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Differential method applied for photonic crystals

Evgeny Popov and Bozhan Bozhkov

The classic differential method is applied for modeling the diffraction of light from two-dimensional
photonic crystals that consist of dielectric cylindrical objects. Special attention is paid to mutual inter-
penetration of consecutive layers. Two algorithms for dealing with a stack of repetitive layers are
discussed, namely, the eigenvalue technique and the S-matrix algorithm. Their advantages and limi-
tations are analyzed, and times required for their implementation are compared. © 2000 Optical
Society of America

OCIS codes: 050.1940, 050.1960.
1. Introduction

The past 15 years have brought into the fore a new
class of materials called photonic crystals,1–3 mainly
because of the formation of a bandgap ~thus, crystals!
n the transmittivity of light ~thus, photonic!. Al-

though their behavior is quite similar to that of the
well-known bandgap multilayer optical coatings,
photonic crystals have more dimensions ~two-
dimensional or three-dimensional geometry!, which
extends their almost perfect reflectivity in a given
optical region to a much wider angular interval,4
sometimes a complete sphere.

The first theoretical studies of these materials used
solid-state physical methods and an analogy between
Helmholtz and Maxwell equations.5,6 However,
propagation of light in the so-called resonance do-
main ~wavelength of the same order of magnitude as
the characteristic distance between the constituent
particles! obeys some rules that have made the scalar
pproach irrelevant. Strong polarization dependen-
ies of both the propagation equation and the bound-
ry conditions, the possibility of guided and surface
ave excitation, and cutoff anomalies are among the

actors that have led to the relative failure of the
pproximate ~scalar or vectoral! approaches to model
ight diffraction by periodic structures, in particular,
y diffraction gratings.7
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Several rigorous approaches to light scattering by
two-dimensional periodic structures were developed
recently. Some are based on a single-object scatter-
ing matrix, which is used to characterize the diffrac-
tion by each crystal component and thus to form the
total system response.8 However, this approach re-
quires that the objects not interpenetrate, i.e., that
there be circles that enclose the components without
intersecting. Other approaches are independent of
the elements’ forms but require that there be no in-
terpenetration among different layers of cylinders.9,10

A recent review of theoretical methods that were used
to model photonic crystal diffraction can be found in
Ref. 11 and the references cited therein.

In this paper we propose a modification of the dif-
ferential method that is capable of dealing with any
two-dimensional array, with or without penetration
~Fig. 1!. Whereas recent hybridization of the differ-
ential method with the so-called R- ~or S-! matrix prop-
agation algorithm12 is, in principle, suitable for
treating such systems, numerical integration through-
out the entire stack would need computation times
proportional to the entire system thickness. Here we
propose a method that uses the fact that there are
~numerous, but not infinite! identical layers in the ver-
tical direction. This new formulation leads to numer-
ically stable results with a computation time that is
independent of the total thickness of the system. One
can use the computer code based on this method to
evaluate the reflectivity of a stack of any number ~100,
5000, or more! of identical layers with the same
amount of computational effort ~and of time!. For ex-
ample, for identical layers of dielectric cylinders the
time for calculation of a single diffraction could be less
than 1 s on a PC, based on a 300-MHz Pentium II
processor, in TE polarization, increasing to a 1 m for
TM polarization or for inclusion of metallic compo-
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nents. In Section 3 we present such examples, after
formulating the method in Section 2.

2. Differential Method for a System of Identical
Multilayers

The diffraction system under consideration is shown
schematically in Fig. 1. It must be pointed out that,
if such a system could be divided into slices separated
by homogeneous layers @e.g., cylinders without inter-
penetration; Fig. 1b#, the integral method7,9 could be
applied quite successfully. However, the mutual
penetration of the objects in the vertical direction
limits the application of the plane-wave expansion
~the Rayleigh hypothesis7,13! in the interpenetration
egion, which greatly complicates application of the
ntegral method.14 The differential method, how-
ver, can easily permit artificial system slicing, even
f the slice boundary intersects the physical object
oundaries, but at the cost of a slower convergence
ate in TM polarization for highly conducting objects.

Below and above the entire diffraction system the
cattered ~and incident! light components can be rep-
esented as a plane-wave expansion ~Rayleigh com-
onents!:

Fz
~ j!~x, y! 5 (

n
$bn

~ j1!exp@ibn
~ j!y#

1 bn
~ j2!exp@2ibn

~ j!y#%exp~ian x!,

Fx
~ j!~x, y! 5 (

n
iq~ j!bn

~ j!$bn
~ j1!exp@ibn

~ j!y#

2 bn
~ j2!exp@2ibn

~ j!y#%exp~ian x!, (1)
20
ith j 5 0 corresponding to the substrate and j 5 N
to the cladding. In TE polarization Fz 5 Ez is equal
to the z component of electric vector E and Fx 5
vm0Hx is equal to the normalized x component of

agnetic vector H. Depending on the polarization,
the coefficient q~i! is equal to

q~ j! 5 H 1 TE
1yk2n~ j!

2 TM , (2)

where k 5 2pyl is the vacuum wave number, l is the
wavelength, and n~ j! is the jth medium’s refractive
index. Horizontal and vertical wave-vector compo-
nents a and b are defined by the relations

am 5 a0 1 mK, bm
~ j!2 5 k2n~ j!

2 2 am
2 . (3)

Here

K 5 2pyd, (4)

where d is the distance between the cylinders in the
x direction ~i.e., the grating period!, and

a0 5 kn~N!sin u0
~N! (5)

is directly linked to angle of incidence u0
~N! in the

cladding medium.
Here we use the classic differential formalism7,12 to

evaluate the reflected and transmitted amplitudes,
but this formalism could be any that crosses the pro-
file ~the horizontal lines in Fig. 1 cross the interfaces
of the objects! such as the method of Moharam and
Gaylord.15 In contrast, methods that parallel the
profile ~as is the case with the integral method7! can-
not be used directly when there is interpenetration of
the scattering objects, as we discussed in Section 1.

For self-consistency, we present the basic equa-
tions briefly, so the interested reader should be able
to understand the algorithm without other refer-
ences. Because of the rigorous periodicity of the sys-
tem in the x direction, the field components are quasi-
periodic with respect to x, and the Floquet theorem
can be applied:

TE polarization

Ez~x, y! 5 (
m

Em~y!exp~iam x!, (6)

Hx~x, y! 5
1

vm0
(
m

Hm~y!exp~iam x!. (7)

TM polarization

Hz~x, y! 5
1

vm0
(
m

Hm~y!exp~iam x!, (8)

Ex~x, y! 5 2(
m

Em~y!exp~iam x!. (9)

The denominator vm0 in Eq. ~8! is introduced for
onvenience.

The partial-derivative Maxwell equations can be
Fig. 1. Schematic representation of three scattering systems con-
sisting of cylindrical objects.
September 2000 y Vol. 39, No. 27 y APPLIED OPTICS 4927
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written as a set of first-order differential equations in
TE polarization:

dEn~y!

dy
5 iHn~y!,

dHn~y!

dy
5 2ian

2En~y! 1 i (
m

In2m~y!Em~y!, (10)

and in TM polarization:

dHn~y!

dy
5 i (

m
In2m~y!Em~y!,

dEn~y!

dy
5 iHn~y! 2 ian (

m
Rn2m~y!am Hm~y!, (11)

where In~y! are the Fourier components of k2n2 and

R~x, y! 5 (
m

Rm~y!expSim
2p

d
xD ;

1
k2n~ j!

2 ~x, y!
. (12)

umerical integration of Eqs. ~10! or ~11! from one
evel of y 5 yj to yj11 5 yj 1 h could be made by use
f the elementary solutions as starting elements:
TE case

Ẽnp
6 ~yj! 5 dnp,

H̃np
6 ~yj! ; 6i

dẼnp
6

dy
Uy5yj

5 6 bn
~1!dnp, (13)

TM case

H̃np
6 ~yj! 5 dnp,

Ẽnp
6 ~yj! 5 6

1
k2n~1!

2 bn
~1!dnp, (14)

a choice that ensures the continuity of the tangential
field components at y 5 yj with the nth component
xp@ianx 6 ibn

~1!y# of Rayleigh expansion in Eq. ~1!.
In fact, we assume that the system is separated into
slices along the dotted lines ~Fig. 1!, yielding inter-
mediate infinitely thin layers with optical indices of
n~1!. This can be done because field components Fz
and Fx are continuous across these artificial inter-
faces.

The result of numerical integration of the field
components enables us to obtain the amplitudes of
the Rayleigh expansion b~ j11! at the artificial cut
y 5 yj11 as a linear combination of amplitudes b~ j! at
y 5 yj:

Fbn
~ j11,1!

bn
~ j11,2!G 5 FT11

~ j! T12
~ j!

T21
~ j! T22

~ j!GFbn
~ j,1!

bn
~ j,2!G . (15)

The matrix

T~ j! 5 FT11
~ j! T12

~ j!

T21
~ j! T22

~ j!G (16)
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is called a transmission matrix of the jth slice and is
obtained from the result of numerical integration at
y 5 yj11:

T11
~ j!

T12
~ j!

T21
~ j!

T22
~ j!

5
1
2 3

Ẽnm
1 ~yj11! 1 H̃nm

1 ~yj11!yq~1!bm
~1!

Ẽnm
2 ~yj11! 1 H̃nm

2 ~yj11!yq~1!bm
~1!

Ẽnm
1 ~yj11! 2 H̃nm

1 ~yj11!yq~1!bm
~1!

Ẽnm
2 ~yj11! 2 H̃nm

2 ~yj11!yq~1!bm
~1!
4 . (17)

Let us imagine that the scattering system consists of
identical slices numbered from 1 to N 2 2. The first
lice, for example, the lower half of the first layer of
ylinders, could be different from the others. The
ame could be valid for slice N 2 1 ~e.g., the upper

part of the last cylinders!. The link between the
amplitudes of the Rayleigh expansion in the sub-
strate ~ j 5 0! and in the cladding ~ j 5 N! is given
through the transmission matrix T of the entire sys-
tem, which is a product of the transmission matrices
of the various slices:

T 5 T~N21!@T~ j!#N23T~1!. (18)

Moreover, if N is large, it is not necessary to make
multiple multiplications of matrices to raise the
power of T~ j!. We can do this by decomposing T~ j!

into eigenvectors and eigenvalues:

T~ j! 5 VFW, (19)

where V is the matrix that contains in its columns the
eigenvectors of T~ j!, W 5 V21, and F is a diagonal
matrix with its elements the corresponding eigenval-
ues g of T~ j!. The pth power of T~ j! requires merely
the raising of the Mth diagonal elements to a power
of p:

T~ j!p 5 VFpW, (20)

his decomposition requires many fewer matrix oper-
tions and is much faster.
However, it is well known that integration ~direct

r not! of a thick system exhibits numerical instabil-
ties as a result of growing exponential terms that
orrespond to evanescent diffraction orders inside the
ystem. There are several ways to avoid this prob-
em. Probably the most promising one is the so-
alled S- ~from scattering! or R- ~from reaction,
riginating from chemistry! matrix algorithm, which

is discussed in Section 3. First we want to point out
where the instabilities come in the transmission @T-
matrix approach# and how to overcome them by re-
grouping the terms in Eq. ~20!. The main advantage
of this algorithm is that it requires equal computation
times, independently of the system’s thickness ~i.e., of
the number of layers N!. However, there is a limit to
this approach when the thickness of each slice ~which
forms the photonic crystal lattice in the y direction!
ecomes large enough. This problem is discussed at
he end of this section.

Experience shows that the eigenvalues of T vary
across a large number of magnitudes. This fact can
be easily understood when one is investigating the
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transmission matrix for a homogeneous layer. The
logarithm of eigenvalues g is equal to ib~ j!h, because
they give the y dependence of the field components.
However, as far as the field consists of downward-
and upward-propagating space harmonics, then gn 5
exp~6ibnh! and there are growing and evanescent
terms with complex values of b. When the imagi-
nary part of b multiplied by the slice’s thickness has
a large enough modulus, there are large exponential
terms, which lead to numerical truncation of the
physically important propagating terms ~with b real!.
These arguments could be applied directly for a mod-
ulated ~nonhomogeneous! slice, for which the index
modulation does not depend on the vertical direction,
e.g., lamellar or phase gratings with straight vertical
grooves. It can easily be shown that, if gn is an
eigenvalue, 1ygn is also an eigenvalue; i.e., again
small- and large-magnitude eigenvalues coexist.

A multilayered system increases the problems be-
cause each eigenvalue in Eq. ~20! is raised to a
positive-integer ~number of layers! power. To avoid
this numerical underflow of physically important
terms compared with growing exponentially compo-
nents, one can separate the eigenvalues into two
groups: large, F1 5 $gn%:Re@log~gn!# $ 0, and small,
F2 5 $gn%:Re@log~gn!# # 0. Eigenvector matrix V and
its inverse W must be represented in block form after
earrangement according to the order of eigenvalues
large and small!:

V 5 FV11 V12

V21 V22
G , W 5 FW11 W12

W21 W22
G . (21)

After trivial calculation and assuming that there is
no incidence from the substrate side, it can be shown
that the entire transmission matrix of the system
takes the form

T 5 FT11
~N21! T12

~N21!

T21
~N21! T22

~N21!GSV11 1 V12Q
V11 1 V12Q

D@W11T12
~1! 1 W12T22

~1!#,

(22)

here

Qmn 5 ~F2myF1n!
N23$@W21T12

~1! 1 W22T22
~1!#

3 @W11T12
~1! 1 W12T22

~1!#21%mn. (23)

It is obvious that the growing terms arise in Q and
remain in the denominator. Thus they never affect
the numerical stability. The exceptions are dis-
cussed later in this section.

The result is that the method can successfully treat
multilayer systems with arbitrary numbers of layers.
As an example, we consider a case already presented
in the literature.9 There is no interpenetration, so
the case could be treated with the integral method.
The spectral dependencies are presented in Fig. 2 for
several numbers of cylinder layers: 15 ~N 5 7!, 31
~N 5 15!, and 201 ~N 5 100!. The results for the
first case ~15 cylinder layers! are identical to those
given in Ref. 9. The computation time for each point
of the curves is ;1 s on a 300-MHz Pentium II-based
PC, independently of the number of layers. The
20
truncation ~M! of the matrices is set to seven diffrac-
tion orders.

However, the simple hypothesis of symmetrical be-
havior of the eigenvalues, which ensures the good
numerical behavior of matrix Q, holds only for low-
truncation parameter M. Whereas this value could
be used for dielectric rods in TE polarization, increas-
ing the optical index of the rods ~real and imaginary
parts! or working in TM polarization requires an in-
crease in the value of M. Then the eigenvalues of
the single-slice transmission matrix become large
~Table 1!, so the elements of matrix Q all become zero,
ven for a few layers N. Fortunately, in that case we
an use the well-known S-matrix algorithm,16 which

substitutes scattering matrix S for transmission ma-
trix T. However, to go from one slice to the upper
slice it is necessary to use a recurrent link instead of
power dependence, as was done for Eq. ~23!. Thus

Fig. 2. Reflectivity of a system without penetration and various
numbers of layers. Identical cylinders with radius 0.2 mm; hori-
zontal distance, d 5 1 mm; c 5 0.5 mm; vertical distance, h 5
1.73205 mm ~i.e., cylinders lie in the corners of equilateral trian-
gles!, n1 5 1, n2 5 n3 5 2, normal incidence, TE polarization. ~a!

5 7 ~i.e., the total number of rod layers is 15!, ~b! N 5 15, ~c! N 5
100.
September 2000 y Vol. 39, No. 27 y APPLIED OPTICS 4929



T
F
a
m
S
r
s
e
e
t
p
m
S
b

t

w
c
u
s
c
t
a
p
c
d
t

Table 1. Eigenvalues of the Transmission Matrix for Two Values of Truncation Parameter Ma

4

the computation time becomes proportional to the
total number of layers. In Section 3 we present the
fundamentals of the S-matrix algorithm together
with several numerical examples and a comparative
analysis of computation times.

3. S-Matrix Algorithm

Instead of multiplying the transmission matrices of
the consecutive layers, as is done in the T-matrix
algorithm, the S-matrix algorithm uses the interme-
diate transmission matrices to construct the scatter-
ing matrix for each slice and then for the entire
system. The scattering matrix determines the link
between the incident and the scattered amplitudes:

Fbn
~ j,1!

bn
~0,2!G 5 FS11

~ j! S12
~ j!

S21
~ j! S22

~ j!GFbn
~0,1!

bn
~ j,2!G . (24)

here are two differences between Eqs. ~15! and ~24!.
irst, the S matrix links the amplitudes in the jth
nd the lowest slides ~the 0th one!, whereas the T
atrix links the amplitudes in the consecutive layers.
econd, the known ~incident! amplitudes are on the
ight-hand side of Eq. ~24!, whereas the unknown
cattered amplitudes are on the left-hand side; how-
ver, they are mixed in Eq. ~15!. These two differ-
nces have proved to be substantial for maintaining
he stability of the algorithm, based on Eq. ~24!. The
rice that must be paid is that several additional
atrix operations must be made to differentiate the
-matrix components from the T-matrix components,
y use of the numerical integration of Maxwell equa-

M 5 7

Re~log g! Im~log g!
31.49927585 0.1258217411 3 10219

31.46402818 20.607743150 3 10220

20.04158652 0.7502387872 3 10218

19.87065245 20.6603937882 3 10218

6.949721305 0.4511018174 3 10217

6.078492698 20.6709885795 3 10217

20.41969 3 1026 22.902894289
20.41969 3 1026 2.902894289
25.706233657 20.1591353641 3 10213

26.076166756 0.6355391827 3 10214

26.457099755 23.141592654
26.918007349 0.1013547252 3 10213

29.255569610 0.6353108438 3 10212

29.374280057 3.141592654

aThe system parameters are the same as in Fig. 1.
930 APPLIED OPTICS y Vol. 39, No. 27 y 20 September 2000
ions through each slice. Each block element of S~ j!

is found from the block elements of S~ j21! and T~ j!:

S22
~ j! 5 S22

~ j21!Z22
~ j!, (25a)

S12
~ j! 5 @T12

~ j! 1 T11
~ j!S12

~ j21!#Z22
~ j!, (25b)

S11
~ j! 5 @T11

~ j! 2 T12
~ j!S21

~ j21!#S11
~ j21!, (25c)

S11
~ j! 5 S21

~ j21! 2 S22
~ j!T21

~ j!S11
~ j21!, (25d)

with

Z22
~ j! 5 @T22

~ j! 1 T21
~ j!S12

~ j21!#21, (26)

and the starting values are S11
~0! 5 I, S12

~0! 5 0, S21
~0! 5 0,

and S22
~0! 5 I, where I is a unit matrix.

As is obvious from Eqs. ~25! and ~26!, it is necessary
to calculate the S matrix for a given layer after per-
forming the calculations for all the layers situated
below. Thus the computation time will grow with
the total number of layers. For identical layers it is
possible to store the results for the T matrix obtained

ith a single numerical integration ~the most time-
onsuming operation! across the layer and then to
se them in Eqs. ~25! and ~26!. This could save sub-
tantial time, as is evident from Table 2, where a
omparison is given for the time consumption with
he algorithms based on the T matrix @Eqs. ~18!–~23!#
pproach and on the S-matrix @Eqs. ~24!–~26!# ap-
roach. The S-matrix results are divided into two
ases, those with and without storage of the interme-
iate T matrix ~i.e., numerical integration across all
he layers, no matter whether there are identical lay-

M 5 13

Re~log g! Im~log g!
64.72334287 20.3041395378 3 10219

64.71407837 0.3037544383 3 10219

53.72054093 0.9754650566 3 10219

53.71132825 20.8024249290 3 10219

42.65543473 20.3873075109 3 10219

42.65401497 0.4736915901 3 10219

31.48935089 20.5735529253 3 10218

31.45055608 0.2336299143 3 10218

27.77626336 3.141592654
21.02603800 0.1333590748 3 10211

19.97328319 0.6624110117 3 10214

19.94726277 22.746755035
19.94726277 2.746755035
19.59502703 0.3767131383 3 10212

18.60302016 20.8926701053 3 10212

17.53335984 20.9612664776 3 10212

17.50061768 3.141592654
17.25850271 2.631904337
17.25850271 22.631904337
16.85734691 0.7290200442 3 10212

16.59625463 21.602085396
16.59625463 1.602085396
15.21987519 20.1968786492 3 10211

14.24354652 23.141592654



Table 2. Comparison of Computation Times ~s!
ers!. The latter approach could seem useless, but it
could be indispensable when the system has nonlin-
ear optical properties.

An important remark concerning the S-matrix al-
gorithm should be made. The algorithm works
fairly well when knowledge of the diffraction-order
amplitudes is required in the cladding and in the
substrate. However, in many cases it is important
to know the value of the field inside the structure.

Fig. 3. Reflectivity of a system of circular dielectric rods for 4 rod
incidence, TE polarization. Solid curves, N 5 5; dotted curves, N 5
the cylinders in consecutive layers shifted horizontally by c touch

M

Number of Layers ~M!

7 17

Number of Layers ~N! 10 20 200 10 20 200

With Eq. ~23! 1 1 1 Wrong
results

Wrong
results

Wrong
results

S Matrix with storage 4 7 35 35 38 60
S Matrix with integration 8 14 100 50 100 1000
20
At first sight, once the transmitted and reflected am-
plitudes are known, one can easily determine the
amplitudes at the boundaries of each slice by invert-
ing Eq. ~24!:

bn
~ j,2! 5 S22

~ j!21bn
~1,2!, (27a)

bn
~ j,1! 5 S12

~ j!bn
~ j,2!. (27b)

However, matrix S22 must be inverted at each slice.
The problem lies not in the increase of the computa-
tion time but rather in the numerical instabilities of
this inversion, because the inverse of S22 is directly
linked with transmission matrix T, which is unsta-
ble. To avoid this problem it is necessary to use
another connection between field amplitudes,
namely,

bn
~1,2! 5 S22

~N!bn
~N,2!. (28)

ii r. d 5 h 5 1 mm, c 5 0.5 mm. n1 5 1, n2 5 n3 5 1.5, normal
~a! no interpenetration, ~b! the penetration limit. ~f ! r 5 =2y4;

another.
rad
25:

one
September 2000 y Vol. 39, No. 27 y APPLIED OPTICS 4931
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Use of Eqs. ~27a!, ~28!, and ~25a! gives another ex-
pression for bn

~ j,2!:

bn
~ j,2! 5 @Z22

~ j11!#21@Z22
~ j12!#21. . . @Z22

~N21!#21bn
~N,2!. (29)

It is not necessary to invert the Z22 matrices, as their
inverse is already known according to Eq. ~26!, but

erely to store them during the integration. We use
q. ~27b! to find the other component, bn

~ j,1!.
When the field distribution is required inside the

slices rather than only on their boundaries, there are
two ways to obtain it: either by increasing the num-
ber of slices or by further integrating Eqs. ~10!–~14!

ith known shooting amplitudes inside each slice,
hich causes no numerical problems.

4. Numerical Example

To illustrate the applicability of the method to pho-
tonic crystal studies, we give an example that con-
sists of a set of dielectric rods @Fig. 1~a! or Fig. 1~b!#

ith identical periods in the vertical and horizontal
irections ~h 5 d! and intermediate rods in the mid-
le ~c 5 dy2!. Depending on rod radius r, the rod
ayers either penetrate mutually or do not ~r greater

or smaller than dy2, respectively!. First we consider
a stack of 11-layer rods ~N 5 5!; Fig. 3, solid curves#.
For smaller rod radii ~r not exceeding 0.3d!, a pro-
nounced bandgap ~in transmission! is formed, which
shifts toward a longer wavelength and decreases in
width with growth of the radius. When the radius
increases further ~note that at r 5 d =2y4 the cylin-

ers touch one other!, the reflection maxima decrease
n amplitude and width, probably because of the de-
rease in contrast ~the rod core region becomes in-

creasingly greater than the filling zone area!. We
can restore the transmission bandgap by increasing
the number of rods in the stack, as can be observed for
N 5 25 ~i.e., in total, 51 lines of rods in Figs. 3~e! and
~f !; dotted curves!.
Figure 4 shows the reflectivity of the system with
5 5 and N 5 25 and radius r 5 0.34 in TM polar-

ization. Because of the slower convergence rate, it is
necessary to double the truncation parameter ~39 dif-
fraction orders are taken into account rather than the
17 required for TE polarization!.

Fig. 4. Reflectivity in TM polarization of a system of dielectric
rods. Parameters other than that of r are listed in Fig. 3.
932 APPLIED OPTICS y Vol. 39, No. 27 y 20 September 2000
5. Conclusions

An application of the classic differential method for
photonic crystals consisting of arrays of cylindrical el-
ements that are periodic in one direction and quasi-
periodic in the other direction has been discussed.
Two algorithms were discussed, and their numerical
stability and amount of time that they consume were
analyzed. The method seems quite useful when there
is interpenetration of consecutive elements and for el-
ements of arbitrary geometry. Several numerical ex-
amples were presented to illustrate the method.

The authors acknowledge the financial support of
the National Fund for Scientific Researches of Bul-
garia under contract F714.
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