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Almost perfect blazing by photonic crystal rod gratings

Evgeny Popov, Bozhan Bozhkov, and Michel Nevière

A periodic array of dielectric rods or holes, known as two-dimensional photonic crystal, is shown to have
blazing properties similar to those of classical diffraction gratings. Several different optogeometric
configurations are shown numerically to exhibit an almost perfect blazing in the 21st reflected order with
a plateaulike spectral dependence in nonpolarized light. © 2001 Optical Society of America
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1. Introduction

Since the pioneering work of Yablonovitch,1 the so-
alled photonic crystals have been the subject of ex-
ensive interest,2–6 most of it theoretical, at least in

the visible region. Only most recently has techno-
logical development allowed the production of two-
dimensional ~2-D! or three-dimensional periodic
tructures with a characteristic period shorter than
he wavelength of visible light.7,8

Most of the attention to photonic crystal diffraction
is directed toward structures with subwavelength pe-
riods. If d is the period and l is the wavelength, the
Fraunhofer grating equation implies that, when
lyd . 2, the zeroth order is the only one to be dif-
fracted whatever the incidence. Larger-period
structures can diffract light into nonspecular orders,
thus complicating the simplified picture of forbidden
and allowed bandgaps. The simpler case of
specular-only diffraction is common to solid-state
physics, where the extensive theoretical investiga-
tion of photonic crystals began. However, in optics,
nonspecular diffraction has proved for a long time to
be quite interesting and useful. Only a few recent
studies have dealt with nonspecular diffraction by
2-D photonic crystals,9 and the nonzero-order diffrac-
tion is not considered in these studies from the point
of view of its most important property of diffracting
polychromatic light in different directions.
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In this paper we propose a numerical study of non-
specular light diffraction by a 2-D periodic array of
dielectric rods with circular ~or rectangular! cross sec-
ions. It is shown that within the wavelength band
orbidden for transmission, such systems can have
lmost 100% diffraction efficiency over the entire
andgap in both TE and TM polarization. This per-
ect blazing can be quite useful for demultiplexing
ight in optical communication networks by using
onpolarized light transmission. Note that a blazed
rating is a grating that concentrates a high amount
f energy into a given diffracted order. Thus its ab-
olute efficiency, i.e., the ratio between the diffracted
nergy in that order and the incident energy, ap-
roaches 100%.
A plateaulike almost perfect blazing is known to

xist for multilayer diffraction gratings, but only for
ingle polarization, whereas the other polarization
fficiency is low and varies rapidly with
avelength.10–12

2. System Geometry and Forbidden Band in
Transmission

The diffraction system consists of a periodically ar-
ranged array of rods ~or holes! in a homogeneous

aterial. We consider in-plane diffraction with the
lane of incidence and diffraction perpendicular to
he rod direction ~Fig. 1!. The outermost system in-
erfaces are planes that can have different possible
irections, i.e., crystal cuts. For example, a system
ith boundaries parallel to the x axis with a period
5 1 mm can diffract only two diffracted orders for a
avelength l larger that 2 mm, namely, the specular
rder in reflection and the specular transmitted or-
er, whatever the angle of incidence may be. It is
ell known that in specific conditions such a system

an have a forbidden zone in transmission, reflecting
ack the entire incident light within a given wave-
ength band. This happens when no system mode is
20 May 2001 y Vol. 40, No. 15 y APPLIED OPTICS 2417



t
t

t
t
s
l
r
b
i
w
0

W
o
o

c
c
fi

m
d
a
2
w

t
F
fl
d
r
t
1
i
~

i

2

allowed to propagate without attenuation over a sin-
gle period of the system in the direction of propaga-
tion. Mathematically, such a property can be
expressed in terms of the eigenvalues of the trans-
mission matrix of the system, as briefly explained in
this section ~see the Appendix for more precise proof !.
Let F~x,y! be the electromagnetic field at point ~x,y!
inside the system. If we want the system to trans-
mit a portion of the incident light, it is necessary that
some phase factor g ~equal to the Bloch vector times
he period! with a zero imaginary part exists to link
he field at the plane, y 5 y0 and y 5 y0 1 dy. Here

dy is the vertical dimension of the single cell of the
system:

F~ x, y0 1 dy! 5 exp~ig! F~ x, y0!. (1)

On the other hand, the field values at plane y 5 y0
and y 5 y0 1 dy are linked by the transmission ma-
rix, Eq. ~A3!; thus exp~ig! equals the eigenvalues of
his transmission matrix. When no real g exists, the
ystem consisting of a sufficient number of identical
ayers does not transmit light. Spectral ~or angular!
egions without transmission are called forbidden
ands or bandgaps in analogy with solid-state phys-
cs. The result is that the bandgaps in transmission
ill exist in the spectral regions where minuIm~g!u Þ
, where Im~g! denotes the imaginary part of g.
A typical example of such a gap is shown in Fig. 2.
e consider a classical case, as discussed in Ref. 13,

f a square array of cylindrical dielectric rods with
ptical index n2 5 2.9833 ~n2

2 5 8.9! hanging in the
air ~n1 5 1!. The vertical period dy is equal to the
horizontal one, equal to d9 5 1 mm. The crystal is

Fig. 1. Schematic representation of the cross section of a periodic
system of circular rods: dashed, dotted lines, two different slice
cuts; n1, n2, refractive indices of the bulk material and the rods,
respectively.
418 APPLIED OPTICS y Vol. 40, No. 15 y 20 May 2001
ut along the dashed lines in Fig. 1. At normal in-
idence and rod radii r 5 200 nm, the TE ~the electric-
eld vector parallel to the rods! and TM gaps

partially overlap in the wavelength range between
2.25 and 2.32 mm. Calculations for radii r from 50 to
500 nm have shown that greater overlaps occur for
r 5 150 and 350 nm, which is why we shall analyze
these two cases in more detail. However, let us first
discuss the possible nonspecular diffraction, which
does not exist for wavelengths longer than 1 mm and
crystal cut along the dashed lines in Fig. 1. Aiming
the appearance of diffraction orders rather than the
zeroth transmitted and reflected orders, we can
choose a crystal cut at 45°, as shown by the dotted
lines in Fig. 1, preserving the incident direction.
The resulting geometry turned at 45° is presented in
Fig. 3. A greater number of degrees of freedom are
allowed compared with Fig. 1 by allowing the vertical
period to differ from the horizontal period; the radius,
the optical index, and the positions of the centers of
the rods in the middle layer could also vary. How-
ever, in the following we preserve the initial geome-
try, i.e., h 5 d, c 5 h1 5 dy2.

As the horizontal period is now longer ~d 5 1.414
m! and the angle of incidence is 45°, another ~21st!
iffraction order can propagate in the superstrate
nd in the substrate for wavelengths shorter than
.414 mm. Additional orders will appear at shorter
avelengths, but here we are interested in 21st or-

der only. Owing to the different crystal cut, the po-
sition of the forbidden gaps is slightly changed.
~The results are not shown here.! Their position for
wo different radii, r 5 350 and 150 nm, are shown in
ig. 4 for TE and TM polarization. The total re-
ected light ~in the 0th and 21st reflected orders! is
rawn as a function of wavelength l in Fig. 5 where
5 350 nm and M 5 10. ~M is the number of ver-

ical periods that form the system; i.e., totally 2M 1
layers of rods are involved for the system presented

n Fig. 3.! As observed, within the gap, almost
99.9%! of the incident light is reflected in the super-

Fig. 2. Spectral dependence of the imaginary part of the eigen-
value of the transmission matrix that has a minimum imaginary
part modulus. The slice is cut along the dashed lines in Fig. 1.
Solid curve, TM polarization; squares, TE polarization. The band
gaps for which minuIm~g!u Þ 0 are well presented. The system
parameters are d9 5 1 mm, n1 5 1, n2 5 2.9833, r 5 200 nm,
ncidence normal to the dashed lines in Fig. 1.
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strate. We made the calculations by using the dif-
ferential method, applied to photonic crystals,14,15

which was recently ameliorated to improve the con-
vergence for the TM case.16 This theory allows one
to find the diffracted field as well as the T~1! matrix

Fig. 3. Schematic representation of a photonic crystal obtained by
a cut, as represented by the dotted lines in Fig. 1 and preserving all
parameters. Owing to the change in the cut direction, the inci-
dence is changed to 45° and the period is multiplied by =2. This

ermits propagation of the 21st reflected and transmitted order.

Fig. 4. Forbidden bands for the system in Fig. 3 with d 5 h 5
1.414 mm, c 5 h1 5 dy2, n1 5 1, n2 5 2.9833. The polarization is
ndicated: ~a! r 5 350 nm, incidence 45°; ~b! r 5 150 nm; bare
ines, 45° incidence; squares, 60° incidence.
described in the Appendix for any range of optogeo-
metric parameters. When T~1! is known, its eigen-
values can be found by use of standard numerical
methods. Note that in our research we fix wave-
length l and the incident angle ~i.e., a0! and search
for the vertical component of the wave vector,
whereas in solid-state physics the entire wave vector
is usually fixed and the frequency is searched.

The gap boundaries do not move significantly when
the angle of incidence is changed from 45° to 60°, as
observed in Fig. 4~b!. However, the fact that no light
is transmitted does not ensure that it will go into the

Fig. 5. Total reflected energy ~zero and minus first diffracted
order! as a function of the wavelength for the system with param-
eters in Fig. 4~a! and 21 cylinder rows ~M 5 10!.

Fig. 6. ~a! Spectral dependence of the absolute efficiency in the
onspecular ~21st! reflected order for the system with parameters

in Fig. 4~a! ~r 5 350 nm! and 21 rows of rods ~M 5 10!. ~b! As in ~a!,
but presenting the relative efficiency, defined as the energy dif-
fracted in this order divided by the total reflected energy. The
polarization is indicated as well as the number of vertical periods.
M 5 1 corresponds to three layers of rods, whereas M 5 10 corre-
sponds to 21 layers.
20 May 2001 y Vol. 40, No. 15 y APPLIED OPTICS 2419
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dispersive 21st order, since the zeroth reflected order
could also carry some energy. Figure 6 shows the
spectral dependence of the 21st-order diffraction ef-
ficiency for r 5 350 nm. Figure 6~a! presents the
absolute efficiency for M 5 10, whereas Fig. 6~b!
shows the relative efficiency ~energy divided by the
total reflected energy! for M 5 10 and M 5 1 ~only
three rows of cylinders!. When the TE curves lie
entirely inside the gap, the relative and absolute ef-
ficiencies for M 5 10 are equal, which is not the case
for M 5 1 and for TM polarization. The efficiency
curves resemble the efficiency curves of a sinusoidal
reflecting grating supporting only two diffraction or-
ders. The fact that the spectral behavior of the
curves in the gap region is qualitatively the same for
M 5 10 and M 5 1 ~when no vertical periodicity
exists! shows that it is determined by the process of

Fig. 7. Spectral dependence of the absolute efficiency in the non-
specular ~21st! reflected order for the system with parameters in
Fig. 4~b! ~r 5 150 nm! and 21 rows of rods ~M 5 10!. Angle of
ncidence: ~a! 45°; ~b! 60°.

Fig. 8. Same as Fig. 7~a!, but with a set of square rods instead of
the circular rods. The rods have cross sections of 300 3 300 nm.
420 APPLIED OPTICS y Vol. 40, No. 15 y 20 May 2001
diffraction by a single vertical period plus one addi-
tional row ~a total of three cylinder rows!, whereas
the increase of the number of rows leads to a decrease
in the transmitted light within the gap. The anal-
ogy with a reflection sinusoidal grating12 is not a
mere coincidence, because the grating profile of the
cylindrical grating is symmetrical and its filling ratio
~2ryd! is close to 0.5.

In contrast with the reflection gratings, rod grat-
ings offer a greater number of degrees of freedom.
Figure 7 shows the spectral dependence of the abso-
lute diffraction efficiency of the order of 21 when the
cylinder radius is reduced to 150 nm. The gap width
is slightly reduced ~as shown in Fig. 4!, but as a
reward the diffraction efficiency for both TE and TM
polarization forms a plateau 150 nm wide and almost
97% high. The plateau width is larger for 60° inci-

Fig. 9. Forbidden band for the system in Fig. 3 with the following
parameters: d 5 h 5 0.9617 mm, c 5 h1 5 dy2, n1 5 1, n2 5 2.3,

5 140 nm, incidence 45°.

Fig. 10. Spectral dependence of the absolute efficiency in the
nonspecular ~21st! reflected order for the system with parameters
in Fig. 9. Angle of incidence: ~a! 45°; ~b! 60°.
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dence @Fig. 7~b!#. Moreover the change in rod geom-
try does not place undue influence on this blazing
roperty, as shown in Fig. 8 for the same set of rods
s in Fig. 3, but with a square cross section with a
eight and width equal to 300 nm.
This almost perfect blazing in nonpolarized light
ith a plateaulike spectral dependence can have a
reat effect on optical communication applications of
ratings in demultiplexing. There are two major
roblems: materials and technology. The next ex-
mple shows that it is possible to use rods of more
onventional optical material ~such as lithium nio-
ate! to obtain a blaze window in the desired spectral
ange of 1.45–1.6 mm. To preserve the same number
f diffraction orders and angular dispersion, the pe-
iod in Fig. 3 is reduced to 0.96167 mm and the cyl-
nder radii to 140 nm. A mere scanning of the
esults cannot be applied directly because of disper-
ion phenomena and new calculations are necessary.
he gap and efficiency spectral dependencies are
iven in Figs. 9 and 10, respectively. As in Fig. 7 the
hift from 45° to 60° incidence increases the blaze
pectral width and now, in particular, moves the
1st-order cutoff to a longer wavelength.
However, although photonic crystals made of di-

lectric rods have already been fabricated by diverse
echnologies, the question of whether it is more de-
irable to use the inverse configuration remains open.
his geometry is characterized by air-filled holes

Fig. 11. Forbidden band for a system presented in Fig. 3 with the
following parameters: d 5 h 5 0.38 mm, c 5 h1 5 dy2, n1 5 3.2,
n2 5 1, r 5 80 nm, incidence 60°.

Fig. 12. Diffraction efficiency bare lines, in the reflected 21st
order and, squares, the sum of the two reflected orders. The
system parameters are as in Fig. 11.
ade into a transparent material, usually by use of
-beam lithography.9 With the present state of tech-

nology the manufactured holes are of finite extent in
depth, rarely exceeding 1 mm, so an analysis needs to
take into account the guided-wave phenomena; in our
approach we consider a 2-D model with the holes
infinitely long in the z direction.

Figure 11 and 12 present the gap region and the
efficiency for a 2-D photonic crystal with a bulk index
equal to 3.2, period d 5 380 nm, and the cylindrical
holes filled with air. Although the plateaulike blaz-
ing region is formed only in TM polarization, the
efficiency of TE polarization is relatively high. As
for the device studied in Fig. 6, the remaining part of
the incident light is reflected into the 0th order, and
almost nothing is transmitted inside the gap region.

Appendix A

Let us consider the diffraction system shown in Fig. 1
with outer interfaces parallel to the x axis. If F~x,y!
is a solution of Maxwell’s equations inside the diffrac-
tion system, the pseudo-periodicity of the problem
~valid also for inclined incidence! requires that F be
quasi-periodic with respect to x:

F~ x 1 d, y! 5 exp~ia0 d! F~ x, y!, (A1)

here a0 5 k sin ui, k 5 2pncyl is the modulus of the
incident wave vector, nc is the superstrate optical
index, and ui is the incidence angle. The direct con-
equence of Eq. ~A1! is that F~x,y!exp~2ia0x! is rig-

orously periodic with respect to x and thus can be
expanded in Fourier series. The expansion for
F~x,y! has the form

F~ x, y! 5 exp~ia0 x! (
m

Fm~ y!exp~imKx!, (A2)

here K 5 2pyd is the grating circular frequency.
The transmission matrix T~1! for one vertical period

dy links the vector F with components Fm at ordi-
ates y and y 1 dy:

F~ y 1 dy! 5 T~1!F~ y!. (A3)

The transmission matrix T~1! depends on the basic
propagation equation and on the boundary conditions
and thus on the polarization. It can be decomposed
into three matrices when the eigenvalue technique is
used:

T~1! 5 VTFVT
21, (A4)

where VT contains the eigenvectors of T~1! and F is a
iagonal matrix with elements equal to the eigenval-
es of T~1!. Equation ~A3! can be rewritten in an-

other form when Eq. ~A4! is used:

F̃~ y 1 dy! 5 FF̃~ y!, (A5)

here F̃~y! 5 VT
21F~y! is another solution of the

Maxwell equations because it is a linear combination
of the solutions F~y!. Equation ~A5! is similar to Eq.
~1!. The difference is that in Eq. ~A5! F is a diagonal
20 May 2001 y Vol. 40, No. 15 y APPLIED OPTICS 2421
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matrix and F~y! is a vector, whereas F and g in Eq. ~1!
are scalars.

The transmission matrix through M vertical peri-
ods is simply given by raising the transmission ma-
trix through a single period to the Mth power, i.e., by
aising the diagonal matrix F in Eq. ~A5! to power M.
he eigenvalues of T~1! can be separated according to
he sign of the imaginary part g0 of g. The eigenval-

ues with g0 . 0 correspond to field components that
propagate and decay exponentially downward; g0 , 0
corresponds to solutions that decay exponentially up-
ward. Only solutions with g0 5 0 can propagate
without decay of their amplitudes.

If no eigenvalue of T~1! exists for which g0 5 0, all
field components propagating downward with non-
zero amplitude on the upper interface will be zero at
the lower interface, provided the system contains a
sufficient number of layers M so that exp~igM! ' 0.

he same conclusion is valid for the components
ropagating upward with nonzero amplitudes on the
ower interface. Thus transmission through such a
ystem tends toward zero with the increase in the
umber of layers, whatever may be the number of
ropagating diffraction orders in the outermost me-
ia.
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