
Total absorption of light by gratings in grazing incidence:
a connection in the complex plane with other
types of anomaly

Eugene K. Popov, Lyuben B. Mashev, and Erwin G. Loewen

An explanation is given for the effect of total absorption of light in grazing incidence by a sinusoidal grating,
recently reported by us. The behavior of the zeros of both the first and the zeroth diffraction orders is studied
numerically in the complex a plane. A link between the grating anomaly, non-Littrow perfect blazing, and
plasmon excitation in relief metallic gratings is established. A total analysis of the behavior of the zeroth-

order zero in grazing incidence is carried out, including groove depth, wavelength, and profile dependences.

1. Introduction

In 1902, Wood' was the first to note anomalous
diffraction behavior, writing: "I was astonished to
find that under certain conditions, the drop from max-
imum illumination to minimum, a drop certainly from
10 to 1, occurred within a range of wavelengths not
greater than the distance between the sodium lines"
and he called this phenomenon "singular anomalies."
Since then, investigation of this fascinating topic has
undergone a spiral development: accumulation of ex-
perimental data, an attempt of general explanation, a
new collection of anomalies not corresponding to the
initial explanation, and so on. It is not easy to follow
all the papers devoted to the problem. One can find
earlier reviews on Wood's anomalies published by
Twersky2' 3 or Millar.4' 5 In recent years the works of
Neviere 6 and Maystre 7 have made a significant contri-
bution to the physical understanding of anomalies
connected with surface wave excitation.

Here we outline only the most important moments,
in our opinion, in the history of grating anomalies,
contributions of great meaning to today's concepts-
either discovering new types of anomalies or explain-
ing these new facts and putting them in proper connec-
tion with other already known phenomena. After the
works of Wood, Lord Rayleigh 8 9 was the first to make
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an attempt to explain theoretically the anomalous (i.e.,
unpredictable) behavior of gratings: he proposed that
it is due to threshold effects-cutoff or appearance of a
new spectral order when grating or incident wave pa-
rameters vary. As pointed out by Maystre7 his predic-
tion was all the more remarkable as the author first
ignored the groove frequency of the grating used by
Wood, and thus could not verify this assumption with
experimental data. However, Rayleigh was able to
explain the existence of anomalies only for the TM
polarization (electric field vector perpendicular to the
grooves).

Despite its great successes (mainly in the prediction
of the position of anomaly) Rayleigh's theory was un-
able to describe the exact form of the diffraction effi-
ciency curve. Nevertheless, the so-called Rayleigh hy-
pothesis, the pillar of his method, although not
rigorous in a mathematical sense, seems still quite
attractive to theoreticians.

By making more careful measurements, done by
several authors,10- 2 it became possible to demonstrate
the existence of weaker anomalies in TE polarization
especially pronounced for deeper groove gratings. In
the review paper of Siegman and Fauchet13 the role of
Palmer's work" has been discussed in detail. A con-
tribution to the analysis of anomaly interaction (and
repelling) was made in the work of Stewart and
Gallaway.' 2

Fano14 was the first to distinguish between two types
of anomaly: (i) an edge anomaly, with a sharp behav-
ior connected with the passing off of a higher diffrac-
tion order, and (ii) an anomaly, generally consisting of
minimum and maximum in efficiency, which appears
in a much broader interval.

The second type-of anomaly was described by Fano
as a resonance one-connected with the excitation of a
guided (leaky) wave along the grating surface. Hessel
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and Oliner'5 published a pioneering paper that shows
for the first time theoretically (based on a rigorous
analysis of electromagnetic scattering from a generic
model of a periodic structure yielding a simple closed-
form solution) that Wood's anomaly TM resonances
are of two types, one due to branch point singularities
that correspond physically to the onset of a new propa-
gating spectral order (first indicated by Lord Ray-
leigh), and the other to pole singularities that corre-
spond to the condition of resonance for leaky surface
waves guided by the structure. Although the main
problem in the equivalent surface-impedance ap-
proach used by Hessel and Oliner'5 remained, to know
the surface impedance for a particular structure, they
were able to depict in detail the behavior of diffraction
efficiency both in the vicinity of Rayleigh and reso-
nance anomalies. Furthermore, they established in
the theory of gratings the so-called phenomenological
approach-a means for deeper understanding of the
physical nature of resonance behavior. As became
obvious later on, this approach provided a valid and
powerful tool connecting the symmetry of the system
with the qualitative properties of anomalies and en-
abled prediction of new effects.

Although correctly explaining TM anomalies, the
authors of Ref. 15 speculated that TE anomalies, al-
ready found experimentally by Palmer,"1 could be ex-
plained in similar terms. Such an explanation re-
quires the existence of a proper TE surface wave in the
limit of small modulation depth. As was pointed out
by Tseng et al.,'7 "the idealized surface reactance
structure considered therein need not always be a
physically realizable one." This paper' not only gives
the theoretical arguments for a correct explanation of
TE-type anomaly and its physical nature, but also
establishes the foundations of a modern classification.
It shows theoretically that (i) for the first time TE
anomalies do exist, and (ii) they are not connected with
a surface wave on a flat surface, but with the root of the
dispersion relation situated on an improper Riemann
sheet (nonphysical sheet where the electromagnetic
field does not satisfy the radiation conditions at infin-
ity).

Investigating fin-corrugated perfectly conducting
surfaces the authors were able to connect this anomaly
(exhibited in a Littrow mount) with the half-wave-
length mode resonances in the corrugated region.
They showed that, by varying the groove depth in the
vicinity of an anomaly, the trajectory of the improper
root of the dispersion relation is perpendicular to the
real axis of sinO, where 0 is the angle of incidence.

In 1969, Wirgin and Deleuil'8 were able to find both
theoretically and experimentally this Bragg-type
anomaly, as it was termed by Tseng et al.'

7
, for the case

of lamellar perfectly conducting gratings for both po-
larizations. Effects of finite conductivity and groove
shape for fin, triangular, and sinusoidal gratings on
different kinds of anomaly were analyzed numerically
by Kalhor and Neureuther in 197319 and it was estab-
lished that usually the TE Bragg-type anomaly was
exhibited at larger groove depths compared with the
TM one.

Ebbeson20 made a separate theoretical and experi-
mental analysis of the TM Bragg-type anomaly in fin-
corrugated surfaces. Wirgin and Deleuil'8 called this
Bragg-type anomaly "perfect blazing in Littrow
mount," because the improper root of the dispersion
relation leads to a zero in the specular order, i.e., all the
incident energy is diffracted in the -1st diffraction
order. Hessel et al. in 197521 published a review of the
perfect blazing in rectangular groove gratings. They
showed a nomogram of groove depth h to period d ratio
necessary for TE Littrow perfect blazing (Bragg-type
anomaly) as a function of wavelength X. The most
important feature is that these hid curves do not ap-
proach the abscissa (h = 0). Their analysis was fol-
lowed by the work of Roumiguieres et al.,

2 2 also con-
cerning TM polarization. The main difference
between the two polarizations is that hid values neces-
sary for the existence of TM Littrow perfect blazing
approaches zero as X/d = 2 (i.e., in grazing incidence).
This fact was explained later in the papers of Maystre
et al.

2 3 ' 24 and Breidne and Maystre.25

In these papers23 -25 it was demonstrated theoretical-
ly that another type of anomaly, not known up to that
time, could exist in a non-Littrow mount, consisting of
a zero of the specular order, i.e., a non-Littrow perfect
blazing in -first diffraction order was borne out. It
could be found only in TM polarization, and its con-
nection with other existing anomalies was not yet es-
tablished.

In connection with Bragg-type anomalies (exhibited
only in a Littrow mount) we have to mention the works
of Andrewartha et al.

2 6
,
2 7 which discuss in detail cavity

resonances (modes inside the grooves) in lamellar grat-
ings, represented with poles in the complex a plane.
The lack of the zeroth groove mode for TE polarization
can explain why, for shallow groove depth, the poles
are far from the real axis, so that they lead to anoma-
lous diffraction efficiency curves only for deep grat-
ings. Some recent work of Maradudin and Wirgin
considers the problem of cavity resonances28 29: exci-
tation of the groove modes in very deep (hid = 6.5)
lamellar gratings can result in a significant electromag-
netic field enhancement inside the grooves without
any noticeable effect on the far-field zone, provided
that only the specular order propagates. These reso-
nances can manifest themselves through surface en-
hanced Raman scattering (an extended review can be
found in Ref. 29).

The other main classes of anomaly are the true sin-
gular ones that are connected with the existence of a
proper root of the dispersion relation (pole of the scat-
tering matrix of the system7), connected with the pos-
sibility of guided wave propagation along the flat sur-
face (for more details see Refs. 6 and 7).

Contrary to the Bragg-type anomaly this root lies on
the proper Riemann sheet that corresponds to a physi-
cally meaningful solution of Maxwell's equation,
boundary and radiation conditions. 7 2 6 These surface
waves on the metal-dielectric boundary are plasmons
or polaritons30 and are connected with the collective
oscillations of the electrons in metal near the inter-
face.3' Further development of rigorous electromag-
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netic theories and their numerical implementation32

enables one to predict the existence of one of the most
interesting phenomena in gratings3 3 : a shallow corru-
gation that can lead to a total absorption of incident
light whereas the corresponding flat surface reflects its
almost fully. This effect called Brewster's incidence
in gratings was confirmed experimentally by Hutley
and Maystre 3 4 and can now be considered well investi-
gated.

Very recently we demonstrated both theoretically
and experimentally a heretofore unknown total ab-
sorption of light by a diffraction grating in grazing
incidence3 5 occurring in a specific combination of con-
ditions, namely, the angle of incidence, wavelength,
groove shape, groove frequency, depth modulation,
and polarization. It must be pointed out that the main
difference between the Brewster effect in gratings and
this new grazing anomaly is that the latter is exhibited
when two diffraction orders are propagating; thus a
simultaneous vanishing of both the specular and -1st
diffraction orders is observed.

Here we propose an explanation of this grazing
anomaly based on numerical tracing of both the zeroth
and the first-order zeros in the complex plane of angles
of incidence. Moreover a connection with other phe-
nomena in gratings, plasmon excitation and non-Lit-
trow perfect blazing, is obtained. The calculations
have been carried out using a numerical method3 6

based on the rigorous formalism of Chandezon et al.3 7

The computer code has been generalized to work for
complex values of a = sinG, which needs a normaliza-
tion of the eigenvectors to a modulus of unity. Poles
and zeros have been found using an iterative method of
Newton for complex variables, which seems to be quite
efficient, provided the initial approximation is proper-
ly chosen. Some remarks concerning the complex a
plane are worth noting. When speaking about reso-
nance anomalies it is more convenient to use the sinus
of angle of incidence, rather than the angle itself. The
physical meaning of the quantity a = sinG is that it is
equal to the component k 11 of light wavevector k paral-
lel to the grating plane divided by the wavenumber Iki
= 2r/X. It is useful because surface waves are charac-
terized most often by their propagation constants ag
proportional to the component of the wavevector in
the interfacing plane. On the other hand, with air
being the upper media it is always true that ag > 1, thus
0 cannot be used instead of a. From that point of view,
a generalization to complex values of a appears most
natural, as ag is always complex, since real media are
always lossy. In that case the imaginary part of ag
corresponds to the losses (it is equal to half of the
leakage constant in the direction of surface wave prop-
agation). It is Re(ag) that is directly connected
through the grating equation

sinO =_ am = a + mX/d, in = 0,+1,+2,. (1)

with the proper conditions of surface wave excitation
(i.e., resonance anomaly): am = Re(ag). That is why
the phenomenological formula6,7"15 is usually written
in terms of a rather than of 0.
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Fig. 1. (a) Trajectory of the pole (heavy solid line) and the zero
(solid line) of the zeroth diffraction order in the complex a plane for
S polarization (the electric field vector is perpendicular to the
grooves) and different values of hid; X = 0.6328 jtm, n = 1.378 +
i7.616, d = 0.5 ,um. (b) Detailed picture of the vicinity of the point

(1,0).

11. Zeroth-Order Zero

The results of the numerical tracing of the zero and
the pole of the zeroth diffraction order in the complex
a plane are shown in Fig. 1 for a sinusoidal aluminum
grating with a period d = 0.5 ,um. Depth modulation is
varied from hid = 0 to 0.8. A vertical dashed line at
Re(a) = 1 corresponds to the cut in the complex a
plane7 of the component ko of the reflected zeroth-
order wavevector perpendicular to the grating surface:

6 = (1- a 2)1/2. (2)

The cut is introduced to choose properly the sign of the
complex square root in Eq. (2), defined as Re(o-) +
Im(r) > o.7 For small hid ratios the pole aP in the
complex a plane is connected with surface plasmon
excitation. As hid increases the imaginary part of aP
also goes up, corresponding to the increase of diffrac-
tion losses in the -1st propagation order. Crossing
the cut, the pole is transferred to a zero. This abrupt
change is similar to the transition between the pole and
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Fig. 2. Spectral dependence of (i) position of the real zeroth-order
zero (solid line) and (ii) corresponding to the real zero values of

groove depth (dotted line).

the zero in the reflectivity of a plane surface, when the
imaginary part of the refractive index decreases.6 Di-
minishing njm to dielectric values, the pole due to
plasmon propagation is transferred to a zero, corre-
sponding to Brewster's phenomenon. In our case, the
same effect is obtained by increasing the depth modu-
lation rather than by changing nIm.

It is important to note that, if the sign of a is not
properly chosen, one obtains a pole instead of a zero,
because in this case one stays on the improper sheet of
the Riemann surface (see, for example, Ref. 16).

The next interesting point is found when the curve
crosses the real a axis. This first zero, denoted by af,
does not correspond to a Littrow zero, appearing for h
= 0.194 Am when X = 0.6328 Am. If nim tends to
infinity, af coincides with the non-Littrow zero of the
zeroth order for perfectly conducting gratings, as dis-
cussed by Maystre et al.

2 3 ' 2 5 Furthermore, its spectral
dependence is quite close to that given in Ref. 25, so we
may conclude the identity of the two phenomena. The
second cross-point a'11 is responsible for the reported
anomaly in grazing incidence and occurs for h = 0.345
Am and a = 0.99931. Its spectral dependence is dis-
played in Fig. 2, up to X/d = 1.8. Groove depth values
corresponding to real values of aa are also given. De-
creasing X, af tends rapidly toward ati and at X = 0.54
Am they merge into each other. Below this critical
wavelength real zero does not exist for any groove
depth value, because the trajectory of the zero in the
complex a plane no longer crosses the real a axis, which
fact is illustrated in Fig. 3 for X = 0.52 Am. Increasing
further the modulation depth (Fig. 1) the trajectory of
az crosses the cut and is transferred again into a pole.
Thus a forbidden gap for the excitation of surface
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Fig. 3. Same as Fig. 1 except X = 0.52,um.
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Fig. 4. First-order efficiency as a function of the groove depth for a
perfectly conducting grating with d = 0.5 Am, X = 0.6328 ,um; solid
line, Littrow mount; dotted line, grazing incidence (a = 0.99931).

plasmons in h exists, which gap is smaller for shorter
wavelengths and vanishes below 0.52 Am.

Ill. First-Order Zero and Effect of Total Absorption of

Light

Figure 4 shows the groove depth dependence of -1st
order efficiency q-, for a perfect metal grating. It was
surprising to discover numerically that for h = 0.3606
um (the value of the second zero in Fig. 4) the efficiency

does not exceed 10-3 over the entire range of angles of
incidence, and in particular grazing incidence. Re-
ducing nlm to the imaginary part of the aluminum
refractive index, i-1 no longer remains pure zero, but
always has a minimum, whose position depends on njm.
This dependence, together with the minimum value of
n-1 is plotted in Fig. 5.

The cross-point of the zeros of the first and zeroth
orders (Fig. 5) occurs approximately at n = nAl for X =
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Fig. 5. Values of groove depth h for which (i) the zeroth-order zero
az is real (solid line), and (ii) the first-order efficiency exhibits a
minimum in grazing incidence (dashed line) with the corresponding
values of those minima (dotted line), given as a function of the

imaginary part of the refractive index of the substrate.

0.6328 gm, thus a total absorption of light is observed.
Changing X, the intersection of the two curves occurs at
n #d nAl, but then q, F,-' 0 for a = a. Such peculiar
behavior is characteristic only for sinusoidal gratings.
As is usual in the anomaly domain the diffraction
characteristics are strongly influenced by a small vari-
ation in the grating parameters (therefore rigorous
electromagnetic theories have to be used in such stud-
ies). For example, the influence of the groove profile is
illustrated in Fig. 1(b) of Ref. 6: for a symmetrical
triangular profile with groove depth h = 0.345 Aim,
computation shows that az is not real and the mini-
mum of the zero-order efficiency is therefore not zero.
Profile change leads to splitting of the first and zero
minima. A real value of az = 0.9966 is obtained for h =
0.336 Am, but then -q-1 = 76%.

IV. Discussion

We have demonstrated theoretically that a close
connection exists between the grazing incidence anom-
aly, perfect blazing in a non-Littrow mounting, and
plasmon excitation. Both anomalies are character-
ized by a zero in the zeroth-order efficiency of the
metallic grating, but the grazing one (atzl) is accompa-
nied by an almost zero efficiency in the other (-first)
propagating order, too, thus total absorption of inci-
dent light occurs. The two anomalies (non-Littrow
perfect blazing and grazing total absorption) lie on one
and the same trajectory as a function of the groove
depth in the complex a plane. This trajectory repre-
sents a continuation of the trajectory of the plasmon
propagation constant in the region where the reso-
nance (pole-a solution of the surface wave dispersion
relation) is transferred into a zero of the zeroth-order
efficiency. Thus a proper connection is revealed be-
tween the two recently discovered grating anomalies
and the well-known plasmon excitation.

This connection provides a direct explanation of the
problem described by Breidne and Maystre25; they
have not been able to find any non-Littrow perfect

blazing for TE polarization. Now we can say that this
could have been expected: as far as non-Littrow per-
fect blazing is connected in a peculiar way with surface
wave excitation on a flat metal-air interface and for
TE polarization no such guided wave exists, TE non-
Littrow perfect blazing of the kind discovered in Refs.
23 and 25 is impossible. It is of course worth noting
that any other type anomaly in TE polarization is not
forbidden.

Although grazing incidence anomaly behaves quite
similar to the Brewster effect in shallow gratings,3334

they differ much in their nature. Both are character-
ized by total light absorption by a metallic grating, but
the grazing anomaly is a nonresonance phenomenon,
contrary to the Brewster effect in shallow gratings.
The last is accompanied by a pole, thus a significant
increase in evanescent diffraction orders and in total
field energy is observed, while the grazing anomaly
represents, as far as we know, the first effect of total
absorption of light by metallic gratings nonresonant in
nature and not accompanied by any noticeable field
enhancement.

Three facts are very interesting and need further
investigation:

(i) the existence of a forbidden gap in the groove
depth dependence of plasmon propagation constant:
as a consequence of the results presented in Fig. 1 it
directly follows that a solution of the surface wave
dispersion relation does not exist in the interval 0.22 <
hid < 0.72;

(ii) total depression of the first order in the whole
angular interval provided in the Littrow mount is
equal to zero;

(iii) a possibility to obtain 76% absolute efficiency
of the first order for symmetrical triangular gratings at
an angle of incidence 0 = 85.27°.

E. Popov acknowledges the financial support of the
Committee for Science at the Council of Ministry of
the Peoples Republic of Bulgaria under contract
#648.
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