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Open geometries in static and quasistatic problems

Various attempts to set up infinite elements...

D. A. Lowther, E. M. Freeman, B. Forghani, A Sparse
Matrix Open Boundary Method for the Finite Element
Analysis, IEEE Transactions on Magnetics, Vol. 25, no. 4,
July 1989, pp 2810-2812.
Analytical map of the interior of a circle (disk) on the
exterior of a circle (infinite domain), connecting the
boundary to the boundary of the region of interest.
Limited to 2D Laplace operator (harmonic problems).
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Open geometries in static and quasistatic problems

Solve a 2D harmonic problem on the disk.



Open geometries in static and quasistatic problems

Generalization : surround the Region of Interest by a shell.

J.-F. Imhoff, G. Meunier, X. Brunotte, J.C. Sabonnadière,
On Original Solution for Unbounded Electromagnetic 2D-
and 3D- problems Throughout the Finite Element Method,
IEEE Transactions on Magnetics, Vol. 26, no. 5, September
1990.
Adapted to 3D problems and to various shapes, natural
description of the geometry...
Requires a modification of the operator.



Open geometries in static and quasistatic problems

Generalization : surround the Region of Interest by a shell.
J.-F. Imhoff, G. Meunier, X. Brunotte, J.C. Sabonnadière,
On Original Solution for Unbounded Electromagnetic 2D-
and 3D- problems Throughout the Finite Element Method,
IEEE Transactions on Magnetics, Vol. 26, no. 5, September
1990.

Adapted to 3D problems and to various shapes, natural
description of the geometry...
Requires a modification of the operator.



Open geometries in static and quasistatic problems

Generalization : surround the Region of Interest by a shell.
J.-F. Imhoff, G. Meunier, X. Brunotte, J.C. Sabonnadière,
On Original Solution for Unbounded Electromagnetic 2D-
and 3D- problems Throughout the Finite Element Method,
IEEE Transactions on Magnetics, Vol. 26, no. 5, September
1990.
Adapted to 3D problems and to various shapes, natural
description of the geometry...

Requires a modification of the operator.



Open geometries in static and quasistatic problems

Generalization : surround the Region of Interest by a shell.
J.-F. Imhoff, G. Meunier, X. Brunotte, J.C. Sabonnadière,
On Original Solution for Unbounded Electromagnetic 2D-
and 3D- problems Throughout the Finite Element Method,
IEEE Transactions on Magnetics, Vol. 26, no. 5, September
1990.
Adapted to 3D problems and to various shapes, natural
description of the geometry...
Requires a modification of the operator.



Open geometries in static and quasistatic problems

How to modify simply the code to introduce the new
coefficients ?



Differential geometry of p-forms

Differential geometry of p-forms
p-forms are rank p totally covariant tensors.
Exterior derivative d = differential or gradient of functions,
curl and divergence of vector fields...
dd = 0 for curl grad = 0, div curl = 0 ...
Exterior product ∧ = multilinear antisymmetric map.
Geometric integration

∫
Σ α = line integrals of 1-forms,

surface (flux) integrals of 2-forms, volume integrals of
3-forms...
Stokes theorem

∫
Σ dα =

∫
∂Σ α

All are metric free operations !



Electrodynamics

Maxwell’s equations
curlH = J + ∂tD
curlE = −∂tB
div D = ρ
div B = 0

Poynting identity

div(E × H) = J · E + E · ∂tD + H · ∂tB



Electrodynamics

Maxwell’s equations
dH = J + ∂tD
dE = −∂tB
dD = ρ
dB = 0

Poynting identity

d(E ∧ H) = J ∧ E + E ∧ ∂tD + H ∧ ∂tB

These relations are metric free !



Example of the Faraday equation

In a general coordinate system {u, v ,w} :
The electric field is the 1-form E = Eudu + Evdv + Ewdw .
The magnetic flux density is the 2-form
B = Budv ∧ dw + Bvdw ∧ du + Bwdu ∧ dv .
And dE = −∂tB means
(∂uEv − ∂vEu + ∂tBw )du ∧ dv+

(∂vEw − ∂wEv + ∂tBu)dv ∧ dw+
(∂wEu − ∂uEw + ∂tBv )dw ∧ du = 0



Metric

Distance, angle...
Hodge star operator ∗ maps p-forms on (3− p)-forms.
Example of Euclidean metric in Cartesian coordinates :

∗dx = dy ∧ dz
∗dy = dz ∧ dx
∗dz = dx ∧ dy

This simplicity hides metric aspects in Cartesian
coordinates but the relations are more complicated with a
general coordinate system...



Metric

... and electromagnetic constitutive laws !
For example in free space :

D = ε0∗E

B = µ0∗H
The Hodge star operator is necessary to transform fields
(1-forms) into flux densities (2-forms) !



Coordinate transformation

Considering a map from the coordinate system {u, v ,w} to
the coordinate system {x , y , z} given by the functions
x(u, v ,w), y(u, v ,w), and z(u, v ,w),
All the information is in the transformation of the
differentials and is therefore given by the chain rule :

dx = ∂x
∂udu + ∂x

∂v dv + ∂x
∂w dw

dy = ∂y
∂udu + ∂y

∂v dv + ∂y
∂w dw

dz = ∂z
∂udu + ∂z

∂v dv + ∂z
∂w dw



Coordinate transformation

All the information is in the Jacobian matrix J : dx
dy
dz

 = J

 du
dv
dw


with J defined as

J(u, v ,w) =
∂(x , y , z)

∂(u, v ,w)
=

 ∂x
∂u

∂x
∂v

∂x
∂w

∂y
∂u

∂y
∂v

∂y
∂w

∂z
∂u

∂z
∂v

∂z
∂w





Coordinate transformation

For a 1-form E, the transformation from {x , y , z} to {u, v ,w}
coordinates is performed as follows :

E = Exdx + Eydy + Ezdz = (Ex Ey Ez)

 dx
dy
dz


= (Ex Ey Ez)J

 du
dv
dw





Coordinate transformation

We have also :

E = Eudu + Evdv + Ewdw = (Eu Ev Ew )

 du
dv
dw


and the following relation is obtained :

(Ex Ey Ez) J = (Eu Ev Ew )



Pullback

Direct map :
New coordinates −→ Cartesian coordinates
u, v ,w x(u, v ,w), y(u, v ,w), z(u, v ,w)
=Modelling space =“Physical space”

Pullback :
Forms in ←− Forms in
new coordinates Cartesian coordinates
Eudu + Evdv + Ewdw Exdx + Eydy + Ezdz
etc.



Scalar product of 1-forms

E ∧ ∗E′ = (Ex Ey Ez)(E ′x E ′y E ′z)Tdx ∧ dy ∧ dz
(thanks to the simplicity of Cartesian coordinates)
= (Eu Ev Ew )J−1[(E ′u E ′v E ′w )J−1]Tdx ∧ dy ∧ dz
(using the previous relations between the coordinate systems)
= (Eu Ev Ew )J−1J−T (E ′u E ′v E ′w )T det(J)du ∧ dv ∧ dw .
(transforming the volume form)

A transformation matrix (related to metric tensor !) T is
defined by :

T−1 = J−1J−T det(J)



Scalar product of 1-forms

For two 1-forms E and E′, the scalar product is defined as
follows : ∫

R3

E ∧ ∗E′

Practically, it may be computed as :∫
R3

E · T−1E′dV

where · denotes the “dot product in Cartesian coordinates” and
dV the Lebesgue measure...

Everything behaves as if T were an anisotropic
inhomogeneous tensor material property (inverse
permittivity) !



Scalar product of 2-forms

For 2-forms e.g. :
dx ∧ dy =
[∂x
∂udu + ∂x

∂v dv + ∂x
∂w dw ] ∧ [∂y

∂udu + ∂y
∂v dv + ∂y

∂w dw ] =

(∂x
∂u

∂y
∂v − ∂x

∂v
∂y
∂u )du ∧ dv + (∂x

∂v
∂y
∂w − ∂x

∂w
∂y
∂v )dv ∧ dw + ( ∂x

∂w
∂y
∂u −

∂x
∂u

∂y
∂w )dw ∧ du.

The cofactors of J are now involved in the transformation.
These are the elements of J−T det(J). dx ∧ dy

dy ∧ dz
dz ∧ dx

 = J−T det(J)

 du ∧ dv
dv ∧ dw
dw ∧ dv


Note : J−T means inverse of the transpose of J.



Scalar product of 2-forms

Given a 2-form :

D = Dxdy ∧ dz + Dydz ∧ dx + Dzdx ∧ dy
= Dudv ∧ dw + Dvdw ∧ du + Dwdu ∧ dv

the following relation is obtained :

(Dx Dy Dz) J−T det(J) = (Du Dv Dw )

and the matrix involved in the scalar product is here T (still
equivalent to an inverse permittivity !) :∫

R3

D · TD′dV



Coordinate transformations...

...can be encapsulated in material properties.
Weak formulations (considering here possibly anisotropic materials) involve
terms (3-forms) like

E · εE′, H · µH′ (scalar product of 1-forms type)

curl E · µ−1 curl E′, curlH · ε−1 curlH′

(scalar product of 2-forms type).

Introducing :
1-form transformation : (Ex Ey Ez) J = (Eu Ev Ew )
2-form transformation : (Dx Dy Dz) J−T det(J) = (Du Dv Dw )
and a Jacobian det(J) factor for the measure transformation...
All the terms in the weak formulations can be equivalently
computed by introducing

equivalent material properties ε
eq
, µ

eq
:

ε
eq

= J−1εJ−T det(J)

µ
eq

= J−1µJ−T det(J)



Consequences

Map the transformed domain Ω′ (modelling space) on the
original domain Ω (physical space usually in Cartesian
coordinates) and pullback the covariant objects (physical
equations) to the transformed domain (new model
equations).

Maxwell’s equations, that express topological and
differential metric free relations, may be written in a
completely covariant coordinate free form.
The material properties, involving all the metric aspects,
are written with the Hodge operator and contain all the
coordinate dependent information.

Any change of coordinates can be translated into equivalent
materials given by :

ε′ = εT−1 , and µ′ = µT−1 .

with the matrix T=JTJ/det(J).
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Coordinate transformation and equivalent materials

Equivalent materials mean that
you can work in the new coordinate system just
as if you were still in Cartesian coordinates but
for the ε and µ that have been turned to new
equivalent material properties

ε′ = εT−1 and µ′ = µT−1

with the matrix T=JTJ/det(J) !



Coordinate transformation and equivalent materials

In the more general case where the initial ε and µ are
tensors corresponding to anisotropic properties, the
equivalent properties become

ε′ = J−1εJ−Tdet(J) , and µ′ = J−1µJ−Tdet(J) .

where J−T denotes the transpose of the inverse of J.

The two successive changes of coordinates are given by
the Jacobian matrices JxX and JXu so that

Jxu = JxXJXu .

This rule naturally applies for an arbitrary number of
coordinate systems.
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All fields change...

1-form transformation : (Ex Ey Ez) J = (Eu Ev Ew ) for the
electric field E and also for the magnetic field H, the vector
potential A...
2-form transformation : (Dx Dy Dz) J−T det(J) = (Du Dv Dw )
for the electric displacement D and also for the magnetic
induction B, the current density J, the Poynting vector S...
What does it REALLY means "equivalent" then ?



Global integral quantities are conserved !

Line integrals of 1-forms are conserved (because curves
and 1-forms experience dual transformations) such as
electromotive force, magnetomotive force, magnetic flux
(evaluated with A)...
Surface flux integrals of 2-forms are conserved (because
surfaces and 2-forms experience dual transformations)
such as electric flux, magnetic flux (evaluated with B), total
current, power flow...
Volume integrals of 3-forms are conserved (because
volumes and 3-forms experience dual transformations)
such as total charge, powers...
Measurements are preserved !



T−1 for an open domain (exterior of a disk) mapped on
a circular annulus.

Consider the radial transformation
r = f (r ′) = (R1 − R2)r ′/(r ′ − R2)
so that r ′ = R1 ⇒ r = R1 and r ′ = R2 ⇒ r →∞ .
Define c11(r ′) = df (r ′)

dr ′ and

T−1 = R(θ′)diag(
f (r ′)

c11(r ′)r ′
,
c11(r ′)r ′

f (r ′)
,
c11(r ′)f (r ′)

r ′
)R(θ′)T

where r ′ and θ′ are the well known functions
r ′(x ′, y ′) =

√
x ′2 + y ′2 and θ′(x ′, y ′) = 2 arctan( y ′

x ′+
√

x ′2+y ′2
) and

R(θ′) is a rotation matrix.

x ′, y ′ are the Cartesian coordinates in the annulus
configuration.



Equivalent material for unbounded electrostatic
problem

Electrostatic potential : circular cylinder V = 1, V (r →∞) = 0
⇒ circular equipotential lines !



Open propagation problems : Perfectly Matched
Layers (PML)

Previous technique in not workable for wave propagation
problems because the wavelength is going to zero.

J.-P. Bérenger, A Perfectly Matched Layer for the
Absorption of Electromagnetic Waves, Journal of
Computational Physics, 1994, 114, pp. 185-200.
Nowadays, may be introduced as a complex mapping
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A Complex Change of Coordinates

Consider polar coordinates with ρ the radial coordinate.

Perform the complex change of coordinates ρ̃ =
∫ ρ

0
sρ(ρ′)dρ′ with

sρ a complex valued function (complex radial stretch).

Roughly turns e−iγρ into e−iγρ̃ exponentially decreasing because
ρ̃ is complex (with the good sign of the imaginary part of ρ̃) and it
damps outgoing waves and other leaky modes...

The global coordinate transformation is taken to be identity
(sρ = 1) inside a region of interest (ρ < R∗) and the complex
change of coordinates (sρ complex valued) outside the
region of interest (ρ > R∗) so that the transformed problem
provides directly the required fields in the region of interest (This
will be more clear on an example !)
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PML TPML matrix

The inverse matrix T−1
PML corresponding to the complex stretch

is given by :
ρsρ sin(θ)2

ρ̃ + ρ̃ cos(θ)2

ρsρ

sin(θ) cos(θ)( ρ̃
ρsρ
− ρsρ

ρ̃ ) 0

sin(θ) cos(θ)( ρ̃
ρsρ
− ρsρ

ρ̃ )
ρsρ cos(θ)2

ρ̃ + ρ̃ sin(θ)2

ρsρ
0

0 0
ρ̃sρ

ρ

 .

All the quantities involved in the previous expression can be
given as explicit functions of x and y “pseudo Cartesian

modelling coordinates” : θ = 2 arctan

(
y

x+
√

x2+y2

)
,

ρ =
√

x2 + y2, sρ(ρ) = sρ(
√

x2 + y2), and ρ̃ =
∫√x2+y2

0 sρ(ρ′)dρ′.



A strong test for PML : leaky modes in
Microstructured Optical Fibres

Cross section of a six air hole in silica MOF structure
The hole structure is with Λ = 6.75µm, rs = 2.5µm, the surrounding
annulus used to set up the PML has R∗ = 30µm,R trunc = 40µm

Rtrunc

R∗

x

y

Λ

x

y

n = 1nSi

2rs O



Comparison with the Multipole Method

λ0 = 1.55µm is considered for which the index of silica is about√
εSi = nSi = 1.444024.

The corresponding complex effective index neff = β/k0 is

multipole methods :

1.4387741 + 4.3257457 10−8i

finite element method :

1.43877448 + 4.325885 10−8i

COMSOL Multiphysicsr, about 16, 800 second order triangular elements, 150
seconds on a Pentium M 1.86 GHz, 1Go RAM laptop computer.
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What happens if a Microstructured Optical Fibre is
twisted ?

From translational invariance...

... to twisted structures :

We are going to look for a simple and efficient model i.e. still 2D and
rigorous !
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Helicoidal coordinates

Helicoidal coordinates :
x1 = ξ1 cos(αξ3) + ξ2 sin(αξ3) ,

x2 = −ξ1 sin(αξ3) + ξ2 cos(αξ3) ,

x3 = ξ3 ,

(1)

where α is a parameter which characterizes the torsion of
the structure.

A twisted problem
is a problem whose cross section is independent from ξ3.
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Jacobian matrix of the Cartesian/helicoidal coordinate
transformation

This coordinate system is characterized by the Jacobian
matrix of the transformation :

J(ξ1, ξ2, ξ3) =
∂(x1, x2, x3)

∂(ξ1, ξ2, ξ3)

=

 cos(αξ3) sin(αξ3) αξ2 cos(αξ3)− αξ1 sin(αξ3)
− sin(αξ3) cos(αξ3) −αξ1 cos(αξ3)− αξ2 sin(αξ3)

0 0 1

 ,

which does depend on the three variables ξ1, ξ2 and ξ3.
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matrix of the transformation :

J(ξ1, ξ2, ξ3) =
∂(x1, x2, x3)

∂(ξ1, ξ2, ξ3)

=

 cos(αξ3) sin(αξ3) αξ2 cos(αξ3)− αξ1 sin(αξ3)
− sin(αξ3) cos(αξ3) −αξ1 cos(αξ3)− αξ2 sin(αξ3)

0 0 1

 ,

which does depend on the three variables ξ1, ξ2 and ξ3.



Th matrix for equivalent material in helicoidal
coordinates

The transformation matrix Th for helicoidal coordinates is :

Th(ξ1, ξ2) =
JTJ

det(J)
=

 1 0 αξ2

0 1 −αξ1

αξ2 −αξ1 1 + α2(ξ2
1 + ξ2

2)

 ,

which only depends on the first two variables ξ1 and ξ2...
... allowing a two-dimensional formulation of the twisted
waveguide problem !
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Twisted PML ThPML matrix

Compose the transformation into helicoidal coordinates
with a complex stretch to obtain the twisted PML inverse
matrix T−1

hPML given by :
ρ̃ cos2(ϕ)
ρsρ

+
ρ(1+α2ρ̃2)sρ sin2(ϕ)

ρ̃

sin(2ϕ)(ρ̃2−ρ2(1+α2ρ̃2)s2
ρ)

2ρρ̃sρ
−αρ̃sρ sin(ϕ)

sin(2ϕ)(ρ̃2−ρ2(1+α2ρ̃2)s2
ρ)

2ρρ̃sρ

ρ̃ sin2(ϕ)
ρsρ

+
ρ(1+α2ρ̃2)sρ cos2(ϕ)

ρ̃ α cos(ϕ)ρ̃sρ

−αρ̃sρ sin(ϕ) α cos(ϕ)ρ̃sρ
ρ̃sρ

ρ


All the quantities involved in the previous expression can be
given as explicit functions of the two “helicoidal pseudo
Cartesian modelling coordinates ” ξ1, ξ2 :

ϕ = 2 arctan

(
ξ2

ξ1+
√
ξ2

1+ξ2
2

)
, ρ =

√
ξ2

1 + ξ2
2 , sρ(ρ) = sρ(

√
ξ2

1 + ξ2
2),

and ρ̃ =
∫√ξ2

1+ξ2
2

0 sρ(ρ′)dρ′.



Evolution of the Real Part of Effective Index
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Evolution of the Imaginary Part of Effective Index
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Harry Potter’s physics !

From invisibility cloak...

... to polyjuice potion !



Pendry’s map for cylindrical invisibility cloaks

Map an annulus on a circle and let the EQUIVALENT
MATERIAL to become a NEW PHYSICAL MATERIAL !
Consider a geometric transformation which maps the field
within the disk r ≤ R2 onto the annulus R1 ≤ r ≤ R2 :{

r = f (r ′) = (r ′ − R1)R2/(R2 − R1) for R1 ≤ r ′ ≤ R2,

θ = θ′, z = z ′.

where r ′, θ′ and z ′ are “radially contracted cylindrical
coordinates”. Moreover, this transformation maps the field for
r ≥ R2 onto itself by the identity transformation.



Pendry’s map for cylindrical invisibility cloaks



Cloaking

The material properties of the invisibility cloak are given by :

T−1 = R(θ′)diag(
r ′ − R1

r ′
,

r ′

r ′ − R1
, c2

11

r ′ − R1

r ′
)R(θ′)T

where c11 = R2/(R2 − R1), r ′ and θ′ are the well known
functions r ′(x ′, y ′) =

√
x ′2 + y ′2 and

θ′(x ′, y ′) = 2 arctan( y ′

x ′+
√

x ′2+y ′2
), and R(θ′) is a rotation matrix.

x ′, y ′ are the Cartesian coordinates in the annulus
configuration.



Cloaking

... and we have got the recipe for the cylindrical circular
cloak !



Cloaking

In Photonics conferences, courtesy requires that you leave
your cloak in an appropriate place !



Mirage effect

The light source can also be inside the cloak !
In this case, the object in the cavity is still invisible and the light seems
to be emitted from a shifted position (mirage effect).



Cloak of arbitrary shape

Make the radii depend on θ : R1(θ), R2(θ).
The geometric transformation which maps the field within the
full domain r ≤ R2(θ) onto the hollow domain
R1(θ) ≤ r ≤ R2(θ) :

r ′(r , θ) = R1(θ) + r(R2(θ)− R1(θ))/R2(θ) , 0 ≤ r ≤ R2(θ)

θ′ = θ , 0 < θ ≤ 2π

z ′ = z , z ∈ R ,

and the transformation maps the field for r ≥ R2(θ) onto itself
by the identity transformation. This leads to

Jrr ′ =
∂(r(r ′, θ′), θ, z)

∂(r ′, θ′, z ′)
=

 c11(r ′, θ′) c12(r ′, θ′) 0
0 1 0
0 0 1





Cloak of arbitrary shape

Jrr ′(r
′, θ′) =

∂(r(r ′, θ′), θ, z)

∂(r ′, θ′, z ′)
=

 c11(r ′, θ′) c12(r ′, θ′) 0
0 1 0
0 0 1


where c11(r ′, θ′) = R2(θ′)/(R2(θ′)− R1(θ′)) for 0 ≤ r ′ ≤ R2(θ′)
and c11 = 1 for r ′ > R2(θ′)

and c12(r ′, θ′) =
(r ′−R2(θ′))R2(θ′)

dR1(θ′)
dθ′ −(r ′−R1(θ′))R1(θ′)

dR2(θ′)
dθ′

(R2(θ′)−R1(θ′))2

for 0 ≤ r ′ ≤ R2(θ′)
and c12 = 0 for r ′ > R2(θ′) .



Cloak of arbitrary shape

Finally, the properties of the cloak are given by :

T−1 = R(θ′)


c2

12+f 2
r

c12fr r ′
− c12

fr
0

− c12
fr

c11r ′

fr
0

0 0 c11fr
r ′

 R(θ′)T

with

fr =
(r ′ − R1)R2

(R2 − R1)
.

The central matrix depends on θ′ !



Elliptical cloak as a particular case

Parametric representation of the ellipse
R(θ) = ab√

a2 cos(θ)2+b2 sin(θ)2



Cloak of arbitrary shape

Use Fourier series R(θ) = a0 +
∑n

i=1(ai cos(iθ) + bi sin(iθ)) to obtain general
shapes :
R1 is with a0 = 1, b1 = 0.1, a2 = −0.15, b3 = 0.2, a4 = 0.1,
R2 is with a0 = 2, a2 = −0.1, a3 = −0.15, b3 = 0.3, a4 = 0.2,
all the other coefficients = 0.



Cloak of arbitrary shape

Zoom on the cloak and the source...



Geometric transformation of non homogeneous media

The geometric transformation is performed
pointwise on the disk :

ε′(x′) = J−1(x′)ε(x(x′))J−T (x′) det(J(x′)),

µ′(x′) = J−1(x′)µ(x(x′))J−T (x′) det(J(x′)).

These formulae are valid for any initial
content of the central disk !



Masking effect

Scattering of cylindrical waves (real part of Ez ) by a conducting
object of triangular cross section :



Masking effect

Transforming a non homogeneous region :

The cross sections of the boundaries of homogeneous regions (jumps
of material properties) are curves (here, the triangle) and are therefore
contravariant.
They are pushed forward along the r ′ = f −1(r) inverse map (that is
fortunately simple) :

x′(t) = f −1(x(t)) = (
R2 − R1

R2
+

R1

‖x(t)‖ )x(t),

The anamorphosis of the triangle is described by three splines
interpolating each 40 points.



Masking effect

Geometry description and meshing are performed with
GetDP and Gmsh.
The inner boundary of the cloak must be very finely
meshed because of the singularity of the material
properties.



Masking effect

Outside the cloak, the scattered field is left unchanged with
respect to the initial situation !



Masking effect

Compare the field outside the disks :



A multivalued map

The negative slope corresponds to Negative Refraction Index
materials and should provide superlenses.

J B Pendry, Phys. Rev. Lett. 85, 3966 (2000)
Ulf Leonhardt and Thomas G Philbin, New J. Phys. 8 247 (2006)
Min Yan, Wei Yan, and Min Qiu, Phys. Rev. B 78, 125113 (2008)



Superscatterer

Without losses : anomalous resonances* are dazzling !
* N. A. Nicorovici, G. W. Milton, R. C. McPhedran, and L. C. Botten, Optics
Express, Vol. 15, Issue 10, pp. 6314-6323 (2007)



Superscatterer

With 1/1000 losses in the superlens : the two images of the
sources appear !



Superscatterer

With 1/100 losses in the superlens : the disturbance is still
reasonable and the three copies of the source appear clearly !



Superscatterer

Remote control : a small scatterer close to the interior image of
the source acts as a large one (magnification factor = 4) on the
source (1/100 losses in the superlens) !



Superscatterer

Remote control : a small scatterer close to the interior image of
the source acts as a large one (magnification factor = 8) on the
source (1/100 losses in the superlens) !



Superscatterer

Remote control : a small scatterer close to the interior image of
the source acts as a large one (magnification factor = 8) on the
source (1/100 losses in the superlens) ! (zoomed)



Superscatterer

Can you force the light to go to the left with a device located on
the left of the source ?



Superscatterer

No ! The scatterer is a PERTURBATION of the folded geometry
and its presence prevents the correct formation of the image
source !



Metamaterials in electromagnetism

Periodic structures

1D : gratings, Bragg mirrors...
2D : biperiodic gratings, microstructured optical fibres...
3D : Photonic Crystals (photonic band gap)...

Plasmonic - metallic nanostructures for optics (Re(ε) < 0,
Im(ε) very small, size < λ),
Split Ring Resonators for microwaves
Wire media.
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Metamaterials in electromagnetism

Periodic structures
1D : gratings, Bragg mirrors...
2D : biperiodic gratings, microstructured optical fibres...
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Metamaterials in electromagnetism

Microstructured optical fibre made of
chalcogenide glass manufactured at
the Université de Rennes (ext. diam.
= 139 µm).

Split Ring Resonator device with
printed copper "double C" for
microwave experiments.



Metamaterials in electromagnetism

Purpose : obtain new artificial properties :
Negative Refraction Index for Perfect Lenses

Photonic Band Gap and Epsilon Near Zero for guiding light
in defects
Invisibility Cloaking

Homogenization :

Find equivalent material properties ( ε, µ ... ) in order to
represent the metamaterial as an homogeneous medium !
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Metamaterials in electromagnetism

Purpose : obtain new artificial properties :
Negative Refraction Index for Perfect Lenses
Photonic Band Gap and Epsilon Near Zero for guiding light
in defects
Invisibility Cloaking

Homogenization :

Find equivalent material properties ( ε, µ ... ) in order to
represent the metamaterial as an homogeneous medium !



Wire Media

Set of parallel metallic or dielectric wires of FINITE length
periodically disposed.
This media is completely transparent for waves without a
component of the electric field transverse to the wires !

L

d

r

Incident field



Wire Media : Bouchitté - D. Felbacq approach

In

[BF] Homogenization of a Wire Photonic Crystal : the Case os
Small Volume Fraction, G. Bouchitté and D. Felbacq, SIAM J.
APPL. MATH., Vol. 66, No. 6, pp. 2061-2084, 2006.

the medium is not represented by equivalent ε and µ but by non
local homogeneous properties : equivalent sources given by a
PDE coupled to the field and involving homogeneous
coefficients !



Wire Media : asymptotic model

Define : k0 := 2π/λ (wave number), η := d/λ (relative size of
the cell), f := πr2/d2 (filling factor), and Z0 :=

√
µ0
ε0

(free space
impedance)

λ, L are finite

and

d , r , σ−1 → 0 with

κ =
σfZo

k

γ = −[
1

2
log(

f

π
)η2]−1

remaining FINITE (critical behaviour).



Wire Media : equivalent system [BF]

E electric field, H magnetic field, y unit vector , j equivalent
sources (y component = direction of the parallel wires)


curlE = iωµ0H

curlH = −iωε0 (E + ijy)

∂2j

∂y2
+ K 2j = 2iπγE · y

with K 2 := k2
0 + 2iπγ

κ .
+ Boundary Conditions (cf. [BF])

Note : γ is geometrical and therefore real while κ depends on
the medium and is possibly complex and even purely imaginary
in the case of high permittivity dielectrics (σ + ωε′′ − iωε′).



Wire Media : direct validation (A. Cabuz)

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

Angle of incidence θ [deg]

Energy efficiencies

 

 

FIG.: Transmission (solid), reflection (dot-dashed) and absorption (dashed) efficiency
curves comparing the finite element solution (dot markers) and the effective medium
(no markers) as a function of angle of incidence. The wire conductivity is that of Toray
T300 R© carbon fibers σ = 5.89 · 104(Ωm)−1. The structure has period d0 = 0.01m, and
dimensionless parameters L/d0 = 80, λ/d0 = 20, r/d0 = 3.5 · 10−4, and δ/r = 15.
Energy conservation of the finite element model (× markers) is respected to within
better than one percent for most angles of incidence. The departure around 80◦ is
explained by the poor performance of the PML absorbing layers when close to grazing
incidence.



Wire Media : direct validation (A. Cabuz)

FIG.: Squared magnitude of the current density for the effective medium model
(dashed) and the finite element solution (solid) as a function of position within the slab
(which is positioned in z ∈ (0, L)). The structure is the same as in previous Fig.,
illuminated at an angle of incidence θ = 40◦ from the top. Note that the surface areas
under the two curves are the same because they are proportional to the Joule
dissipation rates, which are seen to be equal from previous Fig. at the given angle of
incidence.



Ch. Bourel Ph. D. Thesis, Dec. 2010 supervised by G.
Bouchitté, USTV

Theoretical tool : two-scale convergence.
Theorem : Given a frequency, a real number h, and an
arbitrary real symmetric tensor M, by the homogenization
of a periodic structure made of parallelepipeds containing
inclusions that are an homogenized wire media (iterated
homogenization), it is possible to build a media such that
the effective permittivity has a real part equal to M and an
imaginary part bounded by h (and the effective
permeability is equal to 1).
It is possible to obtain strong artificial magnetism with a
periodic structure of dielectric inclusions.



Conclusion

Coordinate transformations with equivalent materials
provide a useful tool to set up several problems :

Modelling of open problems including propagation problems
and leaky modes, helicoidal geometries...
Design of new device/EM exotic properties : invisibility
cloaks, masking devices, perfect lenses with negative
refractive index materials...

They also provide another argument for the use of
differential geometry to manipulate Maxwell’s equations !

Thank you for your attention !
andre.nicolet@fresnel.fr
http ://www.fresnel.fr/perso/nicolet/
This work has been performed in the framework of the
OPTRANS project - ANR-10-BLAN-0124-02.
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