
Grating-enhanced second-harmonic generation
in polymer waveguides: role of losses

E. Popov, M. Neviere, R. Reinisch, J.-L. Coutaz, and J. F. Roux

A numerical study of second-harmonic 1SH2 generation in a corrugated polymer waveguide is performed
with a rigorous electromagnetic theory. Comparison with experiment reveals the role of losses inside the
waveguide—small losses do not significantly affect the nonresonant response and reduce the resonant
enhancement of SH generation. High losses can lead to the opposite effect—instead of enhancement,
dips in the SH efficiency are observed in the vicinity of guided-wave excitation. The peculiarities of the
angular dependencies of SH generation are explained from the phenomenological point of view, and the
role of phase matching is discussed.
1. Introduction

Optical waveguidesmade from organic polymers have
attracted a great deal of interest in the past few
years.1 It is expected that similar devices will per-
form many useful functions in optical signal process-
ing,2,3 such as light modulation, second-harmonic
1SH2 generation, and optical logic. The guiding geom-
etry is chosen because of its capability of concentrat-
ing energy.4,5 Organic polymers are preferred be-
cause of their higher second-order susceptibility x122

1Refs. 6–82 and better transparency in the visible and
the near-infrared regions. Their nonlinear 1NL2
properties seem to change by less than 10% over a
duration of 5 years, they can endure high-power laser
beams 1up to 1 GW@cm22, and they can be easily spin
coated. The most promising materials are at pres-
ent obtained by copolymerization of a monomer 1sty-
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rene, MMA, or urethane2. There are hopes to gener-
ate green and blue light by doubling the frequency of
near-infrared-emitting diodes by the use of the NL
properties of these layers and enhancement of the
light density through excitation of guided waves.
The technical and economical consequences of succeed-
ing in this aim are obvious and explain the efforts
made in many laboratories.
Our contribution follows the experimental research

previously done by Kull et al.9 on a corrugated wave-
guide made of spin-coated polyurethane on a silver
grating. The spectroscopic study of the influence of
resonances on the SH generation reveal several unex-
pected features: Two pump wavelengths l1 were
chosen in such a way that the signal wavelength 1l1@22
falls either outside 1l1 5 1.319 µm, l1@2 5 0.6595 µm2
or inside 1l1 5 1.064 µm, l1@2 5 0.532 µm2 the absorp-
tion band of polyurethane. When the angle of inci-
dence is properly chosen, a waveguide mode or a
plasmon surface wave can be excited, resulting in an
increase of the electric field at the pump frequency
inside the NL guiding layer. Thus an enhancement
of the SH generation is expected under these circum-
stances. Indeed, such enhancement was observed
with a pump wavelength equal to 1.319 µm, but for
the other pump wavelength 11.064 µm2, minima were
observed instead of maxima at the SH frequency.
To the best of our knowledge, until now this behavior
was unexplained.
It is the aim of this paper to show that a resonance

phenomenon can lead either to an increase or to a
decrease of the SH efficiency, depending on the losses
at the SH frequency, the key point being the existence
of complex zeros of the scattered diffraction order
amplitudes.10 Several different approaches have been



recently proposed to deal theoretically with NL inter-
action in optical waveguides with phase or surface
relief gratings,11–14 and we choose a rigorous electro-
magnetic theory15 based onMaxwell’s equations, with
the only assumption being the undepleted pump
approximation.

2. Comparison of Linear and Nonlinear Responses
Given by Theory and Experiment

The device investigated experimentally in Ref. 9 is
described schematically in Fig. 1. It consists of a
spin-coated layer 1index n2 and thickness t22 on a silver
grating 1optical index n3, grating period d, and groove
depth h2, illuminated by TM-polarized light with a
circular frequency v1 at an angle of incidence ui.
Because of the NL properties of the layer the dif-
fracted light has two components at v1 and v2. The
polymer crystallographic group is C`mm, and it has an
absorption edge of 630 nm.
The main difficulty in comparing theoretical and

experimental results arises from the fact that both
the grating and the material parameters are never
known. Whereas in the investigation of nonreso-
nant linear or NL response this uncertainty can lead
to only a small error, the resonant phenomena are
quite sensitive to variation of layer thickness, losses,
groove depth, etc. The period can be measured most
easily, and it is taken to be equal to 1.66 µm.
Talystep measurements determine the groove depth
of 80 nm. Layer thickness is equal to 3.0 6 0.1 µm.
The real parts of the refractive indices can be deter-
mined more or less precisely from the positions of the
anomalies. The determination of absorption losses
that was done by measurement of the propagation
length of the guided waves contains greater uncer-
tainty, and that is why we present results for several
values of the losses expressed by the imaginary part of
the optical indices. The first case with pump fre-
quency 1.319 µm is called the low-losses case, and the

Fig. 1. Schematic representation of the corrugated NL wave-
guide.
second 11.064-µm pump frequency2 is called the high-
losses case. In the first 1low-losses2 case two different
values of losses are investigated to show their influ-
ence on the SH response. For clarity we reproduce
here the experimental figures from Ref. 9 1Figs. 2 and
42 at the pump and the SH frequencies. The compari-
son of experimental with numerical results can be
done directly with Figs. 3 and 5.
In fact simple comparison of the experimental and

the numerical results does not yield an explanation of
the difference between the high- and the low-losses
cases. We just substitute one black box 1the experi-
mental one2 with another 1the numerical code2. To
have a satisfactory physical explanation, one must
look deeper into the mechanisms that govern the
device response. Fortunately, rigorous theory can
serve as a microscope with variable magnification.
It provides for the possibility of varying all the system
parameters precisely enough to separate their influ-
ence on the entire device response, turning the experi-
mentalists’ dreams into reality.

Fig. 2. 1a2 Experimental linear reflectivity at wavelength 1.319
µm. 1See figure 2 of Ref. 9.2 1b2 Experimental SH peak power
detected in the specular reflectance as a function of the angle of
incidence. The pump wavelength is 1.319 µm, and the pump
power is 40 kW. 1See figure 4 of Ref. 9.2
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Fig. 3. 1a2Angular dependence of the linear reflectivity. The dotted curve is at wavelength 1.319 µm, with n21v12 5 1.57 1 i0.00004, n31v12
5 0.05976 1 i8.3668. The other two curves are at wavelength 0.6595 µm: dashed curve, n21v22 5 1.585 1 i0.0027, n31v22 5 0.09363 1

i3.5361; solid curve, n21v22 5 1.5851 i0.000027, n31v22 5 0.063631 i3.5361. The groove period is 1.66 µm, the groove depth is 0.08 µm, and
the thickness is 2.92 µm. Numerical results are for TM polarization. 1b2 NL specular amplitude at 0.6595 µm. The refractive indices
correspond to the dashed curve in Fig. 31a2. 1c2 NL specular amplitude at 0.6595 µm. The refractive indices correspond to the solid curve
in Fig. 31a2. 1d2 same as in Figs. 31b2 and 31c2, but on a semilogarithmic scale.
There is no doubt that the anomalies in the SH
angular behavior are connected with resonances, i.e.,
guided waves 1waveguide modes and plasmon surface
waves2 in the device. However, we have to distin-
guish between twomainmechanisms of birth of peaks
or dips:

1I2 Incident light is coupled through the grating
periodicity to a guided wave at the same optical
frequency. Then, in general, there is an enhance-
ment of the optical energy density inside the wave-
guide 1when the waveguide mode is excited2 or near
the metal–dielectric interface, when a plasman sur-
face wave is generated. When squared, this en-
hanced field inside the NL layer could lead to much
stronger SH generation than what is observed far
away from the resonances.

1II2 The second mechanism involves one more
resonance: the guided wave of v1 excites a guided
wave at v2. It is believed that the resulting double
1in fact it is a triple one—the first resonance at v1 is
squared2 resonance 1phase matching between the
modes at v1 and v22 would lead to stronger SH
generation.

Indeed, a comparison between the linear reflectiv-
ity and the SH response in the low-losses case indi-
cates thatwhen a guidedwave is excited, there is a dip in
the linear reflectivity and a peak in the SH specular
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amplitude. Unfortunately this idyllic intuitive pic-
ture is completely spoiled when one looks at the
high-losses case: instead of peaks, there are strong
dips at v2. Numerical results lead us to throw away
all the arguments about experimental error or some
multiphoton mechanisms that change the refractive
index at v2 1remember that we are inside the absorp-
tion band2. In the next two sections we try to present
qualitative 1Section 32 and quantitative 1Section 42
explanations of the difference in SH response in the
two cases.

3. Role of Losses at v2 on the Second-Harmonic
Response

Amore detailed look at Figs. 2–5 reveals that they are
not that different, at least qualitatively: some of the
dips are accompanied by small peaks, and some of the
peaks are accompanied by shallow dips. This combi-
nation is quite typical for the resonance anomalies in
the linear optics of diffraction gratings, and it reflects
the fact that resonance anomalies that are connected
with one or several poles of the scattering matrix are
also accompanied by zeros of the propagating-order
amplitudes. The response of the system is deter-
mined by the relative distance between the poles and
the zeros from the real axis of angles of incidence and
their mutual separation. This relation is discussed
quantitatively in Section 4. Here we only want to
point out that the differences among Figs. 2–5 can be



formulated in a simple manner: resonance anoma-
lies are accompanied by dips and peaks of amplitudes
of the propagating orders. Sometimes the dips are
muchmore pronounced, and sometimes the peaks can
be observed more easily. Let us try to analyze each
case in turn to connect the differences in behavior
with the losses at v2 inside the NL layer.

A. Pump Wavelength 1.319 µm

In this case the angular dependence of the SH genera-
tion consists of a low background with several peaks
of different height 3Figs. 31b2–31d24. Notice that the
ordinate contains the amplitude, not the efficiency,
otherwise the difference between the peaks should be
squared. One of these peaks 1at 48.8°2 is higher than
the others. To find the reason for this, we have
reduced the losses of the layer at v2, which can be
easily done in computer simulations. The initial
losses correspond to the experimental ones, so that
the attenuation length of light inside the layer is
approximately 30 µm. The linear and the NL specu-
lar responses are plotted with dashed curves. When

Fig. 4. 1a2 Experimental linear reflectivity at wavelength 1.064
µm. 1See figure 5 of Ref. 7.2 1b2 Experimental SH peak power
detected in the specular reflectance as a function of the angle of
incidence. The pump wavelength is 1.064 µm, and the pump
power is 2.5 MW. 1See figure 6 of Ref. 9.2
compared with the reflectivity at v1, one can conclude
that the peaks are due to resonance phenomena at v1,
but not at v2 1mechanism I of Section 22. Reducing
the losses, however, reveals that the highest peak in
the angular dependence of the NL amplitude occurs
when two anomalies at v1 and v2 coincide: the solid
curve in Fig. 31a2 represents the linear reflectivity at
v2, with the imaginary part of the refractive index 100
times smaller that for the dashed curve. These
losses correspond to a propagation length of several
millimeters. Shortening the attenuation length
1dashed curves2 does not considerably affect the peaks
that are due to resonances only at v1 3Fig. 31d24,
because this attenuation length is still 10 times
greater than the layer thickness. Thus, when a
guided wave is excited at v1, the NL wave is immedi-
ately radiated in the cladding. However, if a reso-
nance at v2 is also involved, as is the case with the
peak at 48.8°, then the losses at v2 reduce the peak
height by almost 2 orders of magnitude. Thus short-

Fig. 5. Numerical angular dependence of 1a2 linear reflectivity and
1b2 NL specular order with a pump frequency of 1.064 nm. The
groove period is 1.66 µm, the groove depth is 0.08 µm, and the
thickness is 3.05 µm, and the polarization is TM. n21v12 5

1.574802 1 i0.00004, n31v12 5 0.13 1 i7.474, n21v22 5 1.6010998 1

i0.0593343, n31v22 5 0.051 1 i3.16622.
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ening of the propagation length from millimeters to
tens of micrometers is critical in the phase-matching
case.

B. Pump Wavelength 1.064 µm

In this case the double frequency falls inside the
absorption band of the material of the NL layer, so
that the losses at v2 are so high that the attenuation
length becomes shorter than the layer thickness.
Then the resonances at v1 lead to field enhancement
inside the layer and thus to an enhancement of the
electromagnetic field at v2, but this field enhance-
ment is obtained inside a highly absorbing medium,
which has a thickness comparable to the attenuation
length. That is why the resonances lead to enhanced
absorption instead of enhanced SH generation; i.e.,
dips at both v1 and v2 appear.

4. Phenomenological Approach, Nonlinear Zeros, and
Quantitative Explanation of Anomalies

In the low-lossy case the role of losses in changing the
NL response of the corrugated waveguide can easily
be understood: The absorption losses decrease the
attenuation length of the guided waves, which is
responsible for the resonance. Mathematically this
is reflected as an increased imaginary part of the
propagation constants p1,2,... of the guided waves.
The mechanism involving only the resonance at v1 is
not considerably affected by relatively low losses at
v2, because the resonance response can be expressed
as10

aNL1h2<aNL1h5 02
c

1sin ui 2pm1
v1 1N1

l1

d 2
2
, 112

where aNL is the amplitude of the specular order at v2
for a plane interface 1h 5 02 and for the corrugated
case; m1 is the guided-wave number and N1 is the
diffraction order, which is responsible for the coupling
between the incident and the guided waves. At the
maximum aNL is inversely proportional to 3Im1pv1242, so
that the losses at v2 do not affect the resonant part,
unless they are too high, as discussed below.
However, when a phase matching between the

guided waves at v1 and v2 occurs, the NL response is
determined by two resonant terms:

aNL1h2 ~
c1

1sin ui 2 pm1
v1 1 N1

l1

d 2
2

3
c2

1sin ui 2 pm2
v2 1 N2

l2

d 2
. 122

Because the imaginary part of pv2 depends directly on
the absorption losses, so does the resonant SH genera-
tion. A detailed view of the specular NL amplitude
in the region of the double resonance is given in Fig.
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6. Figures 61a2 and 61b2 correspond to shorter and
longer propagation lengths, respectively. The propa-
gation constants of the modes that are phase matched
at incident angle 48.8° are equal to pv1 5 10.752578 1
i0.0003612, pv2 5 10.752651 1 i0.0028552 for Fig. 61a2
and pv2 5 10.7526515 1 i0.0001052 for Fig. 61b2. The
ratio between the imaginary parts of the guided-wave
propagation constants at v2 is approximately 28, a
value corresponding quite well to the ratio between
themaximum values in the two cases. As long as the
imaginary part of pv2 is smaller in the second case, the
resonance curve is narrower. The coefficients of pro-
portionality c1 and c2 are discussed below. The flat-
case NL amplitude for Fig. 61a2 is equal to 5.576 3
1028 and for Fig. 61b2 is equal to 6.174 3 1028, the
difference coming from the higher losses in the first
case. In fact this small difference explains why the
SH enhancement that concerns only resonances at v1
is only slightly influenced by the relatively small
losses at v2.
These intuitive speculations, however, fail com-

pletely when applied to the high-lossy case, as pre-
sented in Figs. 4 and 5. In the previous paper10 we

Fig. 6. 1a2 Enlarged view of Fig. 31b2. Dashed curve, numerical
results; solid curve, phenomenological results. 1b2 Same as fig. 61a2
but corresponding to Fig. 31c2.



have already discussed in detail that in NL optics,
similar to the linear resonance anomalies, excitation
of guided waves leads to a behavior more complicated
than expressed by the simple Eqs. 112 and 122. In a
few words, the guided-wave excitation leads to terms
such as the denominators in Eqs. 112 and 122. The
values 1p 2 l@d2 act as poles for the scattered ampli-
tude, so that the amplitude becomes infinite when
sin ui is equal to the pole1s2. This is impossible for
the real angle of incidence so that the peaks are
limited in height. However, when the groove depth
tends to zero, the grating coupling between the inci-
dent and the guided waves must vanish. Thus the
poles 1zeros of the denominator2must be compensated
by zeros of the numerator, which tend to the poles as h
tends to 0. More simple for understanding is the
following argument. The NL response of the corru-
gated waveguide consists at least of two terms: the
nonresonance response aflatNL1h2 and the resonance
response aresNL1h2. The former term is close to the
flat-layer NL response, and the latter is given by Eqs.
112 or 122, depending on the resonance type. Let us
take the more complicated double-resonance case.
Summation of the two contributions
aNL 5 aflatNL 1
c

1sin ui 2 pm1
v1 1 N1

l1

d 2
2

1sin ui 2 pm2
v2 1 N2

l2

d 2
132
aNL 5 aflatNL
1sin ui 2 z121sin ui 2 z221sin ui 2 z32

1sin ui 2 pm1
v1 1 N1

l1

d 2
2

1sin ui 2 pm2
v2 1 N2

l2

d 2
. 142
Of course the zeros, like the poles, are complex, but
at a given nonzero groove depth they are different
from the poles. Equation 142 is well known in the
linear grating theory as the phenomenological for-
mula.16 When multimode anomalies are considered,
several poles and zeros have to be included. As is
obvious from Eq. 142, when the zeros are well sepa-
rated from the poles, they lead to dips in the angular
behavior of aNL when the angle of incidence is close to
their real part 1minus integer time l@d2. Well sepa-
rated means that the distance between the zero and
the pole is greater than their imaginary parts.
And really, a detailed numerical analysis of the NL

amplitude in Fig. 6 reveals that in addition to the
poles, complex zeros of the amplitude can be found.
For the case presented in Fig. 61a2, two of the zeros
are close to the real axis, but their real parts differ
10.7535 and 0.75082 from the real parts of the poles,
Eq. 142 with two poles 1the first is a double pole2 and
three zeros:

pv1 5 0.834182 1 i0.0007436,

pv2 5 0.836693 1 i0.0651772,

z1 5 0.834719 1 i0.0000539,

z2 5 0.836696 1 i0.0651797,

z3 5 0.833550 2 i0.0001281. 152

The second zero almost coincides with the second
pole, and their imaginary parts are much larger
1because of the high losses at v22 than their separa-
tion, so they do not influence the reflectivity, which is
a function of real angles of incidence. The first and
the third zeros have real parts that correspond to
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and they lie outside the resonance. In fact, at
sin ui 5 0.7508, which corresponds to ui 5 48.66°, a
weak minimum of the amplitude can be observed
3Figs. 31b2 and 31d24. In the other case 3Fig. 61b24 the
real parts of the three zeros correspond to angles of
incidence of 48.63°, 48.89°, and 48.9°, so that they lie
completely outside the resonance domain. How well
this approach 3Eq. 142 with three zeros and three poles
included4 can repeat the NL response can be observed
in Fig. 6, in which the solid curves represent the
angular behavior, reconstructed by the use of the
phenomenological formula, taking as a coefficient of
proportionality the NL reflectivity of the flat system.
Believing now that it is much safer to use an

equation similar to Eq. 142 for the resonance response
than to rely on a simpler equation, such as Eq. 112 or
122, we can easily understand why for a very highly
absorbing case instead of peaks, as expected from Eq.
112, one can observe dips 1Figs. 4 and 52. Although the
NL reflectivity of the noncorrugated system is only
3–4 times smaller than in Fig. 6, high absorption
moves the NL zeros closer to the real axis of the angle
of incidence so that the zeros play a dominant role in
the angular dependency. As a typical example, the
should result in a numerator that is a third-order
polynomial of sin ui. Thus the numerator has three
zeros, z1, z2, and z3, so that Eq. 132 can be rewritten as
double dip that lies close to 56.5° is enhanced in Fig. 7
1dotted curve2 and compared with the corresponding
phenomenological curve, which was obtained from



angles of incidence equal to 56.59° and 56.46°, respec-
tively. Their imaginary parts are several times
smaller than the imaginary parts of the remaining
double pole, so that the zeros cause two dips in the NL
reflectivity; the small bump between them is due to
the first pole, whose real part corresponds to an angle
56.53°.

Fig. 7. Same as in Fig. 6 but corresponding to Fig. 51b2.
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5. Phase Matching and Enhancement of
Second-Harmonic Generation

We have already demonstrated that phase matching
of the incident wave to the guided wave at v1 and to
the guided wave at v2 can be a cause for enhancement
of the NL system response. This is most obvious in
Fig. 31c2, in which the only visible peak corresponds to
phase matching, the effect of single resonances at v1
3the other three peaks in Figs. 31b2 and 31d24 being
muchweaker. However, Fig. 31c2 concerns a propaga-
tion constant at v2 that is several millimeters,
Im3n21v224 5 2.7 3 1025, whereas the experimental
values are much worse, Im3n21v224 5 2.7 3 1023, and
then the phase-matched peak is only 3 times higher
than the others 3Fig. 31b24. To see if it is possible to
have higher enhancement, we have tried to phase
match directly 1without the help of the grating2 the
fundamental waveguide mode at v1 with the second
waveguide mode at v2. Directly here stands for the
fact that the parameters of the system have been
chosen so that p1v1 5 p2v2. To couple the incident
wave to the mode at v1, we have chosen N1 5 1,
expecting the strongest coupling. Then the coupling
of the mode at v2 to the reflected NL wave is carried
out through N2 5 2, as far as l1 5 2l2. Varying the
Fig. 8. Angular dependence of linear reflectivities at 1.319 mm 1dotted curve2 and at 0.6595 mm 1dashed curve2 and of the NL specular
amplitude 1solid curve2 when the groove period d is varied. The system parameters correspond to the dashed curve in Fig. 31a2. 1a2 d 5

1.65 µm, 1b2 d 5 1.60 µm, 1c2 d 5 1.54 µm, 1d2 d 5 1.50 µm.



grating period 3Figs. 81a2–81d24, one can observe that
the anomaly of the linear reflectivity at v2 moves
twice as slowly as the anomaly of the linear reflectiv-
ity at v1 1as well as the peak of the NL reflectivity2.
When the two anomalies coincide 3Figs. 81c2 and 192,
with d 5 1.54 µm2, the NL response increases almost
4 times. This should result in efficiency that is 16
times larger.
There is another anomaly at v1 that moves with the

same speed. It corresponds to the next waveguide
mode. The second anomaly at v2 moves with twice
the speed of the first and corresponds to the ninth
waveguide mode, which is excited through N2 5 1.
As is obvious, the effect of these anomalies on the NL
reflectivity is much lower.

5. Conclusion

Inside the range of uncertainty of the optogeometric
parameters, the recent electromagnetic theory of SH
generation10,15 accounts for all the complicated fea-
tures observed in the experiment. Moreover, it can
provide a simple explanation in a phenomenological
way by showing the existence of complex poles and
zeros at SH frequency. In fact the explanation is
similar to the one given in linear optics16 for total
absorption of light by a bare or a dielectric-coated
grating, except that in the NL case there are several
poles and zeros simultaneously involved. Depend-
ing on their relative location, which is strongly influ-
enced by the losses, an enhancement of the pump field
can result either in a maximum or a minimum 1or
both2 at the signal SH response. Thus the paper by
Kull et al.9 can be considered as the first experimental
evidence of the existence of complex zeros of the SH
amplitudes, although their existence has already been
pointed out in NL optics for Kerr effect in a grating
coupler.17 These zeros are interesting not only on a
fundamental level but also in view of possible applica-
tions. Because they can drastically reduce the inten-
sity at SH frequency, the behavior of these zeros must
be known when one is optimizing SH generation.

Fig. 9. NL specular amplitude for different groove periods, given
in micrometer. The parameters are as in Fig. 31b2.
The authors acknowledge the support of the Euro-
pean Community through the Brite Euram contract
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