
Lamellar metallic grating anomalies

E. Popov, L. Tsonev, and D. Maystre

A detailed numerical investigation of anomalies in lossy metallic lamellar gratings is presented in a large
interval of a wavelength-to-period X/d ratio. A substantial increase in absorption (a decrease in the total
diffracted energy) is observed. If X/d is small enough (within the homogenized limit), the absorption can
reach almost 100%. When the groove width is large enough, the anomalies are connected with mode
resonances inside the grooves.

Introduction

Since 1902 when Wood' made his important observa-
tion that the intensity of light diffracted by a reflec-
tion grating could vary greatly in a narrow wave-
length (or angular) interval, this phenomenon, which
he called anomalous, has been the subject of great
scientific interest. First, avoiding anomalies is vital
to increasing the performance of spectroscopic devices.
Second, anomalies can lead to a significant increase in
absorption. The most illustrative example is the
so-called Brewster effect in shallow reflection grat-
ings2; otherwise in specific conditions a highly reflect-
ing metallic surface with a shallow corrugation can
absorb incident light totally. These conditions pro-
vide excitation of a surface wave along the corrugated
metal-air interface. Later3 it was shown that simi-
lar phenomena could exist for deep metallic gratings.
Today it is well known that they have a resonance
nature, and consequently they are accompanied by
significant field enhancement; the electromagnetic
field density near the corrugation becomes 50-100
times or more greater than the corresponding energy
density for a flat mirror made from the same mate-
rial-a fact that is of separate interest.41

In contrast to this resonance behavior in some
cases the increase in the absorption of corrugated
metallic surfaces is not accompanied by noticeable
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field enhancement, the electromagnetic energy den-
sity exceeding the corresponding density for a flat
mirror by a factor not greater than 5-10. Such
absorption was observed in metallic gratings under a
grazing incidence12 and in very deep lamellar metallic
gratings (depth-to-period ratio > 0.3).'3

In 1979 Andrewartha et al.14"5 studied perfectly
conducting lamellar diffraction gratings in detail.
They discovered that modes exist inside the grooves,
their number depending on the groove width and
wavelength. In certain conditions these modes can
be excited, causing a strong redistribution of energy
into different diffraction orders in the far-field region.
The conditions in which mode resonances are trans-
ferred into resonances of the diffracted field depend
on wavelength and groove depth. These resonances
do not lead to absorption because, as indicated in
Refs. 14 and 15, the substrate is assumed to be
perfectly conducting. Much research has been done
in the last decade to produce a theoretical method
that could deal with lossy lamellar gratings.16-20

Unfortunately the problems increase for highly reflect-
ing materials, which is of predominant interest.

Recently Popov and Tsonev13 on the basis of a
rigorous modal theory16"17 were able to establish the
existence of 100% light absorption when the grating
supports only a single (specular) diffracted order-
the grating can absorb the incident light almost
totally. Surprisingly this absorption is not accompa-
nied by field enhancement inside or outside the
grooves. The electromagnetic energy density does
not exceed twice the energy density of the incident
wave, whereas for a highly reflecting flat mirror this
ratio almost reaches a value of 4. The aim of this
paper is to investigate in greater detail light absorp-
tion by deep lamellar gratings. The current numeri-
cal study covers a considerably large d/X region-
from gratings that support several diffraction orders
to the so-called homogenized case (X/d << 1). In the
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entire interval the anomaly can be observed clearly,
which changes its depth in the different regions.
Our aim was also to throw some physical light on the
nature of this anomaly and in particular to demon-
strate its connection with mode resonances inside
highly conducting well-separated grooves when the
period is large enough.

During the preparation of this paper Glytsis and
Gaylord2l published a detailed study of high-spatial-
frequency binary gratings for both TE and TM polar-
izations. In the long wavelength limit the behavior
of these gratings becomes equivalent to a homoge-
neous layer. Our conclusion confirms this finding
even in the anomalous region; i.e., the strong absorp-
tion in the case of X/d << 1 is equivalent to the
absorption of a homogeneous lossy layer with a
refractive index given by the homogenization for-
mula.2 2

We obtained the results presented here by using a
computer code based on the rigorous modal method
for lossy lamellar gratings.' 6 The eigenvalues of the
modal equation were found by use of two independent
schemes, 6"17 which were checked against each other.
The rigorous integral formalism23 was used to test
the results of the modal method, and no significant
discrepancy was noticed even inside the anomalous
regions.

Light Diffraction by Lamellar Metallic Gratings

TE-polarized light (with the electric-field vector paral-
lel to the grooves) with a wavelength of X = 1 lm is
incident normally (angle of incidence 0 = 0) from the
vacuum on a metallic lamellar grating with a groove
depth of h = 1 im. All the notations and the co-
ordinate system are presented in Fig. 1. The com-
plex refractive index of the lamella and the substrate
material is equal to n, = 0.4 + i4.4. We worked at a
fixed wavelength, varying the grating period d to
eliminate the influence of the refractive-index disper-
sion. Under normal incidence the number of diffrac-
tion orders propagating in the cladding depends on
the period-to-wavelength ratio: one for d/X < 1,
three for 1 < d/X < 2, five for 2 < d/X < 3, etc.
When the lamella width w is varied, the redistribu-
tion of energy into different propagating orders
(d/X > 1) is observed even for a perfectly conducting
case, but the sum of their efficiencies remains equal to
unity. For real metallic gratings there are always
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Fig. 2. Total energy diffracted by the grating (the sum of dif-
fracted order efficiencies) as a function of period d (given in
micrometers) and the filling factor w/d (w is the lamella thickness).
Groove depth h = 1 Lm, wavelength X = 1 um. The TE-polarized
light has normal incidence on a metallic grating with a refractive
index equal to 0.4 + i4.4.

losses caused by the absorption. The sum of efficien-
cies of the propagating diffraction orders (i.e., the
total energy diffracted in the cladding, normalized
with respect to the energy of the incident wave) is
potted in Fig. 2 as a function of grating period and
lamella width. On the high background level (where
reflectivity of the corresponding flat mirror exceeds
92%) several dips can be observed. Their depths
decrease with an increase in the period. Three re-
gions can be distinguished clearly:

(1) d/X < 0.3. The dip in the reflectivity is well
defined with a minimum value of less than 10%. Its
location in the (d) - (w/d) plane is almost indepen-
dent of d. This case corresponds to the so-called
homogenization limit and is referred to below as the
homogenized case.

(2) d/X > 0.8. The reflectivity dips lie on hyper-
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Fig. 1. Schematic representation of a lamellar grating.

w/d

Fig. 3. Total reflected energy (solid curve) normalized with
respect to the incident wave energy and the zeroth-order efficiency
(dotted curve) as a function of filling factor w/d for fixed period d =
2.99 ptm. The other parameters are the same as those in Fig. 2.
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bolas described by

w/d = 1 - ci/d,

where c is a constant that determines the position of
the minima in the (d) - (w/d) plane. We introduce
its index i to distinguish between different minima.
Contrary to the homogenized case this case is re-
ferred to below as the grating case. Although these
notations are rather arbitrary, they correspond to the
real physical situation.

(3) The intermediate case, in which the two re-
gions merge with each other and the behavior of the
anomaly cannot be defined simply.

Grating Case
The total energy Et diffracted by the grating is almost
independent of the grating parameters, except for
relatively small regions. Although the groove depth
is comparable with the period, Et outside these anoma-
lous regions is almost equal to the reflectivity of a flat
surface. When the grating supports several orders
their efficiencies exhibit more complicated behavior
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Fig. 5. Same as Fig. 4 except that w/d = 0.49.
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Fig. 4. Maps of the electromagnetic energy density inside the
groove, which corresponds to Fig. 2: (a) w/d = 0.85; (b) w/d =
0.84, (c) w/d = 0.82. Units of thex andy axes are in micrometers.
Period d = 2.99 pim.

(Fig. 3), which is our main reason for dealing with Et
rather than with a particular order of efficiency.

The position of the minima is described by Eq. (1),
which is equivalent to

d - w = ci, (2)

where d - w is the groove width (w is the lamella
width). Therefore the anomalies are exhibited at
some fixed values ci of the groove width, which do not
depend on the period and on the lamella thickness.
This fact points to a direct link between the position
of the anomaly and the behavior of the electromag-
netic field inside the groove. Figure 2 presents a
picture that resembles modal dispersion characteris-
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Fig. 6. Same as Fig. 4 except that w/d =0.15.
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Fig. 7. Map of the TE-field component E2 for d = 1 pum and w/d = 0.53. The heavy solid line represents the groove profile.

tics. It is well known from the early research of
Andrewartha et al. 14 15 that for a perfectly conducting
lamellar grating the groove mode resonances do not
depend separately on the groove period or lamella
thickness but on the groove width, because the
perfect conductivity prevents the coupling of the field
in the neighboring grooves directly through the la-
mella walls. As mentioned above, for perfectly con-
ducting gratings no dips in the total reflectivity are
observed in contrast with the lossy case in Figs. 2
and 3.

All these considerations provide a natural reason to
examine the field distribution inside the grooves in
the anomalous regions. In Figs. 4-6 a two-dimen-
sional cross-sectional map of electromagnetic energy
density, normalized with respect to the incident
energy, is presented for different values of the groove
width d - w, which illustrates from the microscopic
point of view the three peculiarities of the reflectivity
curve of Fig. 3. The figures are ordered in the
direction of increasing groove width. The field distri-
butions in Fig. 4 correspond to the first (deepest)
anomaly around w/d = 0.84, i.e., at the smallest
groove width (d - w)/d = 0.16. A well-distin-
guished maximum of the lowest groove mode can be
observed. Its evolution with an increasing groove
width can be followed easily, whereas for (d - w)/d =
0.15 the groove is a little narrower for the mode, and
at (d - w)/d = 0.18 a formation of the second mode
has already started; the intermediate width (d - w)l
d = 0.16 is most suitable for fitting the mode inside
the groove. Not surprisingly, the 0.16 value corre-
sponds to the position of the first dip in the reflectivity.
As expected, the second and third dips appear when
the groove becomes wide enough for higher modes to
exist (Figs. 5 and 6). At normal incidence the symme-
try of the system forbids excitation of antisymmetri-
cal modes (with an even number of maxima), and only
those with an odd number of maxima lead to an
anomaly in the reflectivity [Figs. 4(b), 5, and 6].

Strictly speaking, mode resonances are described
mathematically by poles of the scattering matrix,
whereas the zeros of the propagating order ampli-
tudes play the major role in the formation of dips in
the efficiency curves. When the media are lossy and
in cases of multiple propagating orders, these poles
and zeros are complex with high imaginary parts, and

their influence on the reflectivity behavior is very
complicated. Instead of analyzing their behavior, we
tried to draw a connection between anomalies in the
reflectivity and the field density distribution, which
has a more direct physical meaning, although this
connection is more difficult to describe mathemati-
cally.

The finite conductivity of the lamellae causes the
transverse component of the electromagnetic field on
the surface to differ from zero, leading to absorption
losses. As a result of the field penetration in the
metal, there is direct coupling between the modes in
the neighboring grooves. The coupling is negligible
for lamellae with higher optical thicknesses, which is
why the anomalies follow phenomenological rule (1)
well in a very large domain. Even for values of d = 1
pm and w/d = 0.53 when the reflectivity is less than
32%, the direct coupling of the field through the
lamellae is very weak (Fig. 7). The coupling becomes
important for very thin lamellae [in the region of
(d - w)/X << 1 in Figs. 2 and 3]. Note that in this
region the total diffracted energy can become consid-
erably low. The position and the values of the
minima depend strongly on the groove depth. A
detailed study of the grating behavior in this interme-
diate region is carried out in Ref. 13, and it is shown
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Fig. 8. Reflectivity as a function of the filling factor w/d for d =
0.01 pLm. Solid curve, modal theory results; asterisks, reflectivity
of a layer with a refractive index given by the homogenization
formula [Eq. (3)].
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Fig. 9. Angular dependence of reflectivity for the grating dis-
cussed in Fig. 8 for two consecutive lamella width values, as
indicated in the figure.

that for h > 2 um the absorption could reach almost
100%. Although the maximum absorption corre-
sponds to the mode excitation inside the grooves (i.e.,
a resonance process), it is not accompanied by any
noticeable field enhancement near the grating surface
(or in the far-field region). Strictly speaking, there
are poles of the scattering matrix corresponding to
the groove mode excitation, but they are located so far
from the real axis that their influence is negligible for
real angles of incidence.

Homogenized Case

After a further reduction in the period, we reach the
well-known situation known as the homogenization
of the grating. At less than some limiting value of d
the incident light no longer sees the grating as a
corrugated structure. The grooves and the lamellae
have average influence, and the grating behaves as a
homogeneous layer with average optical characteris-
tics, isotropic in the TE case and anisotropic in the
TM case.22 Below this limit no further reduction in
the period has any influence on the system response.
This limiting (homogenization) value of d/X could not
be determined by theoretical considerations, and in
our case the saturation value is considerably high.
When d/X < 0.2, neither the reflectivity value nor the
anomaly position varies with a decrease in the period.

The average optical index n of the homogenized
grating is given by22

n2 = n 2(d - w)/d + n2
2 w/d, (3)

where n, and n 2 are the refractive indices of the
cladding and the lamellae. The system reflectivity
obtained by the rigorous modal method and by use of
Eq. (3) is presented in Fig. 8. Because of the imagi-
nary part of n2 , the layer could have high absorption.
In particular, for w/d = 0.04 (a value corresponding
to the dip in Fig. 8) the refractive index n is 0.4637 +
iO.1518. The reflectivity of such a layer deposited on
a metallic substrate has a minimum of 0.057 at a
thickness of h = 0.94 pm.

The nonresonant behavior of this anomaly results
in a relatively flat angular dependence of the reflectiv-
ity (Fig. 9). This fact could be of a great practical
interest, for example, in reducing the radar signal
response from an object covered by such a grating.

Conclusion

A detailed numerical study of anomalous light absorp-
tion by deep metallic lamellar diffraction gratings in
the large interval of groove period values has enabled
us to establish important connections between this
effect and mode excitation inside the grooves, when
the grooves are wide enough and the lamellae are
enough to provide a significant separation between
the electromagnetic field inside each groove. In the
case of small periods (hence a small lamella thickness
as well), when the direct coupling of the field in the
neighboring grooves becomes so large that the grat-
ing is homogenized, a sharp increase in absorption
can be observed in a wide angular interval.

This research was done while E. Popov held a
postdoctoral position in the Laboratory of Electromag-
netic Optics, Marseille, France.
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