
Light diffraction from rough gratings
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Two holographic diffraction gratings with very similar parameters, designed for maximum performance
in TMpolarization, are investigated, their diffraction efficiencymeasured, an electronmicroscopic picture
of their surface observed, and numerical simulation of light diffraction done with the surface roughness
taken into account. It is demonstrated numerically that a small-scale roughness imposed on the grating
surface could increase significantly both scattering and absorption from the surface, this influence being
greater in the TM case. A very good coincidence between the numerical and experimental data is
obtained in TE polarization, whereas in TM polarization only a qualitative agreement exists.
1. Experimental Results

Recently1 it was demonstrated that in the manufac-
ture of holographic plane gratings, provided the tech-
nological process is optimal for obtaining a grating
with maximum efficiency in the TM case, the result-
ing efficiency depends strongly on baking the photore-
sist before vacuum evaporation of the aluminum
reflecting coating. In particular, without the baking,
the sum of all the diffracted orders efficiencies hardly
exceeds 60%, whereas the same quantity for the
correctly manufactured grating 1that has undergone
several hours of prebaking before aluminization2 could
reach 86–87%. A typical example of such behavior is
presented in Figs. 1 and 2; 2400-line@mm gratings,
prepared with 1Fig. 12 and without 1Fig. 22 prebaking,
were measured for the spectral dependence of their
efficiencies with laser light. The difference between
the two samples is obvious, although the recording
conditions are identical.
The result was almost obvious for physicists deal-

ing with vacuum-layer deposition—it is well known
that the presence of impurities during the evapora-
tion could damage significantly the layer properties,
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and surely there are enough impurities that can
evaporate from the unbaked photoresist—water and
developer vapors, organic compounds, etc. However,
from the optical point of view, a natural question
arises: By what mechanism could a given damage of
the layer lead to a decrease in layer reflectance?
There are two possible directions: a change in the
optical properties of the layer and a distortion of the
layer surface. The first damage is very difficult to
determine because it requires independent measure-
ments of the surface complex refractive index. Our
aim in this paper is to investigate the second direc-
tion, the influence of the surface roughness on the
grating performance. In fact, the specific results of
Figs. 1 and 2 serve only as an occasion and stimuli for
such an investigation. In the previous paper1 we
studied the efficiency behavior of another set of
samples, their period being slightly different 12000
lines@mm2, but their spectral response is remarkably
similar. Indeed the prebaked gratings are very good,
with efficiency ofmore than 80%, and the bad samples,
those not baked, could hardly reach 70% in the best
case.
Our main background for the hypothesis of the

importance of surface roughness for the effect of
reduction of reflection is the result of scanning force
microscopy 1SFM2. The measurements reported here
were performed with a commercially available micro-
scope 1Nanoscope II, Digital Instruments2 in ambient
air. Rectangular silicon cantilevers with integrated
tips were used. The radii of curvature of the tips
were specified 1manufacturer, Nanoprobe2 to ,10 nm.
Recently, some of the measurements reported
here were reproduced by use of a contamination tip
prepared under vacuum in an electron microscope.
The scanner was calibrated with standard optical
grids with known periodicity. In addition to the
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standard experiment another imagewas taken, illumi-
nating the sample by an additional light source so
that we could visualize the small-scale roughness 3see
Figs. 31d2 and 41d24.
A periodicity of 410 6 10 nm for both gratings was

obtained from large-scale SFM measurements and
respective fast Fourier transform. Figure 31b2 pro-
vides topographic information for the bad grating.
Changes in height along the section line are depicted
in Fig. 31a2. Smaller structural features become
more clearly visible by illumination of the sample
surface 3Fig. 31d24. Single clusters 1bubbles2 with di-
mensions of ,60 nm can be clearly identified.
However, we must keep in mind that surface struc-
tures smaller than the tip radius may be subject to
convolution with the tip geometry. Probably the
bubbles on the surface are due to the formation of

Fig. 1. Spectral dependence of the diffraction efficiency of
aluminum holographic grating with 0.41-µm period. Before alu-
minization the photorest grating was baked for several hours at
120 °C: solid curves, TMpolarization; dashed curves, TE polariza-
tion.

Fig. 2. Same as in Fig. 1. Except for the baking, the aluminiza-
tion was done directly after development of the photoresist.
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Al2O3. 1The gratings have remained more than one
year in air, and the aluminum surface was not covered
by any dielectric layer because often such a layer
could lead to the appearance of sharp anomalies in
the diffraction efficiency.2
Figures 41b2 and 41d2 provide SFM images of the

good grating. Compared with Figs. 31a2 and 31d2, the
surface is smoother, which is most clearly seen by the
trace of the section line. Results from illumination
demonstrate that the surface structures are grains
with dimensions in the range of 60–100 nm rather
than clusters. Figures 31c2 and 41c2 display the spec-
trum of the section lines and help us to model the
profile of the rough gratings with a few geometrical
parameters.
Note that the performance of the good grating is not

affected, at least at first glance, by the presence of this
slight roughness, whereas the greater roughness of
the second grating causes, for other reasons, a signifi-
cant reduction in diffraction efficiency, as demon-
strated numerically in Section 2. It is not our aim
here to investigate the origin and the nature of the
bumps 1we are not specialists in this region2 but to
show that the existence by itself of such roughness
can reduce significantly the grating performance.

2. Theoretical and Numerical Study

In this section from numerical experiments we deduce
how the efficiencies of the grating aremodified when a
small-scale, one-dimensional random roughness is
superimposed on the periodic profile. With this aim
we use a computer code based on a rigorous integral
theory devoted to the problem of scattering a finite
incident beam by a metallic or dielectric one-dimen-
sional rough surface.2 We must emphasize that our
approach enables us to deal with a particular profile
of the surface 1deterministic roughness2. Provided
the sample is large enough, the roughness properties
are averaged but there is no assumption including
averaging in our model.
Subsections 2.A. and 2.B. are necessary for consis-

tency and completeness, and any grating investigator
inexperienced in rough-surface-scattering problems
could skip them.

A. Description of the Problem: Notations

The surface is illuminated by a Gaussian incident
beam with a mean incidence angle u0 and wavelength
l. We denote by Fi the incident electric or magnetic
field, depending on whether the beam is TE or TM
polarized, respectively:

Fi1x, y2 5 e
2`

1`

A1a82exp1ia8x 2 ib8y2da8 112

with

A1a82 5 A0 exp32 1a8 2 a02
2

2d2 4 , 122

a0 5 k sin u0, 132



Fig. 3. Microscopic illustration of the surface of the bad grating
with the diffraction efficiencies presented in Fig. 2.
k 5
2p

l
, 142

b8 5 1k2 2 a8
221@2 or i1a8

2 2 k221@2, 152

where A0 and d are complex and real numbers,
respectively, characterizing the beam amplitude and
width.
From the resolution of the integral equation we

obtain the diffracted field at infinity 1in y2. This field
is represented by its Rayleigh expansion:

Fd1x, y2 5 e
2`

1`

B1a82exp1ia8x 1 ib8y2da8. 162
As usual, the incident and scattering angles u0 and u8

are measured by using the counterclockwise and
clockwise conventions, respectively. The intensity of
the scattered angle u is given by

I1u2 5 B1a2B1a2cos u 172

with

a 5 k sin u, 182

and the overbar denotes complex conjugation.
Because of the beam-simulation method3 we are
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Fig. 4. Microscopic illustration of the surface of the good grating
with the diffraction efficiencies presented in Fig. 1.
able to deal with arbitrarily large beams to illuminate
a significant number of asperities from a statistical
point of view. For example, in the following, the
width of the beam along the x axis is ,30 µm when
the groove spacing is d 5 0.417 µm and the mean
width of the random asperities is ,0.1 µm. With
such parameters a good sampling requires ,3000
points. To avoid solving such a huge linear system,
we have divided the incident beam into 17 elementary
beams, each 6 µm wide. Because of its finite spatial
width, the incident beam has a nonzero angular width
and can be considered as a superposition of plane
waves with various angles of incidence close to u0 3see
4886 APPLIED OPTICS @ Vol. 34, No. 22 @ 1 August 1995
Eq. 1124. The same numerical values lead to diffrac-
tion orders with a 2-deg angular width. In the
resonance domain the number of diffraction orders is
small and this is enough to separate them.
Although from an experimental point of view there

is no problem 1we just measure the intensity of the
beam and that of the diffracted order2, several ques-
tions remain: If the roughness is high or the angu-
lar divergence of the incident beam is great, how do
we collect all the diffracted energy, how do we take
into account the finite size of the detector, etc.? That
is why it is better to have, with a good basis, a
theoretical answer to the following question: What



is the efficiency of a rough surface, periodic or not, in a
given direction when it is illuminated by a finite
beam?

B. Generalized Efficiency

In a recent paper,4 to avoid the shortcomings of the
notion of intensity, a generalization of the classical
notion of grating efficiency to the arbitrary surface
and incident beam has been proposed. It does not
depend on the amplitude of the incident beam, it is
almost independent of its width, and it reduces to the
actual efficiency in the particular case of a periodic
surface.
Let us recall now the definition of that generalized

efficiency. Considering the amplitudes of the inci-
dent and diffracted beams given by Eqs. 112 and 162,
we define the new amplitudes Ã and B̃ as

Ã1a82 5 A1a82Œb8, 192

Fig. 5. Top: pattern from the diffraction of a TM-polarized finite
beam 1width < 50 l, l 5 0.44 µm2 by a rough grating modeling the
bad grating depicted in Fig. 3. Bottom: enlargement.
B̃1a82 5 B1a82Œb8, 1102

and the normalized diffracted amplitude B by

B 1a2 5
7T2a1B̃2, T2a0

1Ã28

7Ã, Ã8
, 1112

where the operator of translation T is defined as

Tu3 f 1a824 5 f 1a8 2 u2 1122

and the scalar product as

7 f, g8 5 e
2`

1`

f 1a82g1a82da8. 1132

Note from Eq. 1112 that translating the incident ampli-
tudes and the diffracted ones with 2a0 and 2a,
respectively, makes the point in which the amplitude
is calculated to coincide with the center of the incident
beam. The denominator is simply a normalization
factor. Then the efficiency in the direction character-
ized by a is given by

e1a2 5 B 1a2B 1a2. 1142

When the surface is a grating, e1a2 tends to the
classical efficiency of the grating provided the inci-
dent beam tends toward a plane wave. In the follow-
ing, the term efficiency denotes e1a2.
In Table 1 we can see the values of the efficiencies of

the grating that we are dealing with in this paper
when the width w of the incident beam is equal to 30
µm; w equal to infinity means that the grating is
illuminated by a plane wave. In this case the calcu-
lation is achieved with the help of a code devoted to
periodic surfaces from Maystre,5 and its efficiency is
well known.
Because there is neither a Rayleigh anomaly nor a

Wood anomaly in the neighborhood of the average
incidence, the efficiency is not very sensitive to the
size of the incident beam. A 50-wavelength width
gives a good approximation of the true efficiencies.
This accuracy is enough for our purpose.
We must point out that the notion of generalized

efficiency is of great interest when the periodicity of
the profile is broken by some random roughness.
Provided the beamwidth is enough and the roughness
is not too high to spoil completely the underlying
periodicity, the angular distribution of the scattered
field exhibits sharp maxima in specific directions,
which are determined by the grating formula. To

Table 1. Efficiencies of a Sinusoidal Grating with Groove Spacing d 5

0.417 mm and Height h 5 0.14 mm, Illuminated by a TM-Polarized Beam
with Incidence Angle ui 5 49.4° and Wavelength l 5 0.6328 mm

w 50 l `

0-Order efficiency 0.041 0.038
21-Order efficiency 0.833 0.840
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illustrate that, Fig. 5 presents the diffraction pattern
of the bad grating modeled according to the procedure
described in detail in Subsection 2.C. The param-
eters are given in the caption of Fig. 8. As is obvious,
the diffraction orders clearly appear above the back-
ground.

C. Numerical Results: TM Polarization

In this section we calculate the spectral dependence of
the efficiencies when the grating is used in the
Littrow mount. The width of the incident beam is
kept constant and close to 30 µm. It has been
checked numerically that a deterministic sample of
the surface with such a size represents quite well the
statistical properties of the random roughness, which
means that the scattering by another sample with the
same size shows very similar efficiencies. Here the
various samples are statistical realizations of a rough
surface with given geometrical parameters 1rms
height, correlation length2.
The incident wavelength is varied in the visible

domain from 0.44 to 0.64 µm. At the same time the
angle of incidence goes from 31.9° to 49.4°. Knowl-
edge of the actual refractive index is impossible
because it depends on too many experimental factors,
which explains our choice of bulk aluminum.
To ensure the validity of our results, not only has

our code been compared with a rigorous code devoted
to gratings 1see Subsection 2.B.2, but it has also been
successfully tested against numerical and experimen-
tal data concerned with one-dimensional random
rough surfaces.6 In addition a convergence test is
often achieved; i.e., we check the stability of the
solution when increasing the number of sampling
points and varying the size of the elementary beams.
Because of losses in the metal, we cannot test the
results against the energy-balance criterion.
When looking at the photographs from the micro-

scope, we can mention that the grooves are sharp and
that the curvature is smooth on the top. The average
profile is in fact not sinusoidal: When looking at the
atomic force microscopy 1AFM2 figures and at the
spectrum of the surface, we see that the important
role of the first harmonic 3see the profile in Eq. 11524 is
obvious. So, we try to describe the profile by the

Fig. 6. Profile from the superposition of a sinusoidal grating
1d 5 0.417, h 5 0.142 and of its first harmonic 1d8 5 0.208,
h8 5 0.052.
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superposition of the fundamental grating 1groove spac-
ing d, depth h2, its first harmonic 1d8 5 d@2, h82, and its
random roughness 1correlation length t, rms height s2.

1. First Harmonic
In this section the groove profile is given by

y 5 2h@2 cos12px@d2 2 h8@2 cos14px@d2. 1152

Note that the first harmonic modifies the efficiencies
of the perfect sinusoidal grating in a good way with
respect to the experimental data for the good grating.
For example, for h 5 0.14 µm, h8 5 0.05 µm, and d8 5
d@2 5 0.208 µm, the shape of the profile is shown in
Fig. 6 and the calculation of the efficiencies leads to
the curves plotted in Fig. 7. These parameters were
chosen to fit both the profile from the pictures and the
efficiencies from measurements of the good grating.
This is not accurate, as long as there is a noticeable
second harmonic in Fig. 31c2, but the main properties
of the surface are satisfactorily described by including
the first two harmonics only: The efficiency in the
21st order goes down for blue light and the curvature
now agrees with theAFMmeasurements.
The curves in Fig. 7 show that the superposition of

the harmonic increases the absorption and can ex-
plain part of the decline of the efficiencies measured
on the bad grating.

2. Random Roughness
The next step in modeling the profile consists of
taking into account the small-scale roughness. Cur-
rently, for obvious numerical reasons, we are not able
to solve rigorously a scattering problem with arbi-

Fig. 7. Comparison of the efficiencies of the sinusoidal grating
1d 5 0.417 µm, h 5 0.14 µm2with 1squares2 and without 1circles2 the
superposition of the first harmonic 1d8 5 0.208 µm, h 5 0.05 µm2
for TM polarization: open symbols and solid curve, 21st order;
black symbols and solid curve, 0 order; dashed curves, sum of
efficiencies.



trary two-dimensional random roughness. So, we
first assume that the cylindrical symmetry of the
grating is not broken.
As long as we do not know the statistics, for

simplicity, we assume that the random roughness
obeys Gaussian statistics and thus can be described
by its rms s and its correlation length t.7 On the
basis of the microscopic pictures the geometrical
parameters have been estimated. Estimating the
size of the small grains to be 0.05–0.06 µm in Figs.
31d2 and 41d2, the corresponding correlation length
seems to be t < 0.02 µm. Fitting approximately
numerical and experimental data when varying the
rms height within the range suggested by verticals
cuts such as in Figs. 31a2 and 41a2 led us to choose s 5
0.012 µm. A short sample of the final one-dimen-
sional surface, which describes the bad grating, is in
Fig. 8. In this case the spectral dependence of the
efficiencies is given in Fig. 9.

Fig. 8. One-dimensional model for the bad grating, superposition
of a sinusoidal grating 1d 5 0.417 µm, h 5 0.14 µm2, of its first
harmonic 1d8 5 0.208 µm, h 5 0.05 µm2, and of random roughness
1t 5 0.021 µm, s 5 0.012 µm2.

Fig. 9. Efficiencies and energy balance of the rough grating with
the profile plotted in Fig. 8 for TM polarization: black squares, 0
order; open squares, 21st order; triangles, sum of efficiencies;
circles, total scattered energy; stars, sum of efficiencies of the
perfect grating.
The part of the incident energy that is scattered in
the speckle by the random roughness is shown by the
difference between the total scattered energy and the
sum of the two efficiencies. In addition, we have also
plotted in Fig. 9 the sum of the efficiencies of the
perfect sinusoidal grating. This permits one to mea-
sure the increase in absorption resulting from the
harmonic and the random roughness. Now we are
able to produce an energy balance: for example, at
l 5 0.5 µm, we find that 6.5% of the energy is in the
speckle and that the increase in absorption is 16.5%,
which means that a perturbation of the geometrical
parameters only can increase the total absorption
from 11% to 27.5%, and 34% of the incident energy is
not distributed among the diffraction orders.
Although these data are significant, they are smaller

thanwhatwas expected from the experimental curves.
The discrepancy with the experimental data can be
explained by the model of the roughness with a
cylindrical surface but also, under TM polarization,
by the fact that the refractive index of the bad grating
is not known. Indeed, for such a range of geometri-
cal parameters, plasmon surface waves are excited on
random rough surfaces and may play an important
role in the energy balance. Moreover their coupling
with the incident wave and their damping rate along
the surface strongly depend on the complex index of
the metal. Nevertheless, from a qualitative point of
view, the superposition of the roughness can explain
both the fall of the efficiencies and the shape of the
experimental curve, which shows a deeper fall for
small wavelengths.
Because the good grating also has some random

roughness, studying the influence of a more shallow
roughness on the energy balance was interesting.
With this aim, we plotted the efficiencies for three

Fig. 10. TM efficiencies of 0 order 1black symbols2 and 21st order
1open symbols2 of the rough grating when the rms height of the
random component is varied: circles, no random component;
diamonds, s 5 0.004 µm; squares, s 5 0.008 µm; triangles, s 5

0.012 µm.
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different values of the rms height 1s 5 0.004, 0.008,
and 0.012 µm2 in Fig. 10. It appears that the fall of
the efficiency of the 21st order is almost proportional
to the square of the rms height, whereas the 0 order is
barely sensitive to the random roughness.

D. Numerical Results: TE Polarization

The same calculations were made in TE polarization,
and Figs. 11, 12, and 13 are similar to Figs. 7, 9, and
10, respectively. But the conclusions are different.
The main result is the very good agreement with the
experimental curves for both the bad grating and the
good grating. Note that under TE polarization no
surface wave exists and the scattering phenomena
are less critical with respect to the complex refractive
index of the lower medium.

Fig. 11. Same as Fig. 7 for TE polarization.

Fig. 12. Same as Fig. 9 for TE polarization.
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Figure 11 shows the strong influence of the first
harmonic: An important part of the energy moves
from the 21st order to the 0 order whatever the
incident wavelength, whereas the sum of the efficien-
cies remains constant. As expected, absorption is
not strongly enhanced by the random roughness
under TE polarization 1three times less than in TM
polarization at l 5 0.5 µm; see Fig. 122.

3. Conclusion

This empirical approach of an inverse-scattering prob-
lem, mixing deterministic and random rough sur-
faces, shows the great difficulty with the general
problem. In particular, it seems that a description
with a few geometrical parameters is not enough.
Probably the assumptions about the statistics of the
random component are too strong, and surely the
assumption that the refractive index is equal to that
of the bulk material is not true. In spite of this, the
enhancement of absorption and scattering phenom-
ena by the superposition of small-scale random rough-
ness on a metallic grating is clearly shown and agrees
qualitatively with experimental work. The absorp-
tion is much stronger in the TM case, probably
enlarged by surface-wave excitation.
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7. M. Saillard, ‘‘Etude théorique et numérique de la diffraction de
la lumière par des surfaces rugueuses diélectriques et conduc-
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