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Integral method for echelles
covered with lossless or absorbing thin dielectric layers

Evgeny Popov, Bozhan Bozhkov, Daniel Maystre, and John Hoose

We make a generalization of the integral method in the electromagnetic theory of gratings to study
diffraction by echelles covered with dielectric lossless or absorbing layers. Numerical examples are
given that show that, as in the resonance domain, the diffraction efficiency is more complicated than being
a simple product of lossless diffraction efficiency curves and plane surface reflectivity. © 1999 Optical
Society of America

OCIS codes: 050.1950, 050.1960.
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1. Introduction

There has been much activity recently directed to
improving and generalizing rigorous methods for
modeling light diffraction by relief gratings. The
differential method1 was combined with the s-matrix
algorithm2 to improve the stability of the algorithm
for modeling highly conducting metallic gratings in
TM polarization.3 The rigorous coupled-wave ap-
proach proposed by Moharam and Gaylord4 was im-
proved in a similar manner,5 and recently its
onvergence in the TM case became as fast as in the
E case.6,7 The method of coordinate transforma-

tions proposed by Chandezon et al.8 was extended to
gratings with vertical facets9 and to gratings made
from inhomogeneous materials.10

However, there is a grating problem that com-
bines several difficulties that make it incapable of
being treated by any of these theoretical methods
~at least, there is no sign in the literature that one
of these methods would be efficacious!. The prob-
lem is the diffraction of light by reflecting echelles,
in which ~i! the wavelength l is much shorter than
he period d (i.e., there are many propagating or-
ers), ~ii! the incidence is at high angles, ~iii! the
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igh efficiency is in orders of high number, typically
00 or more, and ~iv! the grating material is typi-
ally aluminum with high reflectivity. The small
yd ratio causes a further inconvenience in model-
ng, in as much as the grating profile must be rep-
esented quite closely to reality, because slight
ariations lead to significant changes in the effi-
iency of distribution between diffraction orders.
ny stepwiselike or Fourier representation of the
rofile will require thousands of steps or harmonics,
hich explains the failure of the numerical methods
entioned above.
The only solution to the problem that has proved

eliable so far is the integral method,11 improved to
encompass the integration variable as the curvilinear
coordinate along the profile. In addition, special
care is taken in treating the edges of the profile by
increasing the density of the integration points about
them. As a result, it has become possible to study
diffraction by echelles, and a comparison with exper-
imental results12 confirmed the validity of the
method, which is capable of dealing with diffraction
in very high orders @as many as to 660 ~Ref. 13!# as

ell as in low and intermediate orders.
However, echelles are also used in the spectral

nterval where the influence of aluminium oxide
aturally formed upon the surface becomes nonneg-

igible. Moreover, the absorption of Al2O3 leads to
a drastic reduction of reflectivity ~and thus of effi-
iency! below 150-nm wavelength, which requires
pecial coatings to move the absorption edge to
horter wavelengths. There are several formula-
ions of the integral method to deal with gratings
overed with one or several dielectric layers,14–16

independently of their thickness. However, they
all ~or at least the numerical code proposed! use a
1 January 1999 y Vol. 38, No. 1 y APPLIED OPTICS 47
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Fourier representation of the profile, smooth pro-
files without edges, or both. The only numerical
realization specially made to deal with echelles, as
explained above, could not make possible the mod-
eling of the influence of thin coatings on deep grat-
ings. The reason is that the connection between
the field values evaluated on the two closely situ-
ated profile surfaces was done by use of the s-matrix
method,17 which requires that a homogeneous re-
gion exist between profiles in which the field can be
represented in a Rayleigh expansion.18 For exam-
ple, when there is no interpenetration of the pro-
files, in the region between the groove top of the
lower profile and the groove bottom of the upper
profile Rayleigh expansion is valid. However, it is
not valid inside the grooves of deep gratings or for
profiles with edges19; thus, when such profiles in-
terpenetrate, such a homogeneous region does not
exist between them. Numerical methods based on
the Rayleigh hypothesis proved to be valid for much
deeper gratings @groove depth-to-period ratio hyd as
great as 6 ~Ref. 20!# than were theoretically pre-
dicted ~hyd as much as 0.142 for a sinusoidal pro-

le!, but this works only for sinusoidal groove
orms21 and only in the far-field zone, resulting in a

large error in the near-field zone.22 This is why for
echelles covered with thin dielectric layers it is nec-
essary to consider coupled integral equations for the
field components evaluated on the different profiles
and to be able to solve them simultaneously. Here
we present details of this procedure, together with
several numerical examples.

2. Integral Method as Applied to a Layered Grating

Let us consider a diffraction grating covered with a
layer of dielectric material, which can be absorbing
or not. The notation and the corresponding coor-
dinate system are introduced in Fig. 1. The es-
sence of the integral method lies in the fact that the
field everywhere in space can be represented as an
integral over the profile~s! of the components of the
lectromagnetic field that are tangential to these
rofiles, multiplied by the corresponding Green’s
unctions.

Let c denote the z component of the electromag-
etic field and f be its normal derivative. In TE

Fig. 1. Schematic representation of a grating covered by a dielec-
tric layer, together with the notation used in the text.
8 APPLIED OPTICS y Vol. 38, No. 1 y 1 January 1999
olarization c stands for the z component of the elec-
ric field Ez; in the TM case, for the z component of the
agnetic field Hz. As c and f are defined only on

the profiles, they are identified by subscript 1 or 2,
depending on for which profile they are defined. In
the TM case with the magnetic-field vector parallel to
the grooves in the z direction its normal derivative is
discontinuous at the profile because of the change in
electric permittivity; in the TE case the normal de-
rivative of the magnetic field has a jump if magnetic
permittivities of the media differ. Thus f can have
different values at the two sides of the corresponding
profile, and it is assigned a superscript 1 or 2, indi-
cating that f is calculated on the upper ~f1! or lower
~f2! side of the profile surface. When we are dealing
with the classical diffraction case with the plane of
incidence perpendicular to the grooves there is no z
dependence.

F represents the z component of the electric ~for the
TE case! or the magnetic ~for the TM case! field. It
takes subscripts 0–2 in the regions V0,1,2 in Fig. 1.
We define functions U in the following manner:

U0 5 HF0 exp~2ia0x! in V0

0 elsewhere ,

U1 5 HF1 exp~2ia0x! in V1

0 elsewhere ,

U2 5 H~F2 2 Fi!exp~2ia0x! in V2

0 elsewhere , (1)

where Fi denotes the incident wave:

Fi~x, y! 5 5expSia0 x 2 i
2p

l
n2 cos uiyD in V2

0 elsewhere
,

(2)

and a0 is the x component of the incident wave vector
ki:

a0 5
2p

l
n2 sin ui, (3)

where l is the wavelength, n2 is the refractive index
of the upper medium, and ui is the angle of incidence.

Everywhere in the region below the lower profile S1
the function U0~x, y! can be represented as an inte-
gral over this profile:

Below S1: U0~x, y! 5 2*
S1

!1
2 ~x, y, s1!f1

2~s1!ds1

2 *
S1

@1
2~x, y, s1!c1

2~s1!ds1,

(4)

where s1 is the curvilinear coordinate along the pro-
file S1 and Green’s functions ! and @ are given in

qs. ~7! and ~8!. Between the two profiles, U1 is
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generated by the corresponding functions on the two
profiles:

Between S1 and S2:

U1~x, y! 5 *
S1

!1
1~x, y, s1!f1

1~s1!ds1

1 *
S1

@1
1 ~x, y, s1!c1

1~s1!ds1

2 *
S2

!2
2~x, y, s2!f2

2~s2!ds2

2 *
S2

@2
2~x, y, s2!c2

2~s2!ds2. (5)

The signs of the integrals result from the anticlock-
wise positive direction chosen for the contour inte-
gral, so the upper profile is run from right to left, i.e.,
in the negative direction of the coordinate s2. In the
same manner, in the upper region U2 is derived by an
ntegral along the upper profile, as far as the
ncident-field part is already deduced from it @Eqs.
1!#:

Above S2: U2~x, y! 5 *
S2

!2
1~x, y, s2!f2

1~s2!ds2

1 *
S2

@2
1~x, y, s2!c2

1~s2!ds2.

(6)

! and @ are the Green’s functions11:

!j
6~x, y, sj! 5

1
2id (

m52`

` 1
bj,m

6 exp$Im K@x 2 xj~sj!#

1 ibj,m
6uy 2 yj~sj!u%, (7)

@j
6~x, y, sj! 5

1
2d (

m52`

` Hdxj

dsj
sgn@y 2 yj~sj!#

2
am

bj,m
6

dyj

dsj
J exp$Im K@x 2 xj~sj!#

1 ibj,m
6uy 2 yj~sj!u%, (8)

where

am 5 a0 1 mK, (9a)

K 5
2p

d
, (9b)

b1,m
2 5 FS2p

l
n0D2

2 am
2G1y2

, (9c)

b1,m
1 5 b2,m

2 5 FS2p

l
n1D2

2 am
2G1y2

, (9d)
b2,m
1 5 FS2p

l
n2D 2 am

2G . (9e)

According to the definitions,

c1
2 5 F0~s1!exp@2ia0 x~s1!# ; lim

M03P1

U0~x, y!, (10a)

c1
1 5 F1~s1!exp@2ia0 x~s1!# ; lim

M13P1

U1~x, y!, (10b)

c2
2 5 F1~s2!exp@2ia0 x~s2!# ; lim

M13P2

U1~x, y!, (10c)

c2
1 5 @F2~s2! 2 Fi~s2!#exp@2ia0 x~s2!# ; lim

M23P2

U2~x, y!,

(10d)

where x~sj! denotes the x coordinate of a point Pj with
curvilinear coordinate sj on the profile j, j 5 1, 2,

and Mm are points located in the regions Vm. An-
ther set of definitions for f is written as

f1
2 5

dF0~x, y!

dn̂1
U

s1

exp@2ia0 x~s1!#

; lim
M03P1

FdU0~x, y!

dn̂1
1 ia0 n1, xU0~x, y!G , (11a)

f1
1 5

dF1~x, y!

dn̂1
U

s1

exp@2ia0 x~s1!#

; lim
M13P1

FdU1~x, y!

dn̂1
1 ia0 n1, xU1~x, y!G , (11b)

f2
2 5

dF1~x, y!

dn̂2
U

s2

exp@2ia0 x~s2!#

; lim
M13P2

FdU1~x, y!

dn̂2
1 ia0 n2, xU1~x, y!G , (11c)

f2
1 5

d@F2~x, y! 2 Fi~x, y!#

dn̂2
U

s2

exp@2ia0 x~s2!#

; lim
M23P2

FdU2~x, y!

dn̂2
1 ia0 n2, xU2~x, y!G , (11d)

where n̂j denotes unit vectors normal to the jth profile
at a point Pj, j 5 1, 2.

It can be shown that, when the observation point
x, y! is located on the profile, the right-hand sides of

Eqs. ~4!–~6! give the mean values of the expressions
iven by Eqs. ~1!, which are discontinuous. As a
onsequence,

U0~s1! 5 1y2 F lim
M13P1

U0~x, y! 1 lim
M03P1

U0~x, y!G
5

c1
2~s1!

2
. (12)

It has been taken into account that, according to Eqs.
~1!,

U0~M1! ; 0. (13)
1 January 1999 y Vol. 38, No. 1 y APPLIED OPTICS 49
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Then Eq. ~4!, when it is evaluated on S1, gives

c1
2~s1!

2
5 2 *

S1

A1
2~s1, s19!f1

2~s19!ds19

2 *
S1

B1
2~s1, s19!c1

2~s19!ds19, (14)

here s1 is the couple @x 5 x~s1!, y 5 y~s1!# and a
prime indicates another point on the same profile.

In a similar manner, Eq. ~5! when it is evaluated on
the lower profile gives a second equation for f and c:

c1
1~s1!

2
5 *

S1

A1
1~s1, s19!f1

1~s19!ds19

1 *
S1

B1
1~s1, s19!c1

1~s19!ds19

2 *
S1

!2
2~s1, s29!f2

2~s29!ds29

2 *
S1

@2
2~s1, s29!c2

2~s29!ds29. (15)

ere s2 is the couple @x 5 x~s2!, y 5 y~s2!#. A third
equation also comes from Eq. ~5! but is evaluated on
the upper profile:

c2
2~s2!

2
5 *

S1

!1
1~s2, s19!f1

1~s19!ds19

1 *
S1

@1
1~s2, s19!c1

1~s19!ds19

2 *
S1

A2
2~s2, s29!f2

2~s29!ds29

2 *
S1

B2
2~s2, s29!c2

2~s29!ds29. (16)

Equation ~6! yields the fourth equation:

c2
1~s2!

2
5 *

S2

A2
1~s2, s29!f2

1~s29!ds29

1 *
S2

B2
1~s2, s29!c2

1~s29!ds29. (17)

In Eqs. ~14!–~17! the italic letters A and B stand for
the kernels evaluated on one and the same profile,
whereas script ! and @ denote kernels that depend
on the coordinates of the two profiles.

In addition to Eqs. ~14!–~17!, the boundary condi-
0 APPLIED OPTICS y Vol. 38, No. 1 y 1 January 1999
tions supply another set of four equations for the
eight functions f and c:

c1
2 5 c1

1, (18)

c2
2 5 c2

1 1 ci, (19)

q1
2f1

2 5 q1
1f1

1, (20)

q2
2f2

2 5 q2
1~f2

1 1 fi!, (21)

with

q1
2 5 H1ye~0! TM case

1ym~0! TE case , (22)

q1
1 5 q2

2 5 H1ye~1! TM case
1ym~1! TE case , (23)

q2
1 5 H1ye~2! TM case

1ym~2! TE case , (24)

nd e~ j! and m~ j! are, respectively, the relative electric
and magnetic permittivities of the jth media. Ac-
cording to Eq. ~2!,

ci 5 expF2i
2p

l
n2 cos uiy~s2!G ,

fi 5 2i
2p

l
n2Fdy~s2!

ds2
sin ui 1

dx~s2!

ds2
cos uiG

3 expF2i
2p

l
n2 cos uiy~s2!G . (25)

Solving the system of eight equations ~14!–~21! simul-
aneously enables us to find the unknown functions f
nd c, which in turn we use to find the field every-
here in space, using Eqs. ~4!–~6!. For numerical

mplementation, however, solution of eight integral
quations is too complicated, so in Section 3 we sim-
lify them.

3. Numerical Formulation

Equations ~18!–~21! make it easy to eliminate all f1

and c1. Equation ~14! can be rewritten in the fol-
lowing form, which permits us to eliminate f1

2:

f1
2 5 Cpc1

2, (26)

where C is an integral operator applied over the func-
tion at its right and is composed of two operators:

C 5 2~A1
2!21SB1

2 1
I
2D , (27)

where I is the identity operator and A1
2 and B1

2 are
integral operators that denote an integration with
kernels A1

2 and B1
2, respectively. ~A1

2!21 denotes
an inverse operator of A1

2. Using Eqs. ~27! and sim-
ilar notation, i.e., where an asterisk stands for inte-
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we can rewrite Eqs. ~15! and ~16! as

!2
2pf2

2 1 @2
2pc2

2 5 W1pc1
2,

A2
2pf2

2 1 SB2
2 1

I
2Dpc2

2 5 W2pc1
2, (28)

with

W1 5 B1
1 2

I
2

1
q1

2

q1
1 A1

1C,

W2 5 @1
1 1

q1
2

q1
1 !1

1C. (29)

Let us introduce a 2 by 2 matrix operator Q such
that

Q ; FQ11 Q12

Q21 Q22
G 5

def F!2
2 @2

2

A2
2 B2

2 1 Iy2G21

; (30)

hen Eqs. ~28! permit us to eliminate both f2
2 and

c2
2:

Ff2
2

c2
2G 5 FR1

R2
Gpc1

2, (31)

where

FR1

R2
G 5 QFW1

W2
G . (32)

Finally, Eq. ~17! enables us to determine the single
nknown function c1

2:

Fq2
2

q2
1 A2

1R1 1 SB2
1 2

I
2DR2Gpc1

2

5 A2
1pfi 1 SB2

1 2
I
2Dpci. (33)

To enable the integral operators to be applied to
unknown functions, the formulation of the integral
method proposed in Ref. 11 uses the trapezoidal rule,
with special attention paid to the singularities of the
kernels. Then the integral operators are replaced by
matrix multiplication in the following manner: The
unknown functions fj and cj are projected onto the
set of points on the profiles Pj,p, j 5 1, 2 and p 5
1, . . . Np, so the unknown functions are replaced by
unknown column vectors fj,p

6 and cj,p
6. The inte-

ral operators are replaced by matrix multiplication,
nd the kernels by square matrices:

Aj,pq
6 5 1y2 Aj

6@sj~Pj,p!, sj~Pj,q!#@sj~Pj,q11!

2 sj~Pj,q21!#, p Þ q,

!j,pq
6 5 1y2 !j

6@si~Pi,p!, sj~Pj,q!#@si~Pi,q11!

2 sj~Pj,q21!#, i Þ j, (34)

and similar expressions for B and @. The diagonal
terms of A and B exhibit singularities that can be
integrated in closed form, as explained in detail in
Ref. 11. Then Eqs. ~26!–~33! represent standard ma-
trix operations in which the inverse integral opera-
tors in Eqs. ~27! and ~30! are replaced by matrix
inversion. Equation ~33! becomes a linear algebraic
equation for the unknown vector c1,p

2 [ c1
2~s1,p!,

s1,p 5 s1~P1,p! with the substitution fi,p [ fi~s2,p!, ci,p
[ ci~s2,p!, where s2,p 5 s2~P2,p!. Once c1,p

2 are de-
termined, c2,p

2 and f2,p
2 are calculated from Eq.

~31!. The unknown values of f1,p
2 are determined

from Eq. ~26!, and all the functions with upper index
~1! are easily found from the boundary conditions,
Eqs. ~18!–~21!.

We can obtain the diffraction efficiencies in the
eflected orders propagating above the grating by
epresenting U2 in the form of a Rayleigh expansion,

which is always valid above the top of the grooves of
the upper profile:

U2~x, y! 5 (
m52`

`

rn exp~inKx 1 ib2,m
1y!. (35)

When we compare Eq. ~35! with Eq. ~6! and take into
account the form of kernels given in Eqs. ~7! and ~8!
with y $ y2~s2!, we can easily conclude that the am-

litudes of the reflected orders rm are equal to

rm 5
1

2idb2,m
1 *

S2

exp@2Im Kx2~s2!

2 ib2,m
1yj~sj!#f2

1~s2!ds2

1
1

2d *
S2

Sdx2

ds2
2

am

b2,m
1

dy2

ds2
Dexp@2Im Kx2~s2!

2 ib2,m
1yj~sj!#c2

1~s2!ds2. (36)

The diffraction efficiencies are determined from the
well-known relation

hm 5
b2,m

1

b2,0
1 urmu2. (37)

If necessary, the transmission efficiencies can be
found in a similar manner.

4. Test of Validity and Numerical Problems

We implemented the theoretical approach presented
in Sections 2 and 3 numerically, using the existing
numerical code for bare echelles. We used classic
tests with the energy balance criterion for a lossless
dielectric or a perfectly conducting substrate, a reci-
procity theorem, and convergence testing to check the
validity of the theory and the code. In addition,
when the overcoating had an optical index equal to
that of the substrate or the superstrate, we carried
out a test against the results for a bare grating. For
a sinusoidal grating the results of the code coincided
with the results obtained by the method of Chan-
dezon et al.,8 as we show at the end of Section 5.

The main numerical problems arise in two extreme
cases:

~i! Wavelength l much larger than layer thickness
t. Here the profiles are situated too close to each
1 January 1999 y Vol. 38, No. 1 y APPLIED OPTICS 51
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other, compared to l, so kernels ! and @ become
arge in modulus for s23 s1. This behavior has the

same origin as the singularities of kernels A and B
~Ref. 11! and can be eliminated in the same manner.

owever, we have not done so yet because we are
nterested in the absorption in the spectral region
ear 100 nm, where a typical layer thickness of ap-
roximately 5–25 nm causes no problems.
~ii! Period d much longer than layer thickness t. If

he wavelength is not too much larger than t, the
ernels have no singularities, but their moduli have
axima when the distance uP2,pP1,qu between two

points located upon the two different profiles is small.
The width of these maxima is of the order of magni-
tude of the layer thickness; thus the correct applica-
tion of the trapezoidal integration rule requires that
the distance between two consecutive points of the
profile discretization D 5 usj,p 2 sj,p21u be less than the
width of the maxima. When, roughly, D ' dyNp,

here Np is the number of integration points, then
the lower limit of Np is determined by the relation

Np,min } dyt. (38)

Thus values of d of ;10 mm and of t of 20 nm require
that the number of integration points exceed 500.
Note that Np directly determines the number of un-

nown values of fj,m and cj,m and thus the size of the
matrices to be used. Practically, it is not worthwhile
for Np to exceed 1000, because of the computation
ime, memory requirements, roundoff errors, and
imited computer word length that would be involved.
n such a case it would be necessary to find another
ay to integrate the product of the unknown func-

ions and the kernels rather than using the trapezoi-
al rule. The numerical results presented in Section
were obtained for Np as large as 600, which is

sufficient for treating echelles that have more than
100 grooves per millimeter. However, if an analysis
of echelles with larger periods is required, it is better
to develop another way to perform the integration.

5. Diffraction Efficiency of Echelles Covered with
Aluminum Oxide or Magnesium Fluoride in the Spectral
Region 70–190 nm

It is well known that below 160 nm the reflectivity
~and thus the efficiency! of aluminum gratings de-
grades because of the edge absorption of the oxide
layer that naturally forms upon a surface exposed to
air. For this absorption to be prevented, sometimes
magnesium fluoride can be deposited onto the surface
immediately after the grating replication to prevent
the aluminum from oxidizing. Also, the absorption
of MgF2 increases below 110 nm, thus limiting its
applications. Below 110 nm, other reflecting mate-
rials are used, more or less successfully.23

Figure 2 is a schematic of an echelle with an 80°
groove angle and the incident wave perpendicular to
the small facet. Only a few of the numerous dif-
fracted orders are shown, and typically high effi-
ciency is expected in the orders with direction of
propagation almost opposite the incident wave. The
2 APPLIED OPTICS y Vol. 38, No. 1 y 1 January 1999
numerical results for the total reflectivity are given in
Fig. 3 for an echelle with 83 groovesymm and an 80°
groove angle. By total reflectivity we mean the sum
of efficiencies of all reflected diffraction orders where
the remaining part to unity are absorbed in the layer
and in the substrate. The two fundamental polar-
izations are shown by solid ~TE! and dashed ~TM!

Fig. 2. Schematic representation of a reflective echelle. Only a
few diffracted orders are shown.

Fig. 3. Total reflectivity of an aluminum surface covered by 25-
nm-thick layers of Al2O3 or MgF2 as a function of wavelength.

olid curves, TE polarization; dashed curves, TM polarization;
hinner curves, plane mirror at an 80° angle of incidence; heavier
urves, echelle with 83 groovesymm, 80° groove angle, and inci-
ence of 80°; dotted curves, normal incidence upon a plane mirror.
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curves. For comparison, the reflectivities of the
plane aluminum mirrors covered with the same lay-
ers are given, both at the same angle of incidence ~ui
5 80°; thinner curves! and at normal incidence; the
dotted curve stands for both polarizations. The high
reflectivity of the plane surface below the absorption
edge in TE polarization at 80° incidence has no effect
on raising the grating reflectivity because the inci-
dent light hits the small ~working! facet perpendicu-
larly.

It can be concluded that the grating reflectivity
follows the worst possible course, its reflectivity keep-
ing low values below the absorption edge. Above the
absorption edge in both TE and TM polarization
there is an anomaly for a MgF2 coating and a similar
one in TE polarization for the oxide layer, which prob-
ably is due to the presence of some resonances inside
the dielectric layers, of either the guided-wave or the
Fabry–Perot type, because the wavelength is of the

Fig. 4. ~a! Detailed view of Fig. 3~a! in the vicinity of the absorp-
tion edge of Al2O3. ~b! Diffraction efficiency ~thinner curves! in
order 153 and the total diffracted energy ~heavier curves! of the
echelle described in Fig. 3.
 same order of magnitude as the optical layer thick-

ness.
Another peculiarity is that the minimum at the

lower side of the absorption edge is much lower than
the corresponding plane-mirror reflectivity, in both
TE and TM polarization following the minimum ob-
served for the plane-mirror reflectivity in TM polar-
ization at an incidence of 80°.

Figures 4 and 5 present more-detailed views in the
vicinity of the oxide absorption edge, including the
efficiencies in the blazing order, the 153rd for these
values of d and l. It is obvious @Fig. 4~a!# that the
eflectivity of the grating covered with Al2O3 is less
hat the reflectivity of the plane mirror for both po-
arizations; the diffraction efficiency does not exceed
5% @Fig. 4~b!#. A coating of MgF2 results in a dif-

fraction efficiency of ;75%, depending on the polar-
ization @Fig. 5~b!#. The total reflectivity in TM
polarization is the same for the grating and the plane
mirror, whereas the TE grating reflectivity partially
exceeds the reflectivity of the plane mirror for the
same incidence.

Fig. 5. Same as in Fig. 4 but for a MgF2 covering layer.
1 January 1999 y Vol. 38, No. 1 y APPLIED OPTICS 53
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6. Performance of a Sinusoidal Grating

There is a long history of comparing blazed and ho-
lographic gratings. Usually it is considered that si-
nusoidal gratings are limited in applications when
high efficiency in unpolarized light is required, as it is
for spectroscopic measurements. This requirement
is stronger in astronomy, for which exposition time is
the leading cost determinant.

Figure 6 shows that even in this spectral range
sinusoidal gratings can have high efficiency in unpo-
larized light, i.e., simultaneously blazing in TE and
TM polarizations. Of course, unlike for echelles,
this blazing does not switch to different orders when
blazing is required in the minima of a given order,
which is inconvenient for astronomy. In addition,
the angular dispersion of the grating in a Littrow
mount is ~2yl!tan ui and does not depend on the

Fig. 6. Spectral dependence of diffraction efficiency in order 21 of
an aluminum sinusoidal grating with period d 5 0.3 mm and
roove depth h 5 0.12 mm in a 21-order Littrow mount. The
rating is covered with layers of MgF2 with the thicknesses ~in

nanometers! shown. ~a! TE polarization, ~b! TM polarization.
Dashed curves, bare aluminum grating.
4 APPLIED OPTICS y Vol. 38, No. 1 y 1 January 1999
groove frequency, so the angular dispersion of the
echelle considered in Section 4 will be 75 mm21, 22
times greater than the value of 3.4 mm for the sinu-
oidal grating with 3333 groovesymm presented here.
It can be observed that by varying the thickness of

he covering layer one can tune the spectral position
f the maximum efficiency in a spectral interval equal
o the maximum width. The peak at 85 nm is due to
he fact that with null thickness the absorption cor-
esponds to the absorption of bare ~without oxide!
luminum, whose absorption edge lies at shorter
avelengths; but once exposed to air this peak grad-
ally decreases with time because of the formation of
n oxide layer.
Figure 7~a! shows only three curves of those shown

n Fig. 6~a! so we can distinguish their behavior below
he maxima, which is practically impossible from Fig.

Fig. 7. ~a! Same as in Fig. 6~a!, but here only three layer thick-
nesses are presented to permit the anomalies in the spectral region
0.10–0.12 mm to be seen. ~b! Comparison of the results of the
integral method and the formalism of Chandezon et al.8 for the
sinusoidal grating presented in Fig. 6 for a layer 50 nm thick.
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6~a!. A formation of narrow and sharp anomalies
can be observed, which is typical for guided-wave
excitation. One of these anomalies is enlarged in
Fig. 7~b! to show a comparison between the results of
the newly developed theoretical method and the
method of Chandezon et al.,8 which works quite well
for sinusoidal gratings.

7. Conclusion

A generalization of the integral method to gratings
covered with dielectric layers ~lossless or absorbing!
has been presented, based on solution of a set of
coupled integral equations. A numerical study was
presented of an aluminum echelle in the vicinity of
the absorption edges of Al2O3 and of MgF2. It was
hown that the details of the total reflectivity ~and
hus of efficiency! behavior differ from the reflectivity
f the corresponding flat mirror. A sinusoidal grat-
ng can have similar performance in TE and TM po-
arization with the possibility of tuning the spectral
osition of the efficiency maximum by varying the
hickness of the MgF2 layer.

E. Popov and B. Bozhkov acknowledge the help of
the Ministry of Education and Science of Bulgaria
under contract 714 with the National Science Foun-
dation of Bulgaria.
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