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resonances in one- and two-dimensional gratings
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Enhanced transmission through subwavelength slit gratings and hole arrays is studied in view of its
application in the far-infrared and microwave domains. Because for perfectly conducting gratings,
plasmon resonances are not expected to produce an enhanced transmission, other kinds of resonance,
such as Fabry—Perot, waveguide-mode, and cavity-mode resonances, are studied. The possibility of
reaching 100% transmittivity for some particular wavelengths is established when two superimposed
identical gratings are used while each of them transmits approximately 1% off resonance. A similar
transmission is obtained with hole arrays. The study of the field map inside the groove region allows our
establishing the nature of the resonance, that is involved. Comparison of the bandwidth with respect to
the wavelength or incidence given by various kinds of resonance is presented. © 2004 Optical Society

of America
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1. Introduction

Since the famous study of R. Wood,! it is well known
that electromagnetic effects can play a key role in the
diffraction behavior of gratings. Fano? was the first
to propose that some anomalies could be explained by
surface waves (nowadays called plasmons) along the
metallic—dielectric interface. Similar effects are ob-
served when guided waves propagate along dielectric
waveguides. Corrugated waveguides have been ex-
tensively studied since the 1970’s as grating couplers
in integrated optics.? Later, they gave rise to the
domain called, in the 1990’s, subwavelength gratings,
characterized by the fact that only the specular or-
ders can propagate in the cladding and the sub-
strate.* These gratings have a remarkable property
to have reflection and transmission growing from 0%
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to 100% within a fraction of the incident wavelength
or angle-of-incidence variation.

In 1997, Ebbesen et al.> observed an enhanced
transmission through a metallic film pierced with
periodically arranged holes. Although the holes in-
troduce a channel for light propagation more efficient
than the simple tunneling through the continuous
film,® the enhanced transmission is predominantly
due to the plasmon excitation on one or both film
surfaces, so that the effect could also be observed at
corrugated surfaces having a constant thickness.”
It is necessary to point out that hole arrays signifi-
cantly differ from slots (or grid gratings) because the
latter can support a TEM mode that propagates with
small decay through the grating thickness, whereas
the former cannot support it. The existence of this
TEM mode explains the drastic difference in behavior
between TE- (electric field vector parallel to the slit
direction) and TM-polarized light diffraction by me-
tallic grids. Whereas TM-polarized light is easily
transmitted, TE-polarized light is reflected back-
ward, thus the use of such gratings as grid
polarizers.8-1© Hole arrays provide a mixed re-
sponse because the TEM mode does not exist, and, for
subwavelength periods, all the modes inside the hol-
low (hole) guide are evanescent. Thus the nonreso-
nant (background) transmission is relatively low and
is significantly enhanced only in the spectral and
angular regions in which surface plasmons are ex-
cited along the metallic surface. This excitation be-
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Fig. 1. Schematic representation of a double-grating structure
consisting of two identical grid gratings.

comes possible owing to the grating periodicity (one-
dimensional or two-dimensional), which adds one or
more grating vectors to the wave-vector component
parallel to the grating surface.

A discussion has recently arisen!! concerning the
existence of enhanced transmission in metallic grat-
ings having (almost) infinite conductivity, similar to
the effect observed by Ebbesen. Whereas for a one-
dimensional grating the fundamental TEM mode en-
sures enough transmission in TM polarization even
without plasmon effects,2 for hole arrays or crossed
grids, resonances are necessary to enhance the oth-
erwise too-weak transmission. However, plasmons
along the subwavelength almost perfectly conducting
gratings working in specular order cannot produce
visible effects in the reflectivity.’®> To observe their
effect, it is necessary to introduce losses, absorption
or diffraction.’> However, losses in most cases are
not desirable. Thus the natural question that arises
is whether it is possible to use other types of electro-
magnetic resonance, rather than the surface-
polariton-plasmon excitation, to obtain enhanced
transmission in perfectly conducting crossed grids or
hole-array gratings. Another question concerns the
intensity of the enhancement in TE polarization for
one-dimensional gratings.

Our aim in this paper is to analyze the role of other
known resonance phenomena for the transmission
enhancement in otherwise weakly transmitting grat-
ings. These will be the Fabry—Perot resonances, the
waveguide-mode excitation, and the cavity modes.
In some cases it will be difficult to distinguish among
these three phenomena, owing to their gradual mu-
tation from one into another. To determine which is
which, we study the electric field map distribution
inside the grating structure. The possibility of ob-
taining enhanced transmission by use of a double-
grating structure has been known for quite a long
time.4 In fact, the basic principle of Fabry—Perot
resonances lies in the possibility to constructively
interfere light transmitted and reflected by two con-
secutive structures. Provided that symmetry with
respect to a horizontal plane (Fig. 1) is fulfilled, one
can expect a 100% maximum of transmission!? of the
two combined gratings, even if the transmission of
each of them is quite small. Thus, if a single grating
transmits less than 1%, adding an identical structure
not only does not always diminish the transmission
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Fig. 2. (a) Transmission through a single or a double-grating

structure. d = 1, ¢ = 0.5, ¢ = 0.5, lamellae thickness is 0.5, and
refractive index n; = i250; all units are in centimeters. (b) Trans-
mission through a single grating in TE or TM polarization [same
parameters as in (a)].

100 times more, but, at a given distance or for a
particular wavelength, it increases it to 100% [Fig.
2(a)]. As already discussed, owing to the existence
of surface plasmon resonance, even a single-grating
structure could totally transmit TM polarization [Fig.
2(b)]. To eliminate the possible (if any) influence of
plasmon surface waves, we first deal with a one-
dimensional grating structure in TE polarization, for
which plasmons cannot propagate. Next we go to
two-dimensional structures and are able to obtain
similar behavior.

2. One-Dimensional Grating in TE Polarization

At first, we consider a structure that will be called a
grating—waveguide configuration [Fig. 3(a)]. This is
a one-dimensional lamellar grating consisting of two
rows of metallic slits situated at the two faces of a
continuous dielectric film with refractive index n, =
3.47. The outermost media have refractive index
n = 1. In what follows we assume a TE-polarized
(electric field parallel to the grooves) plane monochro-
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Fig. 3. Schematic representation of two types of a one-
dimensional slit grating: (a) a double grating with a continuous
dielectric layer in the middle, called the grating—waveguide con-
figuration, and (b) a grating—cavity configuration.
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matic wave under normal incidence with respect to
the grating plane. The wavelength is A = 1.5 cm,
and the period is d = 1 c¢m, so that only the specular
orders propagate in the cladding and the substrate.

As already discussed at the end of Section 1, a
single-row slit grating has a quite weak transmission
under the chosen conditions. Adding a second row
introduces interference phenomena that could lead to
almost total transmission at some set of optogeo-
metrical parameters of the system. Figure 4 repre-
sents the transmission of the grating of Fig. 3(a) as a
function of the slit width ¢ and the middle-layer thick-
ness t. The lamellae thickness is £; = 0.1 cm. La-
mellae are taken to be lossless with the optical index
equal to n; = i250. The calculations are made by
use of the rigorous coupled-wave method!¢ and con-
firmed in the limit of perfectly conducting lossless
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Fig. 4. Transmission as a function of the lamellae width (¢) and
middle-layer thickness (¢) in centimeters for the grating repre-
sented in Fig. 3(a).

material by use of the rigorous modal method.1” As
n;, — i, the system response varies insignificantly,
provided that the lamellae dimensions are large
enough so that their optical thickness could be con-
sidered much larger than the wavelength. This is
not the case when the lamellae are too thin.’® For
that reason, we will draw the curves for ¢ > 0.1 for
Fig. 3(b). On the other hand, when ¢ — d, the res-
onances become too thin to be observed; thus we will
limit the range of ¢ to ¢ < 0.8.

Although the overall background values of trans-
mission are quite low, there are three distinct regions
in which the transmission reaches 100%. The three
curves are numbered from 1 to 3 in the figure. Re-
gions 1 and 2 are wider for thinner lamellae (¢ small).
Let us study in more detail the limit when the lamel-
lae width tends toward the period, ¢ — d; i.e., the
resonator is completely closed. We recall that, when
the mth mode of a slab is excited in TE polarization
through the pth order of the grating, we obtain the
well-known formula

o _(p2n’_ (e
I e I o PR

The thicknesses corresponding to 100% transmission
then tend to the following values:

curve 1: ¢ — 0.216 cm such that
2m t = (2)
)\ n2 =1,
curve 2: t — 0.432 cm such that
2T gt = 2 3)
)\ n’2 - mw,
curve 3: t — 0.240 cm such that

2m A2V
)\|:n22 - (d) } t=mr. (4—)

The first two thickness values correspond to the first
two waveguide modes of the hollow metallic
waveguide made of metallic plates surrounding the
dielectric layer. The third thickness corresponds to
the first waveguide mode excited through the first
grating order propagating inside the dielectric layer.

The other limit ¢ — 0 corresponds to a completely
open dielectric waveguide without metallic lamellae.
As already said, this limit has to be numerically
taken rather carefully!s; it is important to have the
limit n;c — 0 fulfilled. In that limit, the thicknesses
corresponding to curves 1 and 2 tend toward the val-
ues giving the Fabry—Perot resonances for a bare
dielectric layer (curve 1 tends toward zero thickness,
which corresponds to 100% transmission), whereas
the resonance thickness of the third curve tends to-
ward the value 0.052 cm, which provides excitation of
the fundamental mode of the corresponding dielectric
waveguide through the first diffraction order. Table
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Table 1. Values of the Resonant Thickness of the Dielectric Layer
Corresponding to Curve 3 of Fig. 4 When n,c — 0

Resonant Thickness

ng abs(nzc) t (cm)
0 + 250 5 0.1072
0 + 100 2 0.1065
0 + 50 1 0.1037
0 +i20 0.4 0.0943
0 +i10 0.2 0.0786
0+1i5 0.1 0.0628
0+ i2 0.04 0.0547
1+i0 0.02 0.0526

1 presents the change of the resonance thickness ¢
corresponding to point 3a of Fig. 4, when the imagi-
nary part of n; gradually tends toward zero, keeping
c constant. As one can observe, the value of ¢ tends
toward 0.052.

To better illustrate the similarities and the differ-
ences between the different curves, we present the
distribution of the electric field inside the grating
region for several characteristic points along the dif-
ferent curves in Fig. 4. Figures 5(a)-5(c) give the
electric field (|E,|) for the three points 1a, 2a, and 1b,
respectively. The modulus of the incident electric

y cm)

y (cm)

Fig. 5. Electric field maps corresponding to different working
points of Fig. 4: (a) point 1a with ¢ = 0.02, (b) point 2a with ¢ =
0.2, and (c) point 1b with ¢ = 0.7.
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Fig. 6. Electric field maps corresponding to different working
points along curve 3 of Fig. 4: (a) point 3a with ¢ = 0.02, (b) point
3b with ¢ = 0.1, (c) point 3¢ with ¢ = 0.3, and (d) point 3d with ¢ =
0.7.

field is taken equal to 1. At points la and 2a, the
field is weakly depending on the x coordinate and
presents a single (for point 1a) or a double (for point
2a) resonance in the y direction. This behavior is
typical of the Fabry—Perot resonances, which are
completely x independent when ¢ = 0. Going to the
right-hand side of Fig. 4, point 1b, one can observe in
Fig. 5(c) that the field is concentrated in the region
under the lamellae openings and rapidly decreases
between them. In contrast, curve 3 of Fig. 4 pre-
sents a completely different field behavior. Figures
6(a)—6(d) give the field map distribution for the sev-
eral different points of curve 3 with a gradual in-
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Fig. 7. Transmission as a function of the lamellae width (c) and
middle-layer thickness (¢) in centimeters for the grating repre-
sented in Fig. 3(b).

crease of the lamellae width. Figure 6(a),
corresponding to point 3a of curve 3, exhibits three
maxima along x and a single maximum alongy. As
already mentioned, this point corresponds to a
waveguide-mode excitation that uses the first diffrac-
tion order of the grating. As far as the incidence is
normal, simultaneous excitation of modes propagat-
ing in opposite directions of the x axis occurs, and the
field distribution corresponds to a standing wave
alongx. When the lamellae width c is increased, the
field distribution remains qualitatively the same
(standing wave in the x direction); however, in con-
trast to Fig. 5, the field intensity between the metallic
lamellae remains high, reflecting the fact that the
enhanced resonant transmission is due to excitation
of waveguide modes propagating in the *x direction.
As the groove opening reduces gradually [see Fig.
6(d)], the dielectric waveguide mode is gradually
transformed into a mode of the corresponding metal-
lic waveguide filled with the dielectric. The corre-
sponding spectral and angular dependencies of the
transmission will be analyzed later when a compar-
ison is done with the cavity resonances.

Second, to observe the differences and similarities
between waveguide and cavity modes, we analyze the
structure presented in Fig. 3(b), which will be called
the grating—cavity configuration. The difference
with the previous case is the existence of a vertical
metallic wall 0.1 cm thick, which serves to isolate the
field inside the adjacent periods. This prohibits
waveguide-mode propagation but permits the exis-
tence of new types of resonance, namely, cavity res-
onances.

The transmission of the structure as a function of
the lamellae width and the cavity (filled with the
same dielectric) height is presented in Fig. 7. Sim-
ilar to Fig. 4, several well-distinguished regions can
be observed, with the transmission reaching 100%
along four curves. Some of these regions are wider
in their ¢ dependence (curves 1 and 2), whereas
curves 3 and 4 are rather thin, so thin that it is
impossible to follow curve 4 for values of ¢ less than
0.25. The starting lamellae width is 0.1 cm because

Fig. 8. Electric field maps corresponding to the working point 1B
of Fig. 7.

this is the thickness of the walls that separate the
grooves.

The similarities between the transmission behav-
iors for open- and close-groove gratings observed
when we compare Fig. 4 with Fig. 7 are not acciden-
tal. Curves 1 and 2 in the two figures are due to
Fabry—Perot resonances, presenting maxima in the y
direction and having weak dependence in the x direc-
tion for narrow lamellae. Thus results not reported
here have shown the same field distributions for
points 1A and 2A of Fig. 7 as those reported in Figs.
5(a) and 5(b). The same conclusion is valid at the
other end (c large, point 1B) of curve 1 of Fig. 7.
Comparing Fig. 5(c) with Fig. 8, we see that the be-
havior of the field distribution remains the same as
that of point 1b of Fig. 4.

Although the grating—cavity configuration under
study [Fig. 3(b)] does not allow waveguide modes to
propagate, in contrast to the system presented in Fig.
3(a), there exists for the grating—cavity configuration
field distributions that allow for 100% resonant
transmission, similar to the waveguide-mode excita-
tion allowed in the system shown in Fig. 3(a). This
phenomenon can be observed along curves 3 and 4 of
Fig. 7. Figure 9 presents the electric field maps for
the three points 3A, 3B, and 4B, which are quite
similar to the field distributions presented in Figs.
6(a)-6(c). However, the main difference is that in
Fig. 9 we observe the excitation of cavity resonances,
a cavity formed by the vertical and horizontal metal-
licwalls. The similarity with Fig. 6 is due to the fact
that the waveguide modes are excited in normal in-
cidence and thus present a standing-wave behavior
similar to the cavity modes.

Increasing the horizontal lamellae width, one can
observe a gradual transition between a resonator
open in the vertical direction [Fig. 9(a)] to an almost
closed resonator inside the cavity [Fig. 9(c)]. Al-
though the field distribution along curve 3 of Fig. 4
and curves 3 and 4 of Fig. 7 are quite similar, as well
as their dependence on the lamellae width ¢ and the
dielectric region thickness ¢, the angular and spectral
behaviors could be quite different in the two cases, as
well as when compared with the Fabry—Perot reso-
nances. This is analyzed in what follows in the cur-
rent section.

When the left-hand side of curves 1 and 2 in both
Figs. 4 and 7 are considered, the enhanced transmis-
sion is due to Fabry—Perot resonances in (almost)
open resonators. These are characterized by rela-
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Fig. 9. Electric field maps corresponding to different working

points along curves 3 and 4 of Fig. 7: (a) point 3A, (b) point 3B,

and (c) point 4B.

tively large spectral and angular dependences.
When the groove opening is reduced (increasing c),
the resonator becomes more closed. How does this
influence the spectral transmission curve? Figure
10(a) shows the spectral variation of the transmission
in that case, with a spectral width at a half-height for
both working points 1b and 1B of the order of 0.02 cm
(AN/\ = 1.3 X 10™2), which is quite large; when com-
pared further with the waveguide or cavity-mode ex-
citation, it will be shown that closing the resonator
reduces the spectral bandwidth. Anyway, the angu-
lar response for the Fabry—Perot resonance remains
almost insensitive with respect to the incident angle,
at least in the region in which only the specular or-
ders of the grating propagate [Fig. 10(b)] (angle < 30
deg).

This behavior has to be compared with the
waveguide-mode excitation process for the same la-
mellae width, presented in Fig. 11 for the working
point 3d. The spectral width of the transmission
maximum [Fig. 11(a)] is less than 0.0005 cm (AN/\ =
3.107%). The angular curve is also quite narrow
[Fig. 11(b)], reflecting the fact that the waveguide
mode is excited through the *+1st diffraction orders of
the gratings; i.e., the resonant incident angle 6, is
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linked to the waveguide-mode propagation constant
in the x direction v, by the grating equation

sin6~=yliA (5)
! O d’

The narrower the resonance in A, the narrower in 6,,
which creates great problems for using the resonant
waveguide-mode excitation for spectral filtering:
Narrow filters require well-collimated incident light,
a requirement that is quite often difficult to meet.
Cavity resonances could provide a simple solution
to this problem. Closing the cavity by decreasing
the opening will reduce the coupling with the incident
light and will increase the finesse in A and thus will
diminish the width of the spectral maximum to a
desired value. However, in contrast to what hap-
pens during the waveguide-mode excitation, in which
the angular dependence also depends on the spectral
width through Eq. (5), the cavity resonance could be
quite thin in N and quite large in 6,, This can be
understood by taking account of the fact that the
cavity resonance depends on the optogeometrical pa-
rameters (cavity dimensions, optical index, and
wavelength) so that the angle of incidence plays a
much smaller role because its variation changes only
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the strength of resonance excitation and not the res-
onance characteristics themselves. And, indeed, un-
der conditions similar to those of Fig. 11, Fig. 12
presents the spectral and angular dependences of the
transmission close to the working point 4B of Fig. 7,
i.e., for a closed resonance. As can be observed, us-
ing excitation of cavity resonances instead of
waveguide modes, one can preserve a very narrow
spectral resonance [AN/\ = 3.10 *in Fig. 12(a)] while
preserving the spectral position of the maximum
within a large angular interval [Fig. 12(b)]. Al-
though the system is asymmetrical with respect to
the vertical y—z plane [see Fig. 3(b)], the angular
dependence is almost symmetrical with respect to the
normal incidence because the field map inside the
cavity is also almost symmetrical [see Fig. 9(c)].
Another proof that cavity resonances are mainly
guided by the cavity dimensions and not by the exci-
tation conditions, in contrast to the waveguide-mode
excitation governed by Eq. (5), is presented in Fig. 13,
in which the spectral response close to working points
4B [Fig. 13(b)] and 3b [Fig. 13(c)] is analyzed when
the groove period is increased while the cavity dimen-
sions are preserved [Fig. 13(a)]. An increase of 10%
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of the period does not significantly modify the spec-
tral response of the cavity resonance [Fig. 13(b)],
whereas only a 1% change of the period when a
waveguide mode is excited through Eq. (5) leads to a
significant shift of the peak location in the spectral
domain [Fig. 13(c)].

3. Two-Dimensional Grating

The aim of this section is to show how the ideas
developed in Section 2 in the simpler case of one-
dimensional gratings can be extended to two-
dimensional gratings in order to suppress the
sensitivity to the polarization of the incident light.
Two kinds of grating will be considered: the wood-
pile structure and the square-grid grating.

The first one is the so-called woodpile structure,
well known as being one of the most promising struc-
tures for building photonic crystals.’® Figure 14 de-
picts the four-layer woodpile structure; the
parameters are given in the figure caption. In this
case it can be proved that the transmission is insen-
sitive to the polarization by use of the reciprocity
theorem and symmetry. Indeed, let us consider the
incident field corresponding to case (a) in Fig. 14.
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Fig. 14. Schematic representation of the woodpile gratings. The
parameters are periodd = 1 cm, ¢ = 0.7 cm, ¢ = 0.715 cm, ¢; = 0.1
cm, the optical index of the metal is n,, = i 10*, and the structure
is lying in vacuum.

The bold arrow represents the wave vector, and the
electric field direction is orthogonal to the figure. If
the amplitude of the incident field is normalized, let
us call 7 the amplitude of the transmitted field.
From the reciprocity theorem?2® we know that if the
incident field corresponds to case (b) the transmission
will be the same (). Then, from the symmetry of the
structure, it appears that an incident field with the
electric field orthogonal to the figure and coming from
the bottom [case (b)] is identical to an incident field
with the electric field in the plane of the figure coming
from the top [case (c)], and thus cases (a) and (c) must
also be identical.

The structure is modeled by use of the rigorous
modal method.2! In this method the field is ex-
pressed on the basis of the modes of the lamellar
structure. Figure 15 shows the transmission as a
function of the wavelength when the structure is il-
luminated by a plane wave in normal incidence and
the electric field is normal to the plane of Fig. 14 (case
a) or the electric field is in the plane of Fig. 14 (case
b). As expected, the transmission presents a sharp
peak that is the same for both cases. The physical
origin of the peak is a Fabry—Perot resonance of the
structure, each pair of crossed gratings acting as a
mirror. Indeed, because the medium between the
“mirrors” is vacuum, the higher propagation constant
allowed for the excited mode is k2, = o/c. Because the
period is smaller than the wavelength, only the zero

o
n

o
g

Q
o
I

o
=
H

— case (a)
s case(c)
|

2 (om)

transmission

o
N
N

o
=3

Fig. 15. Transmission of the woodpile grating of Fig. 14 in normal
incidence.
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Fig. 16. Schematic representation of the biperiodic gratings. (a)
Perspective view of the double grating with a continuous dielectric
layer in the middle. (b) Section of the unit cell (along any of the
periodicity axes) of the double grating with a continuous dielectric
layer in the middle (slab type). (c) Section of the unit cell (along
any of the periodicity axes) of the cavity-type grating. The pa-
rameters ared = 1cm, ¢ = 0.5cm, ¢ = 0.22 cm, ¢, = 0.1 cm, w =
0.9 cm, n, = 3.47, the optical index of the metal is n,, = i 250, and
the structure is lying in vacuum.

order of the grating is propagative. Then the excited
mode can have only a null tangential component of
the wave vector (i.e., the Fabry—Perot mode in normal
incidence).

The second structure is made of a dielectric slab
placed between two metallic grids (square holes on a
square lattice made in a metallic layer) as repre-
sented on Fig. 16(b) (slab-type grating). Figure 16(c)
shows a variant of the structure: In the slab, verti-
cal metallic walls are added to form cavities (cavity-
type grating). Both structures are symmetric with
respect to top-down symmetry; thus a transmission
equal to 1 is expected for a lossless structure,!®
whereas the x—y symmetry ensures a transmission
insensitive to the polarization of the incident light.
The metallic grid structures are modeled by use of the
Fourier modal method.22 In the numerical code the
modes are expressed on a Fourier basis, and both the
fast Fourier factorization23.24 (the proper way to write
products of truncated Fourier series) and the
S-matrix algorithm?2? (to avoid numerical instabilities
owing to growing exponentials) are used. Figure 17
shows the transmission in normal incidence of the
slab-type grating as a function of the wavelength.
The peak with maximum equal to 1 is due to the
excitation of a guided mode of the slab as explained
for the one-dimensional gratings in the previous sec-
tions; the mode is excited by the (1, 0) or (0, 1) order
of the two-dimensional grating. Note that diminish-
ing the size of the square holes of the grids can nar-
row the peak. All the parameters of the structure
are given in the figure caption of Fig. 16.

Figure 18 shows the transmission in normal inci-
dence for the cavity-type grating as a function of the
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Fig. 17. Transmission of the slab-type grating [Fig. 16(b)] in nor-
mal incidence.

wavelength. When compared with Fig. 17, Fig. 18
does not differ notably. The value of the maximum
of the peak has slightly changed, and the width of the
peak is similar. Figure 19 shows the transmission
for both structures as a function of the angle of inci-
dence for the wavelength corresponding to the max-
imum value of the transmittance in Figs. 17 and 18
(for the slab-type grating and the cavity-type grating,
respectively). The remarkable result is that the
transmission of the cavity-type grating remains very
high on the whole range of angle of the figure (20 deg),
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Fig. 18. Transmission of the cavity-type grating [Fig. 16(c)] in
normal incidence.
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Fig. 19. Transmission of the slab-type grating [Fig. 16(b)] for A =
1.4968 cm (solid curve) and of the cavity-type grating [Fig. 16(c)]
for A = 1.4802 cm (dashed curve).

10 February 2004 / Vol. 43, No. 5 / APPLIED OPTICS 1007



whereas the transmission of the slab-type grating
falls to approximately 0.5 for an angle of only 5 deg.
This result confirms the demonstration made in Sec-
tion 2 on the one-dimensional grating.

4. Conclusion

The enhanced transmission through subwavelength
grids or hole arrays observed by Ebbesen et al.? in the
visible region and linked with the resonant excitation
of surface plasmons can be obtained in spectral do-
mains and for polarizations for which plasmons are
lacking or inoperate. The high transmission is then
linked with the excitation of other electromagnetic
resonances among which are Fabry—Perot,
waveguide-mode, and cavity-mode resonances. The
first type produces transmission curves with large
spectral and angular bandwidths, compared with
waveguide-mode resonances, whereas cavity-
resonance excitation can achieve simultaneously
high finesse in \ and large bandwidth in incidence, as
well a spectral peak location almost independent of
the grating period. These characteristics are com-
mon to both one-dimensional and two-dimensional
gratings. They can be of great interest in realizing
nanosources for the far-infrared and microwave do-
mains. From a theoretical point of view, it is simple
to extend the validity of our results to the visible
domain. As far as the refractive indices are kept
unchanged, rescaling all dimensions by a factor of
10~* moves the wavelength from 1 cm to 1 pm.
However, from the experimental point of view, it is
impossible to find materials with optical indices used
in this study at wavelengths of the order of 1 pum.
On the other hand, in the visible domain, the plasmon
resonances can play a significant role in enhancing
the transmission.

It is necessary to point out that the present study
addresses configurations having periodicity in one
(gratings) or two dimensions (arrayed holes and
crossed gratings) and does not concern enhanced
transmission through single (patterned or not) holes.

The research of B. Gralak is part of the research
program of the Foundation for Fundamental Re-
search on Matter and was made possible by financial
support from the Dutch Foundation of Scientific Re-
search.
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