
Table 7.1 compares the computation times of the different methods for the two 

investigated cases (Fig.7.18 and the following Fig.7.19). For comparison, (null) indicates the 
time without any operation due to the integration, and that is necessary for the construction of 
the M-matrix and the use of the S-matrix propagation algorithm, as described in Appendix 
7.A. The fastest method is the single-point explicit method, but as expected it is less precise 
given the same number of integration points, Fig.7.18. The implicit single-step middle-point 
method shows stability similar to the 4-th order Runge-Kutta method, but is slightly more 
rapid. The predictor-corrector method is less stable and requires longer computation times.  
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Table 7.1. Computation times of the different methods described in the text for the two cases with 
groove depth to groove period equal to 40% and 200% 

 
Method N = 20, slices 5 

int. points 400, 
modulation 40% 

N = 50, slices 35 
int.points 1500, 

modulation 200% 
Expl. 1 1.41 s 72.3 s 
Impl.1 3.55 s 187.6 s 
Impl.3 2.67 s 157.8 s 
Impl.5 2.81 s 168.9 s 
PCM 4 2.14 s 120.0 s 
RK 2 2.70 s 144.9 s 
RK 4 4.70 s 252.5 s 

eigentechnique 7.54 s 360.0 s 
(null) 0.68 s 38.5 s 

 
It is necessary to stress out that in reality, the computation times are shorter than listed 

in the Table, because when the truncation N is smaller (usually 20 is sufficient), the number 
of slices for the S-matrix algorithm is smaller (due to the smaller number of evanescent orders 
taken into account); in addition, the total number of integration points used for constructing 
the Table are chosen to obtain 0.1% relative error, whereas in most of the cases just 1% is 
sufficient. The computation time grows linearly with the total number of integration points, as 
well as with the number of slices used in the S-matrix algorithm. The time dependence 
concerning the truncation N in the Fourier series grows as 3N  – 3.5N , because this parameter 
determines the size of the matrices. 

When the total integration length is multiplied by 5, the number of integration points 
required is also multiplied by the same factor, as observed in Fig.7.19. A grating twice as 
deep as the period, acts almost like a flat mirror in TM polarization, with the efficiency in 
order -1 hardly exceeding 1%. Due to the large depth, the absorption is increased, so that the 
reflectivity in order 0 is equal to 56.78%. We compare the convergence in the weak -1st order, 
so that even a small absolute error appears as a large relative error that can be easily observed 
in the figures. The number of Fourier harmonics (truncation parameter 2N+1) also has to be 
increased by a factor of 2.5 to 101 (N = 50). The number of slices in the S-matrix algorithm is 
increased seventh-fold to 35.  

The first Fig.7.19 compares several explicit integration schemes with the single-point 
implicit method. The main conclusion to be drawn is that the best scheme remains the implicit 
method, only the explicit Runge-Kutta fourth-order scheme seems to compete in convergence 
rate with respect to the total number of integration points, but somehow slower. 

The comparison of several implicit methods confirms the general idea that multistep 
choice does not necessarily improve the stability (Fig.7.20). When compared with Fig.7.19, 
the implicit methods are characterized by smaller oscillations when the number of steps is 
increased, but the most rapid convergence is obtained with the simplest procedure, single-step 
method (let us remark again that we use the middle-point calculations, as in eq.(7.118)). Like 
all the other implicit methods, it requires a single matrix inversion on each integration step, 
but needs less memory storage, and avoids several matrix sums and multiplication by 
different constants, necessary for the multipoint methods.  
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Fig.7.19. Aluminum grating with period 0.5 µm and depth 1 µm used in -1st order Littrow mount at 
0.6328 µm wavelength in TM polarization. Convergence with respect to the total number of 
integration points, truncation to 101 Fourier harmonics and using 35 slices in the S-matrix 
algorithm.A.M.4 – forth-order Adams-Moulton scheme, Implicit 1 – single-point implicit scheme, 
Explicit 1 – single-point explicit scheme, Expl2.R.K.2 and 4 – explicit Runge-Kutta method of 
order 2 and4, respectively. 
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Fig.7.20. Same as in Fig.7.19 but for three implicit methods of different order. 

 

7.8. Staircase approximation 
As already discussed, if the surface interface is z-invariant (entirely or piecewisely), the 
integration of the system of ordinary differential equations along z can be done via 
eigenvalue/eigenvector technique, eq.(7.126), because the M-matrix containing the 
coefficients of the differential equations does not depend on z. The enormous interest in this 
approach can be explained by the simple technique of integration, much easier to understand 
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and apply than the theory of numerical methods of integration of ordinary differential 
equations.  

The idea is sketched in Fig.7.21, where a sinusoidal surface-relief grating is 
approximated by a 5-stairs profile. While this approximation (with sufficient number of steps 
M, depending on the groove depth) works quite well in TE polarization, the TM case presents 
a convergence rate with respect the truncation number of Fourier components of the field 
much slower than the ordinary differential method (no staircase approximation), see Fig.7.22. 
Moreover, the greater the number of vertical slices M, the greater the truncation number 
required. 

 
Fig.7.21. Schematical approximation of a sinusoidal grating profile, approximated by a 5-step 
staircase profile.(after [7.29]). 

 
Fig.7.22. Convergence of the minus-first-order efficiency in TM polarization of the FMM (RCW) 
and the exact modal method (indicated on the figure) for a sinusoidal grating in a staircase 
presentation with M  = 20, as compared to the convergence of the differential method for a 
smooth sinusoidal profile (curve “diff.”). Period d = 0.5 µm, groove depth a = 0.2 µm, aluminum 
refractive index nAl = 1.3 + i7.6, illuminated at 40° incidence with wavelength  λ = 0.6328 µm, 
(after [7.29)]. 

 
A detailed analysis of this problem can be found in [7.14, 7.29], but the basic idea is 

quite simple. The staircase approximation substitutes the otherwise smooth sinusoidal profile 
by a profile that has sharp edges. The greater the number of stairs, the greater is the number of 
edges. It is well-known from general electromagnetism that edges introduce electric field 
singularities. While in TE polarization the only electric field components are tangential to the 
profile (in y-direction), thus have no discontinuities and singularities, this is not the case in 
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TM polarization. This can be observed in Fig.7.23. At the edges of each step, a sharp 
maximum of the electric field is observed. These maxima are not a numerical artifact, they 
represent the physical effect of introducing edges to replace a smooth profile. These sharp 
variations of the field require larger number of Fourier components to be correctly 
represented. Moreover, the greater the number of slices (stairs), the greater the number of the 
maxima, thus the greater the truncation number required. Numerical experiment has shown 
that this phenomenon has nothing to do with the integration (eigenvalue/vector) technique, 
because the results of the convergence rate and field maps are the same for the staircase 
approximation when using the RCW technique or the differential method. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
Fig.7.23. Spatial field distribution of |Ex|2 in the vicinity of several steps inside a groove of a 10-
step staircase profile, used to approximate the sinusoidal grating under study in TM polarization. 
The grating parameters are the same as in Fig.7.22, after [7.29].  

 
On the contrary, if the true smooth profile is treated by the differential method by using 

a numerical integration of the ordinary differential system with the elements of the M-matrix 
depending on z, there is no such singularities of the electric field (Fig.7.24), so that the 
convergence with respect to the number of Fourier harmonics is much faster, provide the 
correct factorization rules are used (Fig.7.22).  

Recently, some authors [7.30] have proposed to maintain the eigenvalue/vector 
technique, but to use the correctly determined Fourier presentation of the profile, i.e., the 
correct factorization rules, as presented in eqs. (7.39) – (7.44), instead of lamellar-profile 
factorization, eqs.(7.56) – (7.65), at each step. This is equivalent to using the formulation 
proposed by the differential method for a smooth profile, i.e. avoiding the field singularities at 
the edges, but to use the eigenvalue/vector technique of integration by assuming that the 
modified M-matrix, as given by eqs. (7.39) –– (7.44), is z-invariant across each step height. 
We have already tried this in [7.29] and the conclusion was that using this approach, the 
number of steps (stairs) has to be relatively larger that by using some better adapted 
integration technique. And indeed, the eigenvalue/approach to a z-dependent system is 
equivalent to the rectangular rule with equidistant points of integration, one of the worst 
choices, as known from the theory of ordinary differential equations. In addition, due to 
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eigenvalue/vector evaluation on each integration step, its computation times are several times 
longer than for the other methods (see Table 7.1 in the previous section), known from the 
theory of ordinary differential equations. This is why the authors of [7.30] need more than 
2000 equidistant points of integration for a trapezoidal profile, for which the better adapted 
numerical integration scheme can suffice with 300 points. Unfortunately, the authors of [7.30] 
do not consider the differential method as a “reference method” in their work. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.7.24. The same as in Fig.7.23 but calculated using the differential method, after [7.29]. 
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Appendix 7.A: S-matrix propagation algorithm 
Almost all electromagnetic theories work by providing the link between the electromagnetic 
field amplitude values established on two different interfaces. These values could be 
calculated in the real or the inverted space, or the projections of the field on some functional 
basis, etc. Whatever the theory, if the media are linear, the link can be expressed in a matrix 
form: 

 
 p p p 1A T A −= . (7.127) 
  

Here, A stands for a column vector containing the field amplitudes in the given basis, the first 
interface has a number p–1, and the second on, p. pT  is called transmission matrix between 
the interface (p–1) and p. 

Numerical problem arises due to the fact, that the “propagation” between different 
interfaces contains, in general, both growing and decreasing terms, due to both absorption 
losses or/and evanescent character of some field components. If a real field term propagates 
from p–1 to p (the green arrow in Fig.7.A.1), it never grows (unless media with optical gains). 
Same is valid for the true propagation from interface p to p–1. However, eq. (7.127) is 
asymmetrical, i.e., it contains propagation only from interface p–1 to p, thus a naturally 
decreasing field that propagates in the opposite direction (from p to p–1), will be expressed in 
the T-matrix in the form of growing terms (the red arrow in Fig. 7.A.1). If the propagation 
length is sufficiently large, these artificial growing terms can overweight the other terms, 
mainly due to the finite numerical length of the computer word. 

 

 
Fig.7.A.1. Schematical representation of the action of the T-matrix between interfaces p-1 and p 

 
One approach that overcomes this problem and that has become quite popular during 

the last 15 years is the so-called S-matrix propagation algorithm, S staying for ‘scattering’. 
The basic idea is quite simple: As far as the problem of growing terms has been identified, let 
us try to do as Nature, by determining another link between the field amplitudes, by 
separating them into terms propagating (or decreasing) in direction (p–1  p) or in direction 
(p  p–1). Let us denote the first set with superscript +, and the second set by a superscript –. 
The S-matrix between the two interfaces provides the following link: 

 

 
p p 1

p,p 1
p 1 p

A A
S

A A

+ +
−

−− −
−

   
   =
   
   

. (7.128) 

p – 1 p 
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Fig.7.A.2. Action of the S-matrix between interface p-1 and interface p. 

 
The physical meaning is that amplitude p 1A+

− , which propagates from p–1 to p is 
defined on p–1 and is not growing in-between p-1 and p. In the same manner, the amplitude 

pA−  that represents propagation from p to p–1 is defined on the interface p and is not growing 

in direction of interface p–1. To say in other words, the amplitude p 1A+
−  is incident on the 

interface p–1 from the previous interface p–2, the second amplitude pA−  is incident on p from 
p+1, while the amplitudes on the left-hand side of eq.(7.128) are the amplitudes that are 
scattered in direction to the outside interfaces (p–2 and p+1), thus the name of the scattering 
matrix S. As observed in Fig.7.A.2., the blocks pS− −  and pS++  describe the physically correct 
transmission between p and p–1 or between p–1 and p, respectively, while the other two 
blocks, pS−+  and pS−+  describe the reflection on the interface p or p–1, respectively. This 
interpretation explains why there are no numerical problems due to the growing non-physical 
interactions when using the S-matrix. 

The advantage of this formalism is the absence of artificially growing terms in S. The 
inconvenience is that electromagnetic theories cannot give a direct expression of the matrix S. 
However, it is possible to express it by using the T-matrix elements, if it is possible to 
calculate them correctly. If the ‘distance’ between interface p–1 and p is quite large (with 
respect to the growing speed of the growing terms), there is loss of precision in determining 
the T-matrix. The problem can be solved by introducing additional artificial interfaces 
between p–1 and p in a such manner that to be able to correctly calculate the T-matrix in each 
subslice. Once the T-matrix calculated, the S-matrix can be obtained in a closed form. 
However, the total electromagnetic problem of diffraction (or scattering) requires the 
knowledge of the entire S-matrix of the system, because the physical problem to be solved 
needs to express the scattered fields as a function of the fields incident on the system (or 
generated inside, as is the case for electromagnetic antennas). There exists an iterative 
algorithm that enables us to establish the total S-matrix without calculating the elementary S-
matrix between each consecutive pairs of interfaces, as stated in eq. (7.128). For that sake, we 

p – 1 
 

p 
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define another intermediate S-matrix that corresponds to the scattering between some initial 
interface (numbered as 0) and the interface with number p, p p,0S S≡ : 

 

 p 0
p

p0

A A
S

AA

+ +

−−

   
   =

     
. (7.129) 

  
The initializing values of 0S for p = 0 are just the elements of the unity matrix. 

As already said, it is necessary to be able to calculate the T-matrices for each 
intermediate medium between the interfaces. When advancing from the interface p to p+1, we 
obtain the T-matrix with subscript p+1: 

 

 
p 1 p

p 1
p 1 p

A A
T

A A

+ +
+

+− −
+

   
   =
   
   

. (7.130) 

That will be expanded in the form: 
 

 
p 1 p 1p 1 p

p 1p 1 pp 1

T TA A

T TA A

++ +−+ +
+ ++

−−−+− −
++ +

    
    =
    

    

. (7.131) 

It is obvious from the previous considerations that the growing terms are potentially present in 
the block p 1T−−

+  (‘antipropagation’ from p to p+1), while the blocks p 1T++
+  and p 1T−+

+  can contain 

decreasing terms (‘propagation from p to p+1), i.e., it could be numerically instable to invert 
them. 

On the other hand, the ‘next’ S-matrix will link the amplitudes with index 0 to the 
amplitudes (p+1): 

 p 1 0
p 1

p 10

A A
S

AA

+ +
+

+ −−
+

   
   =

     
. (7.132) 

 
Eqs. (7.129)-(7.132) enable us to express the matrix S      as a function of pS  and T     . 

At first, we express p 1A−
+  from eq.(7.131) and substitute pA+  from eq.(7.129): 

( )p 1 p 1 p p p 1 p 0 p 1 p pp 1 p 1A T A T A T S A T S T A−− −−− −+ + − −+ ++ + −+ +− −
+ + + ++ += + = + + . (7.133) 

 

Let us denote as ( ) 1
p 1 p 1 p p 1T S T

−−−−+ +−
+ + += +  in order to eliminate pA− : 

 p p 1 p 1 p 1 p 1 p 0A A T S A− − −+ ++ +
+ + + += −  . (7.134) 

 
The next step is to expand the first line of eq.(7.148): 
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( )
( )( )

( ) ( )

p 1 p 1 p p 1 p p 1 p 0 p 1 p 1 p p

p 1 p 0 p 1 p 1 p p 1 p 1 p 1 p 1 p 0

p 1 p p 1 p 1 p p 1 p 1 p 0 p 1 p 1 p p 1 p 1

A T A T A T S A T T S A

T S A T T S A T S A

T S T T S T S A T T S A

+ ++ + +− − ++ ++ + +− ++ +− −
+ + + + + +

++ ++ + +− ++ +− − −+ ++ +
+ + + + + + +

++ ++ +− ++ +− −+ ++ + +− ++ +− −
+ + + + + + + + +

= + = + +

= + + −

 = − + + +  

 

 

. (7.135) 

The comparison with eq.(7.132) gives the first two block-elements of  S   : 

 ( )p 1 p 1 p 1 p p 1S T T S+− +− ++ +−
+ + + += +  . (7.136) 

 
( )

( )
p 1 p 1 p p 1 p 1 p p 1 p 1 p

p 1 p 1 p 1 p

S T S T T S T S

T S T S

++ ++ ++ +− ++ +− −+ ++
+ + + + + +

++ +− −+ ++
+ + +

= − +

= −


. (7.137) 

 
 

From eq.(7.129) 

( )
( )

0 p 0 p p p 0 p p 1 p 1 p 1 p 1 p 0

p p p 1 p 1 p 0 p p 1 p 1

A S A S A S A S A T S A

S S T S A S A

− −+ + −− − −+ + −− − −+ ++ +
+ + + +

−+ −− −+ ++ + −− −
+ + + +

= + = + −

= − +

 

 
. (7.138) 

so that  
 p 1 p p 1S S−− −−

+ +=  . (7.139) 

 
p 1 p p p 1 p 1 p

p p 1 p 1 p

S S S T S

S S T S

−+ −+ −− −+ ++
+ + +

−+ −− −+ ++
+ +

= −

= −


. (7.140) 

These relations exist in several possible forms, but this one is quite well adapted to the case 
without incident waves on interface 0, because in the iterative algorithm we need to calculate 
only the half of the blocks, namely the two given by eqs. (7.136) and (7.139).  

The only matrix inversion in the iterative algorithm concerns the procedure to obtain the 
matrix  . The initial matrix 1−  contains the potentially large terms from p 1T−−

+ , so that its 

inversion creates neither numerical problems to be inverted, nor growing terms to create 
numerical instabilities. 
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Appendix 7.B: Inverted S-matrix propagation algorithm 
In Appendix A we have seen how to avoid numerical instabilities due to the artificially 
growing terms that appear when the propagation of the field amplitudes from one interface to 
another is made in the wrong direction, a typical property of a half of the field amplitudes 
used in the transmission matrix approach. 

In some cases (for example, the Integral method applied to multilayer grating, but also 
coordinate transformation method used for a stack containing different profiles), the 
numerical solution that has been obtained provides a link, having a form inverse to eq.(7.130) 

 
p 1 p

p 1
p 1 p

A A
T

A A

+ +
+

+ − −
+

   
   =
   
   

 . (7.141) 

Of course, it is easy to obtain the form of eq. (7.130) by simply inverting T , but 
better to avoid this, because some blocks of the matrix contain large terms compared to the 
others. In particular, the block p 1T++

+
  is responsible for a physical ‘antipropagation’ from p+1 

to p, so that potentially it contains growing terms (as it was that case with p 1T− −
+ ) in Appendix 

A. 
We can avoid the direct inversion of p 1T +

  by applying a similar procedure as in 
Appendix 7.A in order to obtain the S-matrix of the stack. Equation (7.141) is expanded in the 
form: 

 p p 1 p 1 p 1 p 1A T A T A+ ++ + +− −
+ + + += +  . (7.142) 

 p p 1 p 1 p 1p 1A T A T A−−− −+ + −
+ + ++= +  . (7.143) 

On the other hand, from eq.(7.129) we have: 
 
 p p 0 p pA S A S A+ ++ + +− −= + . (7.144) 

so that 
 p 0 p p p 1 p 1 p 1 p 1S A S A T A T A++ + +− − ++ + +− −

+ + + ++ = +  . (7.145) 

( )p 0 p p 1 p 1 p 1 p 1 p 1 p 1 p 1p 1S A S T A T A T A T A−−++ + +− −+ + − ++ + +− −
+ + + + + + +++ + = +    . (7.146) 

and  

( ) ( )p 0 p 1 p p 1 p 1 p 1 p p 1p 1S A T S T A T S T A−−++ + ++ +− −+ + +− +− −
+ + + + ++= − + −    . (7.147) 

Now we can identify half of the blocks of p 1S +  from eq.(7.132): 

 p 1 p 1 pS S++ ++
+ +=  . (7.148) 

 ( )p 1 p 1 p 1 p p 1S T S T−−+− +− +−
+ + + += − −   . (7.149) 

 

with ( ) 1
p 1 p 1 p p 1T S T

−++ +− −+
+ + += −    that contains the numerically dangerous growing terms in 

p 1T++
+

 , in the same manner that the matrix p 1+  in Appendix 7.A ‘envelopes’ the growing 

terms in p 1T− −
+ . 

The other two block can be obtained by staring with the identity: 

popov
Texte tapé à la machine
p+1



E. Popov: Differential Theory of Periodic Structures         7.49 

 0 p 0 p pA S A S A− −+ + −− −= + , (7.150) 
and using eq.(7.143) : 

 ( )0 p 0 p p 1 p 1 p 1p 1A S A S T A T A−−− −+ + −− −+ + −
+ + ++= + +  . (7.151) 

When taking into account that two blocks of p 1S +  are already known and given in eqs. 

(7.148) and (7.149) , we can eliminate p 1 0 p 1p 1 p 1A S A S A++ +−+ + −
+ ++ += + : 

( ) ( )0 p p p 1 0 p p 1 p 1p 1 p 1 p 1A S S T S A S T T S A++ −− + −− −+ −− −+ + −− −+ −
+ + ++ + += + + +   . (7.152) 

Thus 
 p 1 p p p 1 p 1S S S T S++−+ −+ −− −+

+ + += +  . (7.153) 

 ( )p p 1p 1 p 1 p 1S S T T S−− −− +−−− −+
++ + += +  . (7.154) 

The expression are quite similar in form to those obtained in Appendix A. Moreover, they 
allow avoiding the inversion of p 1T +

 . 
Finally, there exist a combination of expressions including partial T-matrices, treated 

separately in Appendix 7.A and 7.B. In some cases the link between the amplitudes on two 
consecutive interfaces or across a single interface that separates two different media can be 
expressed in the form: 

 
p 1 p

p 1 p 1
p 1 p

A A

A A

+ +
+

+ +− −
+

   
   =
   
   

T T . (7.155) 

 
Such is the case of the Fourier-modal (RCW) method across each interface, with the partial 
transmission matrices p 1+

T
 
containing the eigenvectors of the proper modes inside each 

media. The same expression is obtained in the coordinate transformation method when using 
eigenvalue technique of integration. Usually, in both approaches, one obtains the full 
transmission matrix by inverting p 1+

T  and multiplying the result by p 1+T . If this creates 
numerical problems (for thick layers), such direct approach is not applicable. In that case it is 
better advised to apply twice the S-matrix algorithm, at first in each direct form (Appendix 
7.A), and then in the currently discussed inverted form. It is quite easy to understand the 
logic, by introducing a virtual set of amplitudes in eq.(7.155): 

 
p 1 p

p 1
p 1 p

A A

A A

+ +
+

+− −
+

   
   =
   
   





T , (7.156) 

 

 
p 1 p

p 1
p 1 p

A A

A A

+ +
+

+ − −
+

   
   =
   
   







T . (7.157) 

 
 

 
  



7.50               Gratings: Theory and Numeric Applications, 2012 

  

References: 
7.1.a. N. Bonod, E. Popov, M. Neviere: “Light transmission through a subwavelength 

microstructured aperture: electromagnetic theory and applications,” Opt. Commun. 245, 
355-361 (2005) 

7.1.b. P. Boyer, E. Popov, M. Nevière, and G. Renversez: “Diffraction theory: application of 
the fast Fourier factorization to cylindrical devices with arbitrary cross section lighted in 
conical mounting,” J. Opt. Soc. Am. A 23, 1146-1158 (2006) 

7.1.c. S. Campbell, R. C. McPhedran, C. M. de Sterke, and L. C. Botten, “Differential 
multipole method for microstructured optical fibers,” J. Opt. Soc. Am. B 21, 1919-1928 
(2004) 

7.1.d P. Boyer, E. Popov, G. Renversez, and M. Nevière, “A new differential method applied 
to the study of arbitrary cross section microstructured optical fibers,” Opt. Quant. 
Electron. 38, 217-230 (2006) 

7.2. B. Stout, M. Nevière, and E. Popov: “Mie scattering by an anisotropic object. Part II: 
Arbitrary-shaped object – differential theory,” J. Opt. Soc. Am. A 23, 1124-1134 (2006) 

7.3. M. A. Melkanoff, T. Sawada, and J. Raynal, “Nuclear optical model calculations,” in 
Methods in Computationnal Physics, 1, 1-80, (Academic Press, New York, 1966) 

7.4. G. Cerutti-Maori, R. Petit, and M. Cadilhac, “Etude Numérique du champ diffracté par un 
réseau,” C. R. Ac. Sc. Paris 268, 1060-1063 (1969)  

7.5. M. Nevière, M. Cadilhac, and R. Petit, “Applications of conformal mapping to the 
diffraction of electromagnetic waves by grating,” IEEE Trans. Ant. Propag. AP-21, 37-
46 (1973) 

7.6.a. M. Nevière, R. Petit, and M. Cadilhac, “About the theory of optical grating coupler-
waveguide systems,” Opt. Commun. 8, 113-117 (1973) 

7.6b. M. Nevière, P. Vincent, R. Petit, and M. Cadilhac, “Systematic study of resonances of 
holographic thin film couplers,” Opt. Commun. 9, 48-53 (1973) 

7.7.a. M. Nevière, G. Cerutti-Maori, and M. Cadilhac, “Sur une nouvelle méthode de 
résolution du problème de la diffraction d’une onde plane par un réseau infiniment 
conducteur,” Opt. Commun. 3, 48-52 (1971)  

7.7.b. M. Nevière, P. Vincent, and R. Petit, “Sur la théorie du réseau conducteur et ses 
applications à l’optique,” Nouv. Rev. Opt. 5, 65-77 (1974)  

7.8. P. Vincent, “Differential methods,” in Electromagnetic Theory of Gratings, R. Petit, ed. 
(Springer-Verlag Berlin, 1980), ch. 4 

7.9. G. Tayeb, Thèse “Contribution à l’étude de la diffraction des ondes électromagnétiques 
par des réseaux. Reflexion sur les méthodes existantes et sur leur extension aux milieux 
anisotropes,” Université Aix-Marseille III (1990) 

7.10.a. F. Montiel and M. Nevière, “Differential theory of gratings: extention to deep gratings 
of arbitrary profile and permittivity through the R-matrix propagation algorithm,” J. 
Opt. Soc. Am. A 11, 3241-3250 (1994) 

7.10.b. N. Chateau and J. P. Hugonin, “Algorithm for the rigorous coupled-wave analysis of 
grating diffraction,” J. Opt. Soc. Am. A 11, 1321-1331 (1994) 



E. Popov: Differential Theory of Periodic Structures         7.51 

7.10.c. L. Li, “Formulation and comparison of two recursive matrix algorithms for modeling 
layered diffraction gratings,” J. Opt. Soc. Am. A 13, 1024-1035 (1996) 

 

7.11.a. P. Lalanne and G. M. Morris, “Highly improved convergence of the coupled-wave 
method for TM polarization,” J. Opt. Soc. Am. A 13, 779-784 (1996) 

7.11.b. G. Granet and B. Guizal, “Efficient implementation of the coupled-wave method for 
metallic gratings in TM polarization,” J. Opt. Soc. Am. A 13, 1019-1023 (1996) 

7.12. L. Li, “Use of Fourier series in the analysis of discontinuous periodic structures,” J. Opt. 
Soc. Am. A 13, 1870-1876 (1996) 

7.13. E. Popov and M. Nevière, “Grating theory: new equations in Fourier space leading to 
fast converging results for TM polarization,” J. Opt. Soc. Am. A 17, 1773-1784 (2000) 

7.14. M. Nevière and E. Popov, Light Propagation in Periodic Media: Differential Theory 
and Design (Marcel Dekker, New York, Basel, 2003) 

7.15. M. Cadilhac, “Some mathematical aspects of the grating theory,” in Electromagnetic 
Theory of Gratings, R. Petit ed. (Springer-Verlag Berlin, 1980) 

7.16. C. H. Wilcox, “Scattering theory for the D’Alembert equation in exterior domains,” in 
Lecture Notes in Mathemetics, vol. 442, (Springer, Berlin, 1975) 

7.17. L. Li, “Fourier modal method for crossed anisotropic gratings with arbitrary permittivity 
and permeability tensors,” J. Opt. A: Pure Appl. Opt. 5, 345-355 (2003) 

7.18. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary 
optical transmission through subwavelength hole arrays,” Nature 391, 667-669 (1998) 

7.19. L. Li, “Oblique-coordinate-system-based Chandezon method for modeling one-
dimensinally periodic, multilayer, inhomogeneous, anisotropic gratings,” J. Opt. Soc. A 
16, 2521-2531 (1999) 

7.20. Th. Schuster, J. Ruoff, N. Kerwien, S. Rafler, and W. Osten, “Normal vector method for 
convergence improvement using the RCWA for crossed gratings,” J. Opt. Soc. Am. A 
24, 2880-2890 (2007) 

7.21. P. Götz, Th. Schuster, K. Frenner, S. Rafler, and W. Osten, “Normal vector method for 
the RCWA with automated vector field generation,” Opt. Express 16, 17295-17301 
(2008) 

7.22. J. Bischoff, “Formulation of the normal vector RCWA for symmetric crossed gratings in 
symmetric mountings,” J. Opt. Soc. A 27, 1024-1031 (2010) 

7.23. L. Li, “New formulation of the Fourier modal method for crossed surface-relief 
gratings,” J. Opt. Soc. Am. A 14, 2758-2767 (1997) 

7.24. Th. Weiss, G. Granet; N. Gippius, S. Tikhodeev, and H. Giessen, “Matched coordinates 
and adaptive spatial resolution in the Fourier modal method,” Opt. Express 17, 8051-
8061 (2009) 

7.25. W. Press, S. Teulkolsky, W. Vetterling, and B. Flannery: Numerical Recipes, The art of 
Scientific Computing, Third Edition (Cmbridge Univ. Press 2007), see ch.17.5. 

7.26. J. Butcher, Numerical Methods for Ordinary Differential Equations (John Wiley, 2003) 

7.27. A. Quarteroni, R. Sacco, F. Saleri, Matematica Numerica, (Springer Verlag,2000) 



7.52               Gratings: Theory and Numeric Applications, 2012 

7.28 A. Iserles, ed.: A First Course in the Numerical Analysis of Differential Equations, 
Cambridge University Press, 1996 

7.29. E. Popov, M. Nevière, B. Gralak, and G. Tayeb, “ Staircase approximation validity for 
arbitrary-shaped gratings,” J. Opt. Soc. Am. A 19, 33-42 (2002) 

7.30. I. Gushchin and A. Tishchenko, “Fourier modal method for relief gratings with oblique 
boundary conditions,” J. Opt. Soc. Am. A 27, 1575-1583 (2010) 

 


	Chapter 7   
	Differential Theory of Periodic Structures
	7.1. Maxwell equations in the truncated Fourier space
	7.2. Differential theory for crossed gratings made of isotropic materials
	7.3. Electromagnetic field in the homogeneous regions – plane wave expansion
	7.4. Several simpler isotropic cases
	7.4.1. Classical grating with one-dimensional periodicity, example of a sinusoidal profile
	7.4.1.1. Fourier transformation of the permittivity 
	7.4.1.2. Fourier transformation of the normal vector 

	7.4.2. Classical isotropic trapezoidal or triangular grating
	7.4.3. Classical lamellar grating
	7.4.4. Crossed grating having vertical walls made of isotropic material

	7.5. Differential theory for anisotropic media
	7.5.1. Lamellar gratings made of anisotropic material

	7.6. Normal vector prolongation for 2D periodicity; Fourier transform
	7.6.1. General analytical surfaces
	7.6.2. Irregular general surfaces
	7.6.2.1. Single-valued radial cross-section
	7.6.2.2. Objects with polygonal cross section
	7.6.2.3. Mutlivalued cross-sections

	7.6.4. Objects with cylindrical symmetry
	7.6.5. Objects with elliptical cross-section

	Remark on the prolongation of the normal vector
	7.6.6. Multiprofile surfaces

	7.7. Integrating schemes
	7.8. Staircase approximation
	Appendix 7.A: S-matrix propagation algorithm
	Appendix 7.B: Inverted S-matrix propagation algorithm
	References:



