
Echelles: scalar, electromagnetic,
and real-groove properties
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For lack of alternatives, echelle-grating diffraction behavior has in the past been modeled on scalar
theory, despite observations that indicate significant deviations. To resolve this difficulty a detailed
experimental, theoretical, and numerical study is performed for several echelles that work at low 18–132,
medium 135–552, high 184–1402, and very-high 1to 6602 diffraction orders. Noticeable deviations from the
scalar model were detected both experimentally and numerically, on the basis of electromagnetic
theory: 112 the shift of the observed blaze position was shown to decrease with the wavelength-to-period
ratio, and it tends to zero more rapidly than the decrease of the maximum width, so that the TE- and
TM-plane responses tend to merge into each other; 122 cut-off effects 1Rayleigh anomalies2 were found to
play a significant role for high groove angles, where passing-off orders are close to the blaze order. A
possibility for evaluation of the blaze angle from angular, rather than from spectral, measurements is
discussed.Several reasons for the differences between real and ideal echelles 1material-index deviations,
profile deformations, and groove-angle errors2 are analyzed, and their effects on the performance of
echelles is studied.
1. Introduction

The concept of echelles is due mainly to Harrison,1
who conceived of them as highly useful devices inter-
mediate between a Michelson echelon and an ordi-
nary grating, often termed an echelette. Echelons
have virtually disappeared, because they are ex-
tremely difficult to make and have an inconveniently
short free spectral range.2 The first application of
echelles was in astronomy. Later came commercial
atomic spectrographs. Harrison’s work with ruling
engines1 was largely motivated by his desire to rule
perfect echelles, an often frustrating task because
every success was quickly followed by demands for
still greater performance.
Echelles are defined as coarse but precisely ruled

gratings that are used only at high angles of diffrac-
tion and in high spectral orders. Typical groove
frequencies are 316 grooves@mm or fewer, with 20
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grooves@mm as a rough lower limit. Angles of inci-
dence vary from 63° to 78° but have occasionally been
found as low as 34°. Rarely are spectral orders below
10 used, and the upper limit may vary to as high as
500, although 100 is more common. Because of the
high order number and the steep angle of diffraction,
they have high dispersion, typically an order larger
than standard gratings. Unique to echelles is that
they are never used far from the blazed direction, and
consequently their efficiency remains relatively high
over a large spectral interval. Finally, the higher
orders are nearly free of polarization effects. The
penalties that must be accepted for so many advan-
tages are that multiple orders overlap and that effi-
ciency varies cyclically within an order.
For historical reasons, echelles are usually ruled

with groove frequencies, e.g., 316, 79, 54, 31.6
grooves@mm, although exceptions are quite common.
Another prejudice that comes from the old days is to
categorize the echelles by their r numbers, e.g., r-2, -3,
-4, which are defined as tangents of the facet angle.
If we examine the pool of experimental and theoreti-

cal studies devoted to echelle properties, it turns out
to be amazingly shallow. There is no systematic
study, the measurements having been performed ei-
ther with nonlaser light sources3–5 or on an echelle
that was included in some other device.5–10 The
measurements usually cover only a single grating at
few wavelength values. The first and probably the
1 April 1995 @ Vol. 34, No. 10 @ APPLIED OPTICS 1707



most important reason for a lack of exact knowledge
of echelle efficiency behavior is the lack of a superla-
ser with which to conduct tests. The usual nonlaser
sources3–5 do not have the required monochromaticity
1spectral purity2 and collimation that are required for
accurate determination of the echelle response in
high orders. Although common dye lasers have the
desirable tunability, they also have a spectral width
that is rarely less than 1 nm, so that precise measure-
ments of a maximumwhose width is less than, say, 10
nm are almost impossible. Dye lasers are not avail-
able in the most interesting region, which is below
400 nm, let alone below 100 nm. That is why most of
the deviations from the scalar response of echelles
have for a long time either been ignored, blamed on
experimental error, or attributed to defective groove
geometry.
The second reason for the lack of knowledge of

echelles is the lack of a proper theory. The scalar
approach is useful3,4,11–14 until it becomes necessary to
investigate deviations from it. Many attempts includ-
ing shadowing effects have resulted only in inconsis-
tent formulas 1higher-order corrections to the simple
scalar equations2 that are rarely valid even in the
limit of their own assumptions. This failure is due to
the fact that most of the deviations from the scalar
expectations are due to electromagnetic effects, rather
than geometrical deficiencies. Although an echelle
period can be 10–500 times the wavelength, the small
active facet is much shorter than the period. High
incident and diffracted angles also complicate the
analysis. In some cases, as shown later, cut-off ef-
fects 1i.e., when the higher orders are passed off 2 play
a significant role, and they cannot be taken into
account unless an electromagnetic approach is
used—as was shown for echelettes almost a century
ago by Lord Rayleigh.15 Although the electromag-
netic theory of gratings has been extensively devel-
oped since Rayleigh, especially during the past 25
years,16 it was difficult to apply to echelles: too many
diffraction orders must be taken into account and the
profile has edges. The latter condition requires a
large number 1probably thousands2 of Fourier harmon-
ics of the profile function and, when combined with
the great number of propagating diffraction orders,
gives rise to severe numerical problems. Among
them is a requirement to deal with dense matrices of
the order of 200, 500, 1000, or even 2000.
Recently Maystre17 was able to extend the validity

of the well-known integral method to the extreme
case of echelles with several hundred orders. Pre-
cise elimination of the singularities of the kernel of
the integral equation was not enough. To account for
the specific echelle profile, Maystre carried out the
integration along the profile so that the latter was not
represented in Fourier series. Special attention was
paid to the edges of the profile.
Previous investigations outline two main problems

in understanding echelle properties: First, themaxi-
mum efficiency is obtained at a wavelength that is
slightly shifted from the expected scalar value.13,18,19
1708 APPLIED OPTICS @ Vol. 34, No. 10 @ 1 April 1995
Second, some authors3,4,13measure or predict asymme-
try of the angular dependence of efficiency with
respect to a Littrow mount, whereas others11 confirm
such symmetry.
If we try to summarize the deviations from scalar

echelle behavior, two main groups of effects can be
distinguished:

112 Theoretical deviations, which include

c a shift in the maximum position between TE
and TM polarizations, even for perfectly conducting
substrates,

c finite-conductivity effects, and
c cut-off effects that are due to the echelle pass-

ing off the higher orders.

122 Technological and experimental problems,
which include

c deviation from the desired facet angle,
c profile deformations 1deviations from the plane

facet2,
c finite-beam effects, and
c influence of surface roughness.

In what follows we analyze the spectral and angu-
lar behaviors of echelles and compare them with
scalar expectations. Although the latter are not
precisely defined, we try to specify them in each case.
Finite-beam effects and surface roughness are beyond
the scope of this paper, although they can lead to some
measurable deviations from symmetry with respect to
a Littrow mount. The investigation includes several
different echelles with 316, 79, and 31.6 grooves@mm
and two typical facet angles: 64° and 76°. Spectral
and angular measurements were performed on a
single echelle that was not included in another device.
In all cases laser sources were used. The data are
compared with the numerical results on the basis of
rigorous electromagnetic theory, and when necessary
the theory has been used to give more precise and
detailed information to facilitate understanding.
For this paper we made almost all the experimental
measurements at a constant wavelength and with
variable angles of incidence. It is not only easier but
also provides better insight. By numerical means
either approach can be simulated.

2. Blazing—the Spectral Response of Echelles

The behavior of echelles is discussed in many optics
textbooks. For clarity, we briefly summarize the
most common approaches to the blazing phenomena.
As usual, ui is the illuminating angle, d is the grating
period, ud is the angle of diffraction, and l is the
wavelength. It is necessary to give some definitions
for the terms used further on, because there is no
commonly accepted opinion in the literature. At
first, the term blazing is taken to mean the set of
conditions for which maximum efficiency is observed
in a given order. The blazing in one order is perfect



when, at the peak, no light is scattered into any of the
other orders. Blazing can occur when different pa-
rameters are varied, namely, the angle of incidence
and the wavelength. Their values, which correspond
to the blazing, are called the blaze wavelength lB and
the blaze angle of incidence uB. To distinguish be-
tween the local maxima of efficiency 3see Fig. 91a24 and
the blazing 1maximummaximory2, these local maxima
are called just maxima, and the corresponding angles
are called angles of maximum efficiency, and not blaze
angles.
According to scalar theory, perfect blazing occurs

when the angle of incidence is equal to the facet angle
and the wavelength is given by Eq. 132 below. We call
these values the ideal blaze angle and the ideal
wavelength, respectively, to distinguish them from
the real ones, which appear to be slightly shifted from
the ideal.
Sometimes the facet angle fB is also called the

blaze angle, because of its equality in scalar-optics
approaches. We try to avoid this. However, tomake
a proper connection with scalar-theory expectations,
we talk about the observed-apparent facet angle f̃B
that is obtained from the real blaze wavelength,
which is introduced into Eq. 132. It differs from the
real facet angle because of the electromagnetic charac-
ter of light scattering. Manufactured echelles are
usually characterized by their nominal facet 1blaze2
angle—the facet angle that is supposed to have been
ruled—and it always differs somewhat from the real
one.
We also call some of the orders blaze, referring to

their high efficiency for a givenwavelength in compari-
son with the others. The blaze-order number, of
course, changes with the wavelength.

2.A. Kirchhoff Approach

The Kirchhoff diffraction theory in the Fraunhofer
approximation expresses the grating’s scattering of
incident light as a product of two terms, the interfer-
ence function If and the intensity function of a single
slit, also called the blaze function, Bf, so that the
normalized intensity function of a grating that con-
sists ofM identical slits Ig is given by

1

M2
Ig1p2 ; IfBf 5 3

sin1M kdp

2 2
M sin1kdp2 24

2

3
sin1ksp2 2
ksp

2
4
2

, 112

where the first term represents the normalized inter-
ference function, the second term represents the
slit-intensity function, s denotes the slit width, and
p 5 sin ud 1 sin ui. The interference function If has
maxima when p 5 Nl@d, i.e., in directions that are
given by the grating equation. Between them there
are weak secondary maxima. For large values of M
1the number of the illuminated grooves2 the second-
ary maxima are weak. They are separated by points
of zero intensity in directions given by

p ; sin ud 1 sin ui 5
N

M

l

d
. 122

The slit-intensity function depends on the form of
the grooves. It has a maximum in some direction,
called the blazed direction or the blazed wavelength,
if it is considered to be a function of the wavelength.
Compared with the interference function with large
values ofM, the slit-intensity 1groove2 function falls off
slowly on both sides of its maximum, so that the
grating response 1the intensity function of the grating2
consists of sharp peaks 1determined by If2, which are
modulated by the slit-intensity function.20 When the
Kirchhoff approximation is applied to a set of parallel
slits,20 the blaze function has a primemaximumwhen
the angle of diffraction is equal to the angle of
incidence and both are measured with respect to the
slit normal.

2.B. Mirror-Reflection Approach

Blazed gratings are expected to respond, over a
certain wavelength and angular interval, like perfect
mirrors that are equipped with angular dispersion:
They are supposed to diffract the entire incident light
into a given order, under given incidence conditions.
These expectations come from the simplest geometric
approach, according to which the strongest diffraction
1blazing2 occurs when an order is diffracted by a
grating 1with a profile consisting of a simple right
triangle2 in a direction as if it were being reflected by a
large 1or small, in the case of echelles2 facet. If the
facet is characterized by an angle fB 1see Figs. 12 and if
the incident wave illuminates the grating surface
under the same angle 1with respect to the grating
normal2, the necessary condition for an order with a
number, namely, 2N, to be diffracted backward is
given by the simple equation

2 sin fB 5 2N
l

d
, 132

and taking into account the grating equation this
becomes

sin uN 5 sin ui 1 N
l

d
, 142

where the minus sign before N in Eq. 132 responds to
the fact that for positive angles of incidence blazing
occurs in negative orders, so that the order-number-
ing convention is opposite the one usually used in
grating studies. This is convenient, because it is not
always necessary to carry the negative sign of the
order number. There will be no confusion, because
there is high asymmetry in the number of propagat-
ing orders, which is due to the high angle of incidence
and the small wavelength-to-period ratio.

2.C. Wave-Optics Approach

The intuitive reflection arguments have a stronger
background in wave optics. Suppose that the inci-
1 April 1995 @ Vol. 34, No. 10 @ APPLIED OPTICS 1709



dent wave and the scattered wave have opposite
directions of propagation that are perpendicular to
the facet. The optical path difference Dopt of the
waves, which are scattered on two neighboring facets,
should be equal to twice the length of the second facet.
Then Eq. 132 would immediately indicate that Dopt is
an integer times the wavelength, i.e., the scattered
waves interfere constructively, so that blazing occurs.

2.D. Rigorous Electromagnetic Approach

It is surprising to find that there are cases when the
considerations described above, which are valid in the
geometrical-optics approximation, are also rigorous
from an electromagnetic point of view, i.e., whenever
the groove dimensions are comparable to wavelength.
Then we arrive at the well-known theorem developed
by Marechal and Stroke21 for determining perfect
blazing in TM-polarized light that is diffracted by a
perfectly conducting echelette grating. This theo-
rem 1Theorem 12 states that perfect blazing occurs
when the angle of diffraction is equal to the angle of
incidence, which in turn is equal to the facet angle,
provided that the apex angle is 90° 1we assume that
the material is perfectly conducting2 and provided
that the light is TM 1or S or p2 polarized, with the
magnetic-field vector being parallel to the grooves.
There is a simple proof for the theorem, so simple that
it is worth repeating.
Perfect conductivity requires that the tangential

electric field be zero on the grating surface. Let us
assume that, above the grating surface 1including the
region inside the grooves2, there are only two plane
waves, the incident and the diffracted, and both are
perpendicular to one of the facets 1namely, A in Figs.
12. Their magnetic-field vector is parallel to both A
and B, and the electric-field vector is parallel to A and
perpendicular to B. The latter fact automatically
ensures that along the second facet 1B2 the tangential
electric field is zero. Then if the amplitudes are
equal but opposite in sign, the total electric-field
vector 1sum of the two terms2 is zero on A, i.e., the
boundary conditions are fulfilled. The two plane
waves are solutions of the Maxwell equations and of
the outgoing-wave conditions. The uniqueness of
the solution of the scattering problem leads to the
conclusion that all the incident light is diffracted
backward.
Rigorous numerical calculations20 have already

proved the validity of the theorem of Marechal and
Stroke, from order 21 to very high orders, as high as
possible 1as of now the limit exceeds 600, as shown
later2. An example of the expected spectral response
of a blazed grating is presented in Fig. 2. The angle
of incidence is kept constant and equal to the facet
angle. With a wavelength increase and at given
values, orders with consecutive numbers obey Eq. 132,
the light is diffracted completely into each order, and
all the others are equal to zero. The distance be-
tween two consecutive maxima can be easily derived
from Eq. 132 and is proportional to l2.
1710 APPLIED OPTICS @ Vol. 34, No. 10 @ 1 April 1995
2.E. Real Blazing Problem

Unfortunately, life is not always easy and simple.
For decades both manufacturers and users have
noticed that gratings exhibit a behavior that fails to
obey intuition fully. It has been a long-held belief
that echelles with periods of 20 or even 50 wave-
lengths long should have a good response that is
predictable by simple scalar 1nonelectromagnetic2

Fig. 1. Schematic representation of the wave vectors and electric-
field vectors of incident anddiffracted-backwardplanewaves along the
two facets of a triangular grating with a 90° apex angle. The two
planes of polarization are TM and TE. E represents the electric
field; the open circles indicate that the direction of the field is
perpendicular to the paper in the TE case, and the circles with
center dots represent that there is no center within these circles.

Fig. 2. Numerical results showing the spectral dependence of the
diffraction efficiency in the TM plane of a perfectly conducting r-2
echelle with a 90° apex angle and 31.6 grooves@mm. The angle of
incidence ui is equal to the facet angle fB, which is equal to
64.48°. The vertical axis is the efficiency.



theories. However, it was during accurate measure-
ments that the real blaze wavelength and the real
blaze angle were found to be slightly shifted from
those predicted by Eq. 112.13,18,19 The trivial conclu-
sion that the facet angle is different from the one
specified by the manufacturer may be assumed to be
true, but it does not explain why this shift varies with
the wavelength, e.g., decreases for shorter waves.
A guide to understanding 1or at least accepting2 this
deviation can be found if we return to the proof of
Theorem 1. This proof does not hold for TE polariza-
tion, even if we have a perfectly conducting echelle.
Whereas the boundary conditions along the active
facet A can again be satisfied by only two waves that
are perpendicular to this facet, the electric-field vec-
tor, which is parallel to the grooves for this polariza-
tion, is parallel to the other facet B, so that the two
waves alone that satisfy the boundary conditions for
A cannot satisfy the boundary conditions along the
entire grating surface.
In fact both experiment and theory show in a

determined manner that the TE case differs more or
less from that of TM 1see Figs. 32. One might expect
that the difference in the high orders is small enough
to be neglected. However, with the maximum width
decreasing according to l2, even a small shift Dl of the
maximum position can, and certainly does, lead to
measurable effects. Electromagnetic theory, and in
particular the only available numerical code that can
serve to analyze echelle behaviors, is able in principle
to act as a numerical superlaser, effectively supplying
us with amonochromatic, collimated beamwith preci-
sion to the 15th digit, as well as with the same
precision in tuning accuracy. This is sufficient, at
least if we limit ourselves to, say, the 1000th order; of
course, the precision is much higher than what is
experimentally available. The usual checks, includ-
ing convergence and energy balance 1for a perfectly
conducting substrate2, were used, and a check against
the experimental observations was also done when-
ever possible 1see Subsection 2.F2.

2.F. Numerical Results

Investigation of several different echelles reveals
some common features. First, we found that numeri-
cal results show perfect blazing in the TM case for a
perfectly conducting substrate to be in the position
predicted by Theorem 1, when started from the first
order and continuing to the 660th order, which is a
severe test of the code. We stopped at the 660th
order mainly because of calculation-time problems.
Second, even for the perfectly conducting case, TE
blazing shifts to a shorter wavelength 3see Fig. 31a24,
and blazing can never be perfect except with a grating
that supports only two propagating orders. This
condition can happen only in an echelette grating,
never in an echelle. Third, a finite but highly con-
ducting substrate does not significantly change the
TE response; it merely introduces a reduction factor
to account for the reduced reflectivity. The TM
efficiency is reduced more significantly, and the posi-
tion of its maximum is shifted toward the TE maxi-
mum, with the exact behavior depending on the
substrate index. A typical example is shown in Fig.
31a2.
With a decrease in the l@d ratio, the positions of the

consecutive maxima are given from the theorem of
Marechal and Stroke:

lBN
~
1

N
. 152

This proportion is rigorously fulfilled in the TM case
for a perfectly conducting substrate when the ideal
and the real blaze wavelengths coincide. It is only

Fig. 3. Numerical results showing the spectral dependence of the
diffraction efficiency of an r-4 echelle with 79 grooves@mm. ui 5

fB 5 76°. The solid curves represent the TE case, and the dashed
curves represent the TM case for 1a2 a perfectly conducting sub-
strate, 1b2 nAl 5 1.2 1 i7, 1c2 nAl 5 1.09 1 i5.31. The vertical axes
are in arbitrary units.
1 April 1995 @ Vol. 34, No. 10 @ APPLIED OPTICS 1711



approximately valid for the real blaze wavelength for
all other cases. The separation between two consecu-
tive maxima and the half-width of each maximum is
proportional toN22 for highN:

lBN
2 lBN11

~
1

N
2

1

N 1 1
<

1

N2
. 162

At shorter wavelengths, the difference between the
TE and TM cases decreases so that the spectral
response becomes less polarization dependent. Fig-
ures 4 illustrate the spectral responses in the two
fundamental polarizations for an echelle with 79
grooves@mm and a 76° facet angle 1r-22. The angle of
incidence is kept equal to the facet angle. The
substrate is aluminum. The maxima values in-
crease slowly with the order N, and the positions of
the maxima become closer to the position predicted by
blazing Eq. 132. The spectral dependence of the shift
Dl of the maximum is plotted in Figs. 5 for several
different echelles. It is astonishing to find a well-
defined power dependence, which is

DmaxN
~

1

N21d
. 172

For r-2 echelles, d 5 0.6. For r-4 echelles, d has the
same approximate value, 0.6, when N . 65, but d 5 0
when N , 65. A similar rule holds for another
echelle 144 grooves@mm and a facet angle of 70°2, for
which the analysis includes blazing in very high
orders 1to 660; see Fig. 62. If perfect conductivity is
assumed so as to suppress the decrease of aluminum’s
reflectivity below 50–100 nm, the maximum shift of
the TE case from the position of the TM maximum is
also given by relation 172, with d 5 0.6 1squares in Figs.
52. A smaller facet 1and thus blaze2 angle leads to a
smaller shift 3compare the circles and crosses in Fig.
51b2with the squares, triangles, and diamonds4.
Although it is nontrivial, this rule 3relation 1724 has a

straightforward physical interpretation. It shows
that, when the wavelength-to-period ratio decreases,
for positive d the difference in the positions between
the TE and TM spectral curves for each order reduces
faster than the separation between the consecutive
orders 1which is proportional to N222. This behavior
corresponds to the most natural scalar expectations
that, for l = 0, not only the positions of the maxima
but also the positions of the curves for the TE and TM
cases for any order would merge into each other.
Otherwise, for negative d, the maxima would ap-
proach each other, but their relative separation would
increase, as given by

lBN
TE 2 lBN

TM

lBN
TM 2 lBN11

TM
5

1

Nd
=
l=0 5

` d , 0.

0 d . 0
182

In fact, Figs. 5 are a direct demonstration that in the
scalar limit 1l@d = 02 the echelle behavior becomes
more scalar, i.e., the difference between the TE- and
1712 APPLIED OPTICS @ Vol. 34, No. 10 @ 1 April 1995
TM-polarization responses decreases. Until now, we
knew that in and close to the resonance domain the
polarization effects were strong, and we believed that
in the scalar domain these effects disappeared, but
the results shown in Figs. 5 prove that these conclu-
sions are true and demonstrate how they happen.
The abrupt change in the behavior of the r-4 echelle

1Figs. 4 and 52 below N 5 65 is due to cut-off effects.
For shorter wavelengths both the 21 and N 1 1

Fig. 4. Numerical results showing the spectral dependence of a
large spectral interval on the diffraction efficiency of an r-4 echelle
with 79 grooves@mm. ui 5 fB 5 76°. The refractive index
corresponds to the bulk values of aluminum, and its dispersion is
taken into account. 1a2 TE and 1b2 TM polarization. The vertical
axes are in arbitrary units.



orders propagate 1N denotes the blazing order2, and
for longer waves they are cut off so that the blaze
order is the last one that can diffract. The cutoffs
can also be detected in the spectral dependence 1see
Fig. 72, and the cutoff closest to the blaze order has the
greatest influence. That is why these effects play a
negligible role for echelles with smaller facet angles
or a higher number of blaze orders, when there are
several propagating orders of a higher number than
that of the blaze order 1e.g., an r-2 echelle2.
The role of cut-off effects is much stronger in the

angular dependence of efficiencies, as is well known

Fig. 5. Numerical results showing the spectral shift of the
position of the maximum from the scalar position given by Eq.
132. A double-logarithmic scale is used. Squares represent an r-4
aluminum echelle with 79 grooves@mm and TE polarization;
triangles represent the same but for the TM plane. Circles and
crosses represent the TE- and TM-plane results, respectively, for
an r-2 aluminum echelle with 79 grooves@mm. Diamonds repre-
sent the TE case for a perfectly conducting echelle with 43
grooves@mm and a 70° facet angle. The central part of 1a2 is
shown enlarged in 1b2.
for echelettes. However, this is the first investiga-
tion to demonstrate that these effects can also exist
for echelles. To complete this picture, the results of
the spectral measurements of efficiency of an r-4
echelle with 79 grooves@mm are presented in Figs. 8
1solid curves represent TE and dashed curves TM
polarization2. A standard dye laser pumped by a
15-W Ar1 gas laser was used, and the results show
typical behavior. We present them to illustrate the
difficulties in making spectral measurements, and, in
particular, the difficulty in the precise determination
of the spectral shift of the maximum. The shift
rapidly decreases with the wavelength, and below 300
nm it can become less than 1 nm, or even less than 0.1
nm. Moreover, near the maximum, the maximal
value depends weakly on slight changes of the inci-
dent and facet angles, so that when the latter is not
known 1and it never is2, the true position of the
maximum can hardly be found with enough precision
to determine its shift, whereas there is no such
difficulty regarding the numerical results 3Fig. 81b24.

3. Angular Response of Echelles

It is well known among grating theoreticians, manu-
facturers, and users that when one 1namely, the nth2
diffracted order propagates backward it is called the
nth-order Littrow mount. It is defined by an equa-
tion similar to Eq. 132:

2 sin ui 5 2n
l

d
. 192

There is another important theorem that is valid no
matter what the grating material, period, groove
shape, groove depth, incident-wave polarization, or
diffraction-order number. This is Theorem 2, which
states that the efficiency and the phase in a given
diffracted order are symmetrical with respect to the

Fig. 6. Record of numerical investigation: Efficiency in order
660 for the TE case with a perfectly conducting echelle with 42.713
grooves@mm. ui 5 fB 5 70°. The position of the maximum
1labeled real2 is shifted from the ideal position 1labeled expected2 as
determined from Eq. 132.
1 April 1995 @ Vol. 34, No. 10 @ APPLIED OPTICS 1713



angle corresponding to its own Littrow mount, and
the symmetry concerns the dependence of the sine of
the angle of incidence. It is interesting to note that it
is only in the case of diffraction by echelles that the
validity of this theorem has been questioned3,4,13; in
all other grating applications and theories it has been
taken as something quite basic.
Of course, the theorem can be clearly understood

only for the ideal case of perfect periodicity and a
plane-incident wave. Otherwise, e.g., with high ran-
dom roughness or a narrow incident beam, slight
differences can be observed at the two sides of the
Littrow mount in the angular dependence of the
diffraction efficiency.
The most important question from a practical point

of view is how the departure from a Littrow mount
affects the efficiency 1the blazing2, because in real
devices gratings are almost never used under perfect
autocollimation conditions. Let us recall a geometri-
cal-optics formulation of the blazing conditions.
The maximum in a given order occurs when light is

Fig. 7. Numerical results showing the TE efficiency in orders 120
and 58 for the TE plane of an r-4 echelle with 79 grooves@mm.
ui 5 fB 5 76°. The passing-off positions of the adjacent orders are
indicated at the tops of the graphs. Note the magnification of the
ordinate for order 120, which was necessary to reveal the cut-off
anomaly.
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diffracted by the grating as if being reflected by the
small facet. When the incident wave is perpendicu-
lar to this facet, this condition requires a Littrow
mount and corresponds to ideal blazing. But the
reflection can be performed at a different incident
direction. Let us denote with Du the angle between
the incident beam and the direction normal to the
facet. The reflection conditions require that the
angle of diffraction with respect to the facet normal be
equal to Du, i.e.,

uN 5 fB 2 Du, 1102

Fig. 8. Dye-laser measurements of 1a2 the diffraction efficiency in
several consecutive orders for an r-4 echelle with 79 grooves@mm,
where ui 5 fB 5 76°, and 1b2 the corresponding numerical results
with nA1 5 1.9 1 i5.31. The vertical axes are in arbitrary units.



when

ui 5 fB 1 Du. 1112

Simple calculations with Eqs. 132 and 142 show that for
each Du a maximum can be expected at a wavelength
lD such that

cos Du 5
lD

lB

. 1122

The opposite conclusion is also true: Whenever
maximum efficiency is required at a wavelength
slightly different from the blazed one, the addition of
a small angular deviation can serve as a solution.
However, because of the cosine term in Eq. 1122, this is
possible only if lu # lB. Figure 9 illustrates this rule.
For wavelengths smaller than the blaze wavelength,
two lateral maxima are observed, and their separa-
tion 2Du is given quite well by Eq. 1122. For longer
wavelengths there is a single maximum located at the
corresponding Littrow angle. The maximum de-
creases with its departure from the blaze wavelength.
It must be pointed out that because of the relatively
high incident and diffracted angles, the angular depen-
dencies appear to be asymmetrical with respect to the
Littrow mount. True symmetry exists when the
abscissa is represented in terms of sin1ui2, rather than
in terms of ui.
Equation 1122 also has an unexpected but important

role in the determination of the facet angle. It is well
known that, when one performs ruling and replica-
tion, the facet angle is rarely found to be exactly what
was desired. Sometimes a departure of 0.1° can be
critical. Of course, one usually compensates by tun-
ing the angle of incidence so that maximum efficiency
is obtained under the desired conditions. Using Eq.
1122we can determine the ideal blaze wavelength from
angular, rather than spectral measurements, which is
an advantage because the former is more precise and
easier to handle.
In the following sections we give experimental data

for five different echelles. The choice starts with
echelles that work in high orders and exhibit an
almost scalar behavior, with 31.6 grooves@mm and
two nominal facet angles: 63.5° and 76°. In fact,
numerical fitting shows that the real facet angle of the
first sample is close to 64.5°. The second set consists
of two echelles 1r-2 and r-42 with 79 grooves@mm.
The r-4 echelle exhibits effects that are strange and
unexpected for echelles, but typical for gratings with
smaller periods. These are the so-called cut-off ef-
fects that are due to the orders next to the blaze order
having passed off. The third example has 316
grooves@mm, and its efficiency is strongly influenced
by polarization.
Theoretical confirmation is presented only for the

most interesting cases because of the lack of space.
Coincidence between theory and experiment is al-
ways of the same order as in the cases presented:
The general features of the efficiency behavior are the
same, differences existmainly in themaximumvalues.
These differences can be easily explained by the
deviations between ideal gratings and real ones,
as discussed in detail in Section 4. Lower-order
echelles exhibit higher values of theoretical polariza-
tion dependence, and the difference decreases with an
increase in order, which can also be explained by the
deviations between the real and ideal grating param-
eters. A typical example is the decrease in polariza-
tion effects 3Figs. 31b2 and 31c24 when the assumed
refractive index is changed.
A common feature, which is a direct consequence of

Theorem 2, has to be pointed out regarding all the
efficiency curves. The efficiencies of all the orders
are a symmetrical function of the sine of the angle of
incidence with respect to each orders own Littrow

Fig. 9. Numerically determined efficiency of the 84th order for an
r-2 echelle with 31.6 grooves@mmand a 64.48° facet angle. 1a2 The
angular dependence for several wavelength values, shown in
nanometers in the figures. 1b2 A three-dimensional view of the
efficiency peak in thewavelength and the angle of incidence planes.
1 April 1995 @ Vol. 34, No. 10 @ APPLIED OPTICS 1715



mount. Thus, an observed asymmetry with respect
to the facet angle is not strange. It is due to two
reasons: First, for wavelengths differing from the
ideal blaze values, the Littrow mount does not coin-
cide with the facet angle. Second, at high incident
angles the symmetry in sine differs from the symme-
try in the angle of incidence. However, in all the
cases that we observed, deviations from Theorem 2
never exceeded the experimental error.

3.A. Efficiency Behavior in High Orders

To examine high-order behavior, use was made of
31.6-groove@mm echelles at two different and fre-
quently used groove angles of 63.5° 1r-22 and 76° 1r-42,
over a wavelength range of 441.6–676.4 nm, which
corresponds to orders from 84 to 139. The range was
determined by the set of available lasers: He–Cd,
Ar1, He–Ne, and Kr1. In each case data were taken
in small angular steps, so as not to miss any features,
and repeated in both planes of polarization. The
spectral width was small enough, thanks to the gas
lasers that we used, and that also provided the high
degree of beam collimation desired. When neces-
sary, diaphragming of the incident beam was used to
ensure that the entire beam hit the grating surface.
Typical absolute efficiency data for the r-4 echelle

are shown in Figs. 10 for several different wave-
lengths, which are indicated in nanometers in the
upper right-hand corners 1in Figs. 10–15, the vertical
axes are in arbitrary units, solid curves represent TE
polarization, and dashed curves represent TM polar-
ization2. Figures 101a2 and 101i2 are similar in that
their wavelengths happen to lie close to the blaze
values, which one can deduce quickly by noting that
there is little diffracted energy in the next higher and
next lower orders. The apparent facet angle that can
be evaluated from the grating equation is close to
75.9°. In both Figs. 101a2 and 101i2, the polarization
level 1the difference of the TE and TM efficiencies
divided by their sum2 is close to 6%, which seems high
for orders near 100.
At 496.5 nm 3Fig 101f24 we find ourselves near the

half-order position between orders 123 and 124. A
somewhat similar situation can be seen at 676.4 nm
3Fig. 101k24. The rule established by Eq. 1122 can be
clearly observed: The angular dependence of the
higher order 1with the lower blaze wavelength2 is
characterized by a single maximum that has a lower
value than the blaze maximum 3compare orders 124
and 91 in Figs. 101f2 and 101k2 with orders 139 and 97
in Figs. 101a2 and 101i24. The lower order 3the best
example is order 123 in Fig. 101f24 has two maxima
separated by an 8.5° angular interval. Using Eq. 1122
we can deduce an apparent facet angle of 75.4°.
However, this rule cannot be utilized precisely enough
for echelles with facet angles as high as this one,
because cut-off effects introduce edges in the effi-
ciency curves. The rule works perfectly when we use
smaller facet angles, which we show in Figs. 11 with
the experimental results and in Figs. 12 with the
corresponding theoretical data for an r-2 echelle.
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This echelle has the features that are the closest to
scalar ones.
There are several sets of common figures. The

central orders at 488.0, 496.5, and 514.5 nm 3Figs.
111e2, 111f2, and 111h2, respectively4 seem almost identi-
cal, and the adjacent orders all have comparatively
low efficiencies. However, if we assume that these
figures correspond to perfect blazing and try to deter-
mine the facet angle by using the grating formula in
Eq. 132, the error is too great: Whereas the 117th
order 3Fig. 111e24 gives fB 5 64.44°, which is close to the
real value, the 115th order 3Fig. 111f24 results in fB 5

62.5°, and the 111th order 3Fig. 111h24 shifts fB to 58.8°,
which is much too far from the real value. The
conclusion is that the 111th order is not as close to
blazing at 514.5 nm as might be concluded from Fig.
111h2. It is much safer to depend on orders that
appear to lie below the blaze. Several figures show
such wavelength values, and the data are summa-
rized in Table 1. At different wavelengths 1column 12
there are several orders of relatively high efficiency
with blaze wavelengths higher than the one tested.
In this case there are two lateral maxima in the
angular dependencies of these orders 1column 22,
separated by 2Du 1column 32. Column 4 contains the
values of the observed facet angle f̃B, which were
obtained from the scalar approach through the use of
Eqs. 132 and 1122. There are two sets of values—
experimental and theoretical. The latter were ob-
tained with the assumption of a facet angle fB 5

64.48°. It is obvious that the apparent blaze angle
varies with l, even in the theoretical results, which is
an indication that this is neither experimental error
nor just a deviation of the real facet angle from the
nominal. Using relation 182 with d 5 0.6, we have
tried to reconstruct the true experimental facet angle
from the apparent one. The difference between the
true and apparent facet angles for both the theoretical
and the experimental data is presented in the last
column of the table. Although scattering of the data
is high, the tendency for a decreasing value with a
decreasing wavelength can be clearly observed.
For comparison, we present the numerical results

of the rigorous theory in Figs. 12 with the assumption
that the facet angle is equal to 64.48°, a value that we
obtained by numerically fitting the experimental
curves over the entire spectral interval of themeasure-
ments. Coincidence is very good, especially as it
concerns the position of the maxima of all the orders.
The main difference is observed with respect to the
maximum efficiency values of the strong orders for
which the theoretical results are always higher.
This can be explained in view of the results in Section
4 in that deviations of the real profile from the ideal
triangular one with a 90° apex angle invariably leads
to a loss of performance. The lower polarization
dependence in comparison with the previous r-4
echelle is observed in both the experimental and
theoretical results.



Fig. 10. Experimental angular dependen-
cies of the efficiency of an aluminum r-4
echelle with 31.6 grooves@mmand a 76° facet
angle. Wavelengths are shown in nanom-
eters in the upper right-hand corner of each
figure. Solid lines represent TE polariza-
tion and dashed lines represent TM.
3.B. Efficiency Behavior in the Medium Orders: Cut-off
Effects

The region with the medium orders is represented by
the family of 79-grooves@mm echelles, which is prob-
ably themost widely used of all echelle families. The
visible portion of the spectrum is covered conve-
niently by orders from 30 to 60, although these
echelles have been used in the UV in orders to as high
as 100 or even 180.
Starting with the high-angle 1r-42 echelle, we pre-
sent the results in Figs. 131a2–131m2. Even at the
lowest available wavelength, 441.6 nm 1see upper
right-hand corners of figures for wavelengths2, there
are peculiarities when compared with the higher-
order echelles 1Subsection 3.A2. We can see an un-
usual and sharply defined dip in the efficiency right in
the center of the blaze peak 3Fig. 131a24. Similar dips
occur at 457.9, 472.6, 476.5, 501.7, 514.5, 596.9, and
1 April 1995 @ Vol. 34, No. 10 @ APPLIED OPTICS 1717
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Fig. 11. Experimental angular dependencies
of the efficiency of an aluminum r-2 echelle with
31.6 grooves@mm and a 63.5° facet angle.
Wavelengths are shown in nanometers in the
upper right-hand corner of each figure.
647.1 nm, as well as in the orders neighboring the
blaze ones: 49 at 488.0 nm and 48 at 496.5 nm.
The opposite effect 1a small or a large bump2 is
observed for blaze orders at 488.0 and 676.4 nm.
Both effects are too well pronounced, with sharply
defined edges, to represent experimental error. The
APPLIED OPTICS @ Vol. 34, No. 10 @ 1 April 1995
theoretical data fully confirm the existence of the dips
and bumps 1compare Figs. 13 and 142. In Figs. 13
the edges of the dips and bumps are shown by the
vertical markers at the tops of the figures and are
identified with the angular limits of diffraction of the
neighboring higher order 1numbers above the vertical



markers2 in each case. Sometimes, when the effi-
ciency in this order is high enough, its values are also
shown in the figures. To the left of the corresponding
marker, the next N 1 1 order cannot diffract, and to
the right of marker 1212 the N 2 1 order cannot
diffract. Between them there is a window in which
either both or neither can diffract. When they can
diffract, they rob light from the mainNth order. The
sharpness with which this region is bounded is

Table 1. Experimental and Theoretical Values of the Apparent Facet
Angle a f̃B

l 1µm2 N

Du 1deg2 f̃B 1deg2 1fB f̃B2 1deg2

Experi-
ment Theory

Experi-
ment Theory

Experi-
ment Theory

0.4416 129 3.5 3.125 64.431 64.334 0.05 0.146
0.4416 128 7.97 64.386 0.095
0.4579 124 5.28 5.82 64.421 64.386 0.06 0.101
0.4579 123 9.25 64.361 0.120
0.4726 120 6.59 64.413 0.07
0.5017 113 5.52 64.284 0.197
0.5145 110 6.26 64.315 0.166
0.6328 89 8.96 8.755 64.260 64.200 0.222 0.281
0.6328 90 2.84 1.88 64.291 64.192 0.190 0.289
0.6471 88 2.386 2.5 64.216 64.226 0.265 0.255
0.6471 87 9.0 64.227 0.254
0.6764 84 4.625 4.625 64.235 64.235 0.246 0.246
0.67906 84 0 64.313 0.168

aObtained from the angular dependencies of an r-2 echelle with
31.6 grooves@mm and a nominal experimental facet angle of
63° 268. The theoretical facet angle is 64.48°.
well known in echelette theory and corresponds to the
Wood anomalies, or specifically to the Rayleigh pass-
ing-off effect. They seem not to have been previously
reported. The role of the cut-off effects can be ob-
served by comparison of Figs. 131c2 with 131d2 and 131i2
with 131 j2. With an increasing wavelength, the cut-
offs of the N 1 1 and N 2 1 orders approach each
other. We have traced the evolution theoretically in
Fig. 15, both in a large-scale domain with switching
between different orders and in a small-scale domain,
in which small wavelength changes lead to different
cut-off effects within the same order. The passing-off
position 1at an angle for the Nth-diffracted order2 is
derived as a direct consequence of the grating equa-
tion, given by

sin1uNC
2 5 N

l

d
2 1, 1132

so that the increase of the wavelength moves the N 1

1 cutoff to higher angles of incidence, for which it is
assumed that blazing occurs in the Nth order. The
corresponding passing-off position for the 21 order is
given by the equation

sin3u1212C
4 5 1 2

l

d
, 1142

and its variation with l is much slower 1N 1 1 times2
than the cutoff of the order N 1 1, which is a direct
consequence of Eqs. 1132 and 1142. Thus the window
Fig. 12. Numerical 1theoretical2 results that
correspond to the experimental results from
Figs. 11.
1 April 1995 @ Vol. 34, No. 10 @ APPLIED OPTICS 1719



Fig. 13. Experimental angular dependencies of the efficiency of an aluminum r-4 echelle
with 79 grooves@mmand a 76° facet angle. Wavelengths are shown in the upper right-hand
corners of each figure.
width is determined mainly by the passing-off posi-
tion of the higher order 1with respect to the blazing
order2, as can be easily traced in Fig. 15.
Above some limit at which there are no more N 1 1

1720 APPLIED OPTICS @ Vol. 34, No. 10 @ 1 April 1995
or N 2 1 orders inside the window to rob light from
the main 1Nth2 order, there will be an efficiency boost,
which is clearly observed at 488.0 and 676.4 nm 1Figs.
13 and 142. In the latter case 1676.4 nm2 one would



Fig. 14. Numerical 1theoretical2 results in 1a2 and 1b2 correspond to
the experimental results from Figs. 13. 1c2 Refractive index n 5

1.09 1 i5.31, and 1d2 n 5 1.3 1 i7.11.
expect a boost to the efficiency in the 36th order, were
it not for the circumstance that it corresponds to a
fractional order 135.72, so that a significant amount of
light goes into the 35th order. When the two orders
are combined, their total in the TE plane reaches a
rather high value of 90%, while the equivalent value
in the TM plane is only 60%. It seems that, when
tuned to a different l@d ratio so that an integer order
number appears to be blazing, a higher efficiency can
be expected when the neighboring order, and the 21
order as well, cannot propagate. The choice, how-
ever, is not so easy to make because the real 1observed2
blaze position differs from the expected one, espe-
cially for lower blaze orders 1see Figs. 132. The best
fit seems to be observed for the 47th order at 514.5
nm. At this wavelength, the adjacent orders have a
low efficiency 1,2%2 and the polarization effect is low
1,10%2, but the maximum lies within a window in
which both orders 48 and 21 can propagate.
Thuswe reach 632.8 nm,which by accident presents

the limiting case, when the passing-off positions of
both order 21 and order 39 coincide at the blaze peak,
which leads to an unusually high TE efficiency peak
of 75% in the 39th order and also to the highest
observed degree of polarization 123%2. This wave-
length is interesting because it also provides an
example of the largest deviation from scalar expecta-
tions. Not only is the polarization degree large, but
the shift of the efficiency peak is much greater than
what one would expect from Fig. 5. Figure 5 pre-
Fig. 15. Numerical investigation of an r-4 echelle with 79
grooves@mm: Influence of the passing-off effect on the 21 order
and on the orders adjacent to peak one for several different
wavelengths 1shown in nanometers2. The region in which the 21
order propagates is shown in the rectangular area in the upper
part of each graph and the region in which the order next to peak
one propagates is marked at the bottom of each graph.
dicts a shift of approximately 4–5 nm from the scalar,
ideal blaze wavelength, which is equal to 646.43 nm
for a facet angle of 76°, whereas the shift as evaluated
from Fig. 131k2 exceeds 14 nm. Arguments of possi-
bly differing experimental facet angles may be true,
but they are not sufficient, because theoretical results
that are based on an exact 76° facet angle give results
similar to the experimental ones. Moreover, the
mirror expectations, which can easily explain the
saddlelike behavior in high orders, fail to work here.
There is no two-peak maximum in Fig. 131k2. The
explanation can be found in the role of the 39th order,
which reaches almost 20% close to its passing-off
position and thus takes energy from the 38th order.
The latter exhibits a maximum just close to the angle
at which the 39th order disappears. This effect
becomes obvious in Figs. 16, in which the solid white
curves represent the cut-off limit of the 39th order, to
the left of which the order does not propagate. The
region with maximum efficiency in the 38th order is
pushed to the right in both the TE and TM planes.
Special attention should be paid to comparison

between theoretical 1Figs. 142 and experimental 1Figs.
132 results. Whereas the maximum orders behave
1 April 1995 @ Vol. 34, No. 10 @ APPLIED OPTICS 1721



well for the lower wavelengths, in the red there is a
great difference in the TM plane. At 632.8 nm the
comparison reveals only some deviations in the values
and not in the behavior, but at 676.4 nm the theoreti-
cal maximum in the TE plane of the 36th order is
accompanied by an unusual minimum in the TM
plane. The difference arises from the different val-
ues of the aluminum refractive index that was used in
the calculations at these two wavelengths. Whereas
at 632.8 nm the value of nA1 was 1.09 1 i5.31, at 676.4
nm we used the usual bulk value of 1.3 1 i7.11. The
effect of this choice is discussed in Section 4.
When a lower facet angle near 63.5° 1the r-2 echelle2

is used, it is evident that passing-off orders no longer
play a noticeable role 1Figs. 172. This lack comes

Fig. 16. Numerical results for nA1 5 1.09 1 i5.31. Two-
dimensional views of 1a2 the TE and 1b2 the TM planes with
corresponding isolines and their levels of the diffraction efficiency
in the 38th order as a function of the wavelength and angle of
incidence for an r-4 echelle with 79 grooves@mm and a 76° facet
angle 3corresponding to Figs. 131k2 and 141c24.
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from somany of these orders propagating between the
blaze order and the passing-off order that any cut-off
effects are effectively smoothed out. One of the
wavelengths 1501.7 nm2 falls very close to an integer
order 345 in Fig. 171g24, as is evident from the low
values of both adjacent orders and the barely detect-
able level of polarization. At 441.6 nm 3Fig. 171a24 the
nominal order is 51.1, which explains why order 52 is
stronger. At 496.5 nm we are almost exactly at the
half-order position, as is evident by the fact that, near
the facet angle, orders 45 and 46 intersect, and their
combined value adds up to 60%, which is typical for
such a grating. At 632.8 nm the 36th order domi-
nates; adding it to order 35 leads to a combined peak
value close to 64%. The lack of passing-off effects
allows one to attempt to use Eq. 1122 again to recon-
struct the observed facet angle from the angular data.
The results are summarized in Table 2, together with
the approximation of the real facet angle fB from the
apparent one f̃B from the theoretical data from Fig. 5
and relation 172, with d 5 0.6. The notations are the
same as in Table 1. As discussed above, the appar-
ent facet angle f̃B decreases as the wavelength in-
creases, and the resulting real facet angle fB 1approxi-
mately 63.4°2 lies close to the nominal one.

3.C. Efficiency Behavior in the Low Orders

The only grating tested in the low-order domain was a
316-grooves-mm echelle with a 63.4° nominal facet
angle, which allowed us to test orders of 8–13. In
this domain the degree of polarization can be so
strong, as much as 40%, that the scalar model clearly
cannot apply. The effects of the passing-off orders
can become quite strong; this result points to a critical
comparison with rigorous theory. In general, good
agreement 1within two to eight percent2 is found in the
TE plane. The behavior in the TM plane is also quite
well described, even though magnitudes may differ
significantly in some instances 1this variation is typi-
cal of the resonance domain2. It must be pointed out
that for this grating the small facet does not exceed
three wavelengths in width.
If one starts with the shortest wavelength of 441.6

nm 3Fig. 181a24, the nominal order is 12.8, so we can
observe nearly equal efficiencies in orders 12 and 13.
Between the 54.5° and 59.5° angles of incidence, both
the 21 and the 13th orders can diffract; hence they
account for the depression in the 12th-order peak.
The corresponding theoretical results 3Fig. 191a24match
well in both the TE and TM planes, with the differ-
ence not exceeding 10%. At 496.5 nm we are in the
11.4-order position, but we can see no symmetry
because the 12th order cannot diffract below 62°.
Polarization is at a record 40% 3Fig. 181f 24, which is
even higher in the theoretical results 3Fig. 191b24.
Compared with the previous case the location of the
passing-off orders is reversed in that the 21 order can
diffract only below 57.5°. The result is a boost for the
11th order in the window between 57.5° and 62°.
At 496.5 and 501.7 nm 3Figs. 181f2 and 181g24 we have



Fig. 17. Experimental angular dependencies of the diffraction efficiency of an r-2 echelle with 79 grooves@mm.
a similar effect for the 11th order, and the TM plane
again provides lower results. Order 8 in Figs. 181j2
and 181k2 behaves similarly.
At 514.5 nm 3Fig. 181h24 a good order match at

order 11 reduces the polarization level. The theoreti-

Table 2. Experimental Values of the Apparent Facet Angle a f̃B

l 1µm2 N Du 1deg2 f̃B 1deg2 fB 1deg2

0.4416 51 5 63.253 63.56
0.4579 49 7 63.242 63.57
0.4765 47 7 63.033 63.38
0.4880 46 6 63.072 63.43
0.4965 45 8 63.025 63.40
0.6764 33 7 62.660 63.26

aObtained from the angular dependencies of an r-2 echelle with
79 grooves@mm and a nominal experimental facet angle of
63° 268. fB is the real facet angle and was reconstructed with Eq.
1122.
cal results match the experiment well, except for the
10% difference in the TM plane. The evidence of the
21 order’s passing off is clear in both orders, but
especially in the 10th order. The wavelength 632.8
nm nearly corresponds to the integer order: 8.94.
The 21 and 9th orders happen to pass off together,
close to 53°, and the effect is visible in order 8. In
order 9 the TE curve again matches almost perfectly
with the theory 3Fig. 191d24, whereas in the TM plane
theory predicts 20% higher values. In order 8 there
is a good match in both planes.

4. Deviations in Groove Parameters and Echelle
Performance

4.A. Refractive Index of the Grating Material

One of the main difficulties to the accurate solution of
the physics of gratings is that the available refractive
indices of the materials with which they are built are
1 April 1995 @ Vol. 34, No. 10 @ APPLIED OPTICS 1723



Fig. 18. The same as for Figs. 17, except that
a 316-grooves@mm echelle was used.
almost never quite equal to the effective refractive
indices. To begin with, properties of thin layers may
differ from the properties of bulk material and,
unfortunately, in the worse direction: impurities
such as nonhomogeneities during layer growth and
roughness are introduced. The result is that the
1724 APPLIED OPTICS @ Vol. 34, No. 10 @ 1 April 1995
reflectivity of the layers is usually lower, and the
difference with the bulk polished surface varies more
or less with the wavelength. The variation differs
not only from one layer-growing device to another but
also within one such device under different condi-
tions.



The role of this uncertainty can hardly be predicted.
A typical set of examples is shown in Figs. 3, with a
discussion of the effect of finite conductivity. The
bulk textbook value for aluminum in the red is close to
n 5 1.20 1 i7.00, but Fig. 31b2 shows that this value
leads to a polarization degree much higher than that
observed in the experiments. Moreover, the tail
near the passing-off positions of the 41st and 42nd
orders in TM polarization is quite strong, and we
were not able to locate such behavior in any of the
experiments 1see Figs. 82. It is well known in grating
theory that refractive-index values can significantly
modify the efficiency behavior in the resonance do-
main and, in particular, the resonance phenomena
1anomalies2. As we have already shown throughout
the previous section, anomalies do play a role in
echelle behavior. To analyze the influence of the
refractive index, we completed another set of calcula-
tions regarding the echelle from Fig. 31b2 with a
refractive index slightly different from the bulk one.
Its value, which was taken from another grating
study,22 does not necessarily characterize the echelle-
manufacturing process, but it serves as an example of
how the index influences echelle behavior. The re-
sults shown in Fig. 31c2 are obviously different from
the bulk-value results: The tail in the TM plane
disappears, and the maximum positions in the TE
and TM planes approach each other. The case is
similar when Figs. 141c2 and 141d2 are compared with
the corresponding experimental data. The former
3Fig. 141c24 is calculated with the assumption of lower
values for both the real and imaginary parts of the
aluminum refractive index 1although this does not
mean lower reflectivity values2 andmatches the experi-
mental data much better than do the high-refractive-
index calculations 3Figs. 141d2 and 31b24. New calcula-
tions with the same parameters and wavelengths as
were used for the data shown in Fig. 141d2, except for

Fig. 19. Numerical values that correspond to the experimental
results in Figs. 18.
a lower refractive index, give results much closer to
the experimental ones 1Fig. 202.

4.B. Groove-Angle and Profile Deformations

Grating users may demand an echelle with a specific
groove 1facet2 angle that serves their purposes, but no
manufacturer wants to guarantee an accuracy of 0.1°.
Although a 0.1° accuracy might seem an excessive
demand, Fig. 21 serves as a warning to show that
even an 0.08° error in the facet angle can lead to
noticeable effects. For the 84th order such a minor

Fig. 20. Numerical results that correspond to Fig. 141d2
1n 5 1.3 1 i7.112 but with a refractive-index value of n 5 1.09 1

i5.31.

Fig. 21. Numerical comparison of the angular dependencies of
the efficiency for a 31.6-grooves@mm r-2 echelle with two slightly
different facet angles: 64.481° in 1a2 and 1c2, and 64.400° in 1b2 and
1d2, for two different wavelength values.
1 April 1995 @ Vol. 34, No. 10 @ APPLIED OPTICS 1725



Fig. 22. Representations of an r-2 echelle with 79 grooves@mmand a 63.5° facet angle: 1a2 SEMpictures of a thin-film replica cut in liquid
nitrogen: left-hand side, top view; right-hand side, lateral view. 1b2 Drawings of the reconstructed 122, inverted 132, and ideal 112 profiles of
the echelle; the ideal profile has a facet angle of 62.4° and apex angle of 84.2°. 1c2Numerically determined spectral dependence of order 51
for profiles 1, 2, and 3 from 1b2. Solid curves represent TE polarization, and dashed curves represent TM.
error corresponds to 1@17 of the order and leads to an
increase of the leakage into order 85 for an echelle
with a larger facet angle 164.481° as compared to
64.400°2. At 441.6 nm the effect is even greater, the
error now being 1@11 of the order separation. The
conclusion is that only a coincidence can lead to the
1726 APPLIED OPTICS @ Vol. 34, No. 10 @ 1 April 1995
achievement of echelles with the exact desired facet
angle. For most applications such an error will do no
harm.
More important and more difficult to predict can be

the effect of material flow during the echelle ruling.
Because grooves are formed not by the echelle’s being



cut but by severe plastic deformation, the top edge
will always appear to be rounded in comparison with
the sharp bottom edge 3Fig. 221a2 shows a scanning
electron microscope 1SEM2 picture of an inverted
replica2. This effect is well known and explains the
universal use of odd-generation replicas, for which
the groove is inverted and the deformed part lies at
the bottom. Theoretical results 3Fig. 221c24 confirm
that, when even-generation replicas replace odd ones,
the efficiency is much less. The main reason for the
lack of a good direct comparison between experimen-
tal and theoretical results is that we lacked a set of
even and odd replicas from an echelle that had served
as an object for SEM pictures and vice versa. A
severe difficulty lies in the process of sample prepara-
tion for a SEM. Correct groove-function determina-
tion is possible only from a picture of the grating-
surface cut, which requires a polishing step that
unfortunately tends to deform the profile. A possible
alternative to this technique would be for one to make
a metallic replica without a plastic cover, freeze it in
liquid nitrogen, break the thin layer, and take a
picture of the cut, hoping not to deform it significantly
during the process. Thus Fig. 221a2 is the only pic-
ture available. However, even these limited data
show that real gratings can differ significantly from
ideal echelles and that this difference can visibly
change their properties.

5. Conclusion

A detailed theoretical and experimental study of a
wide range of echelle gratings has shown the useful-
ness of newly developed techniques for the numerical
study of efficiency behavior. The correlation be-
tween theory and experiment has fully established
the validity, within limits set by our knowledge of
material properties and groove geometry. This has
enabled us to determine the boundaries of usefulness
of scalar theory, which in the past has been the only
model. Unexpected was the discovery that passing-
off phenomena, which have long been known for
echelette gratings, also play a role for certain echelles.
A puzzle of longstanding has been the apparent
deviation in blaze-peak direction with wavelength,
which was attacked in this paper through numerical
techniques. They showed that, as the wavelength
decreases, the TE and TM planes of polarization
response come closer together according to a power
law for which the exponents have been developed.
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