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Abstract

HIS thesis is devoted to the development of computer vision methods which must

be robust to variations due to acquisition conditions and processing in real-time
in applicative contexts.
The objective is to create a touchless human-machine interface (HMI). At first, we de-
scribe the various problems which are specific to the existing databases. At the same
time we present the principal postures that compose the dictionary of gestures which
we retained. This leads us to conclude that we need to create our own database. In a
second phase, we are interested in a gesture recognition system that can be decomposed
into 3 steps: detection, characterization and recognition.
In the detection step we mentioned two types of detection methods: one for static
gestures and the second for dynamic gestures (movements), we adapt optical flow tech-
niques to hand detection. This adaptation allows us to extend the detection of static
gestures regardless of the color of the skin and track the trajectory of the hand in a
video stream.
The characterization step commits in transforming an image into a set of signals which
characterizes a clearly defined posture by its contour. We notice that a hand contour
is generally non star-shaped, so we apply the methods adapted from array processing
to this type of contours which have given previously convincing results. We propose a
new signature which involves the generation of signals. We describe the generation of
different signals and we show the various invariance properties of this new characteri-
zation method.
The proposed signature is a sparse matrix of considerable size, hence our proposal to
apply principal component analysis (PCA) to reduce the dimension of matrix signa-
ture. We also reduce the dimension of the test vocabulary set, through a first rejection
test based on a geometric criterion (the isometric rate). The basic principles of the
recognition step are as follows: a learning phase permits to define a set of reference
signatures. In the subsequent test phase, the signature obtained from the tested images
is compared with the reference signatures.
We present recognition results obtained with dimension reduction by PCA and by
adopting the Euclidean and Mahalonobis distances. Comparative methods are also
considered: we discuss the advantages and limitations of our methods, the recognition
rate and the computational load.

Keywords: Hand posture; gesture recognition; classification algorithm; principal
component analysis; biometrics; array processing; optical flow; hand database; human-
computer interaction.






Résumé

ETTE thése est consacrée au développement des méthodes de vision par ordina-

teur robustes aux variations dues aux conditions pratiques et exploitable en temps
réel dans des contextes applicatifs.
L’objectif est de créer une interface homme-machine sans contact. Dans un premier
temps, nous décrivons les différents problémes spécifiques aux bases de données exis-
tantes et les principaux postures qui vont servir pour construire et fixer le dictionnaire
de gestes qui nous avons retenu. Ce qui nous a conduit a conclure & la nécessité de
créer notre propre base de données. Dans un deuxiéme temps, nous nous sommes in-
téressés au systéeme de reconnaissance gestuelle qui peut étre décomposé en 3 étapes :
la détection, la caractérisation et la reconnaissance.
Dans I'étape de détection nous avons mentionné deux types de détection: la premiére
pour les gestes statiques et la seconde pour les gestes dynamique (mouvements), nous
montrons ’adaptation des techniques de flux optique pour la détection de la main.
Cette adaptation nous permet d’étendre la détection de gestes statiques indépendam-
ment de la couleur de la peau et de suivre la trajectoire de la main dans le flux vidéo.
L’étape de caractérisation consiste a transformer une image en un ensemble de sig-
naux qui caractérise une posture clairement définie par son contour et qui permet
de comparer ces critéres avec des critéres de postures stockées et définis a I'étape
d’apprentissage. Nous notons que le contour de la main peut étre un contour non
étoilé, par conséquent, nous appliquons des méthodes de traitement d’antenne qui ont
déja donné de bons résultats pour ce type de contours.
Nous détaillons la génération de différents signaux et nous montrons les différentes
propriétés d’invariance de cette nouvelle méthode de caractérisation. La signature pro-
posée est une matrice creuse de taille considérable, d’olt nous avons proposé d’appliquer
’analyse en composantes principales (PCA) pour réduire la dimension des données.
Nous réduisons également la dimension de I’ensemble de vocabulaire de test & travers
un premier rejet basé sur le critére géométrique (taux isométrique).
Nous présentons les résultats de la reconnaissance obtenus avec réduction de dimension
par PCA et en adoptant les distances euclidienne et de Mahalonobis, et nous les com-
parons avec d’autres méthodes. Finalement, nous discutons les avantages et les limites
de nos méthodes ainsi que le taux de reconnaissance et le temps de calcul.

Mots clé: Posture de la main; reconnaissance des gestes; algorithme de classification,
analyse en composantes principales; biométrie, traitement d’antenne, flux optique, in-
teraction homme-machine.
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Introduction

General context

HE subject of our research concerns the conception and the development of meth-

ods of computer vision for hand gesture recognition. Our work is inserted in the
design of a human-machine interface which aims transforming a classical screen in an
interface without contact and at allowing the use of the finger as a pointing device. The
hand gestures are a natural and intuitive way of communication which allow humans
to interact with their environment. They permit to designate or manipulate objects,
to enhance the speech, or to communicate basically in a noisy environment. They can
also represent a language in its own right with sign language. Gestures can have a
different signification depending on the language and culture : the sign languages in
particular are specific to each culture.
Thinking on what to use as gestures or postures is necessary, to ensure that users can
intuitively realize them, or with a limited period of learning. What gestures should
you use? Are they easy to reproduce? To what actions are they intuitively associated?
These are the questions that should be asked while building a gesture database.
In general, the gesture is assimilated to all the movements of a body part. The hand
gesture is both a means of action, perception and communication.

For Cadoz [25], the gesture is one of the richest way of communication. Thus, in the
field of Human-Machine Interfaces (HMI), the hand can be used to point (to replace the
mouse), to manipulate objects (for augmented or virtual reality), or to communicate
with a computer through gestures. Compared to the affluence of information conveyed
by hand gestures, the possibilities of communication with computers are reduced today
with the mouse and keyboard. The man-machine interaction is currently based on the
WIMP (Window, Icon, Menu, Pointing device) paradigm that presents the functional
basis for a computer graphical interface.

The majority of operating systems are based on this concept, with a pointing device,
usually a mouse, which allows to interact with graphical elements such as windows,
icons and menus, we can say with a more intuitive way than the textual interface
(command line). Using hand gestures, the interface becomes perceptual (PUI 3).

The gesture recognition systems first used electronic gloves with sensors providing the
hand position and angles of the finger joints. But these gloves are expensive and
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bulky, hence the growing interest for the methods of computer vision. Indeed, with
the technological progress and the apparition of cheap cameras, it is now possible to
develop systems of gesture recognition based on computer vision, running in real time.
However, the hand being a complex organ, deformable, having a many degrees of liberty
in the joints, it is difficult to recognize its form images without some limits and priors.
Indeed, human beings can naturally perform a very large number of different gestures.

With the development of acquisition technologies and gesture recognition tech-
niques, many application domains have emerged :

e Recognition of sign language.

e The Virtual reality, where the hand is used to manipulate virtual objects and
trigger actions, or navigate within a virtual environment.

e The Augmented reality, where the physical world is increasing with virtual infor-
mation, for example by a retro-projection.

e The Multimodal applications, combining gesture with other means of communi-
cation, such as speech or facial expressions.

e The Coding and the transmission of gestures with low output for Tele-conference.

e The biometry, for the recognition of persons with the hand form.

Subject of research and industrial context

We aim at developing computer vision methods that meet specific criteria, in an
applied context. Indeed, computer vision offers many possibilities, but some solutions
are not suitable for our application, mainly because of a lack of robustness to the
actual conditions or too much complexity to be implemented in real time.

For economic and hygiene reason, this project is based on the development
of a touchless human-machine interface, and allows to transform a classic screen
into a tactile one. Manipulating an interface without having to touch it reduces
the maintaining costs, generalizes its use thanks to hygiene standards, and makes
interaction more convivial. The industry collaboration behind this thesis has guided
the choice of the materials used, the selected methods and constraints to solve.

The thesis was conducted in the context of a project funded by the PACA re-
gion (Provence-Alpe-Cote d’Azur) and the firm Intui-sense technologies. Intui Sense
provides interactive solutions with intuitive interfaces based on innovative touchless
technologies for retail applications, in particular for the vending industry.

Among the constraints imposed and to resolve, we cite:
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e cameras of low-cost types,

e processing in real-time,

e methods must be robust to acquisition conditions,
e constraints imposed on users should be minimal,
e presence of other objects in the field of camera,

e treatment of fast and slow motion.

A study of the literature on the field is necessary and will allow us to analyze
the different approaches and choose the most suitable approach to our application.
We then propose techniques to implement the various steps of a gesture recognition
system, decomposed according to the following scheme:

1. for each frame:

e detection and segmentation of the hand,
e extraction of features representing the posture of the hand,
e extraction of the center of the hand,

e recognition of gestures from a predefined set (dictionary).
2. for the video stream:

e track of the center of the hand to determine its trajectory

Organization of the manuscript

This manuscript is organized in two parts.

1. A first part consists of two chapters:

e Chapter 1 presents the state of the art of the whole process of gesture recog-
nition process. This chapter is divided into three sections: section 1.2 that
includes various methods and techniques used for the detection and segmen-
tation, section 1.3 is devoted to the aspect of characterization and extraction
of features that can well describe the same posture with different transfor-
mations, section 1.4 shows the different techniques used in the literature to
discriminate and distinguish different classes.

e In Chapter 2 we describe the different problems of existing databases and
different postures which allows us to build and fix our dictionary of gestures.
We deduce from these issues the necessity to create our own database with
our postures. It seems very important to us to conduct this project properly
forward.
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2. The second part consists of four chapters:

e Chapter 3 is devoted to the tools of image processing adopted from array
processing. We remind in section 3.2 the detection of straight contours in im-
ages and in section 3.3 we extend these methods to circular contours. Section
3.4 shows the technique to determine a blurred contour. In the last section
(3.5) we discuss the adaptation of these methods of array processing to dis-
torted circular contours. We focus on the characterization of star-shaped
contours which are strongly distorted. Noticing that the hand contour is ap-
proximately circular and very distorted, we decided to include these methods
in the characterization of hand postures. However, it has been necessary to
adapt these techniques because none of them handles the case of non star-
shaped contours.

e Chapter 4 is devoted to the definition of a new feature extraction method for
hand postures. We propose a new signature which involves the generation of
signals. We detail how the different signals are generated and we prove the
different properties of this new characterization method. Finally, we explain
the technique of dimension reduction with PCA and its relevance.

e In Chapter 5 we define the optical flow technique, which is used for track-
ing and smoothness and we prove the adaptation of this technique for the
detection of the hand. This adaptation allows us to extend the detection to
colored people hand, which was not treated yet.

e The final chapter (6) contains the different results and the whole process of
our algorithm. We detail the different preprocessings used to improve the
different process steps. We present the results obtained with the new ap-
proaches used for the recognition and we compare them with other methods.
Eventually we discuss the advantages and limitations of our methods as well
as the recognition rate and the computation load.

We finalize the manuscript by a general conclusion, as well as further prospects.



Part 1

State of the art and hand database






CHAPTER
State of the art

1.1 Introduction of the chapter

ITH the development of computer systems and their ever growing embedded

presence into our daily life, the question of convenient and natural types of
human-computer interaction becomes crucial. If user-computer relationships have al-
ready evolved in that sense, going from cumbersome text-based command lines to ded-
icated devices such as mouse or pen, they still remain restrictive. One way to simplify
the means of interacting with computers consists in using hand gesture interfaces.

Two ways exist to turn hand gestures understandable by computers. The first one
relies on the use of extra sensors, such as magnetic ones or data gloves. If these instru-
ments often help in collecting accurate information, they also act as a brake upon free
movements. The load of cables connected to the computer, induced by this approach,
indeed hinders the ease of the user interaction. A less intrusive solution resorts to
vision-based systems. Even though it is difficult to intend a generic interface using
this technique, this approach has many appealing advantages. The most interesting
among these is undoubtly the naturalness of interaction, which results in a much more
intuitive communication between human and computers. Many application domains
take interest in gesture interaction, one can quote among others : computer games
development, virtual reality, robot control or sign language interpretation.

Systems that employ hand driven Human-machine interfaces (HMI) interpret hand
gestures and postures in different modes of interaction depending on the application
domain. Previous works have concentrated on hand gesture classification [19, 115],
where gesture command is based on slow movements with large amplitude (see for
instance in [115] the twelve types of hand gestures). To our knowledge, future applica-
tions should concern the classification of hand posture, for the purpose of automated
sign language decoding for instance. Contrary to hand gesture, hand posture describes
the hand shape and not its movement.

A hand can exhibit a great variety of postures, and it is extremely difficult to
recognize all possible configurations of the hand starting from its projection on a 2-D
image. Indeed, some parts of the hand can be hidden. It is necessary to consider
subsets of postures depending on the application. Different technologies have been
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developed in order to recognize gestures. It is therefore difficult to achieve a state
of the exhaustive art of the field. We try, in this chapter, to present a state of the
art of some approaches based on computer vision in the context of Human-Machine
Interfaces. Generally, a gesture recognition system can be decomposed in several steps:
detection, characterization and recognition. The questions that arise here, and for
which we have responded in different sections are the following: how can we detect the
hand in any scene? How can we characterize the hand numerically? What methods
are used to classify or rather recognize the type of posture?

1.2 Hand detection

A hand is the source of a wide variety of postures. Different devices allow interac-
tion with a computer through the hand (mouse, data gloves, touches screens, ...).
However, these devices have some limitations. Moreover, the scientific and technical
developments offer new possibilities of interaction, more natural and intuitive, based
on gestural channel. There are many applications such as the augmented or virtual
reality, the recognition of sign language, the control articulated arms, or the biometrics.
One of the more developed applications consists on making an interactive surface. In
detection step we can distinguish two main categories of gestures: static gestures and
dynamic gestures.

1.2.1 Static gestures recognition

The basic aim of this step is to optimally prepare the image obtained from a camera in
order to extract the features in the next step. How an optimal result looks like depends
mainly on the next step, since some approaches only need an approximate bounding
box of the hand, whereas others need a properly segmented hand region in order to get
the hand silhouette. In general, some regions of interest, that will be subject of further
analysis in the next step, are searched in this phase.

The most commonly used technic to determine the regions of interest is skin color
detection. A previously created probabilistic model of skin-color is used to calculate
the probability of each pixel to represent some skin. Thresholding then leads to the
coarse regions of interest. Analysis of the skin color is used to detect the face and
hands. Indeed, Jones and Rehg [63] have shown that skin color has a characteristic
distribution in certain color spaces, and that this property can be used to segment
regions of skin color, regions are delimited by contours.

A rule of thumb about contour characterization methods such as Fourier descriptors
[19, 34] is that they require a binary image I, possibly noise-free. The same constraint
holds in the frame of our work. To perform hand contour detection, some classical pre-
processing methods have been applied in previous works [15, 16, 19, 34]: the Y C,C.
mapping, using the Y'C,C, space, which consists of a luminance component (Y') and
two chrominance (Cj, and C,.) and the selection of the C, component, emphasize the
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hand surface with respect to the background. The transformation is linear with the
RGB space. The non-moving background is then removed, by substraction of a frame
where the hand is not present.

@) (b) © )

Figure 1.1 — Hand segmentation examples: (a) and (b), on a gray image from the Triesch
database, with threshold; (c) and (d) from internal database, with thresholds on Cj and C'.

There are many other color spaces, the most used are RGB, HSV and YCbCr.
Phung et al. [89] compared the performance of these spaces and they found out that
the results are very similar, regardless of the color space. Thus, the choice of a color
space must be depending on the format of the images and any pre-treatment. Some
further analysis could for example involve the size or perimeter of the located regions
in order to exclude regions such as the face.

In [99], Soriano et al. propose a dynamic skin color model, for a segmentation
purpose. Their method copes with changes in illumination. However, their method
is applied to faces and not to hands. In [112], a set of relevant grey level values are
selected from chromatic histograms to segment face. To create a chromatic histogram,
an HSI mapping is performed, and a 2-D map of the couples (H,S) for each pixel is
computed. The chromatic histogram exhibits the advantage of being insensitive to
scaling, and rotation. However, authors must combine the chromatic histogram with
the prior knowledge of the approximate shape of faces to detect them. The main
drawback of Y C,C, or HSI mappings is that they do not handle hands of colored
people.

Yet another interesting approach is to use a previously acquired image of the back-
ground, substracting it from the image with the posture, as proposed in [95]. Based
on perimeter lengths, the hand region can then be extracted.

1.2.2 Dynamic gestures recognition

A dynamic gesture corresponds to a time variation in the shape and the position of
the hand. The first challenge is to locate temporally the realization of a gesture, that
is to say, to determine the start and end of the gesture. A gesture is divided into three
stages: a preparatory phase, gesture, and withdrawal phase. A major difficulty arises
from the variation of the period of execution of a same gesture. It is therefore necessary
to perform temporally normalization of the duration of the observations.
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The Dynamic Time Warping (DTW) compares two temporally sequences of differ-
ent lengths, stretching or reducing their length, implying that the beginning and end
of the gesture are determined. Darrell and Pentland [36] use this method: gestures are
modeled by scores of correlation with a set of models, which are accumulated to form
a signature. The Dynamic Time Warping allows comparing signatures.

(k)

Figure 1.2 — Dynamic gestures: (a) MET and MHI [14], and (b) signature of a dynamic gesture
by superimposing the skeletons of sequence images [59].

Bobick and Davis [14] use temporal models for the recognition of human movement:
the "image of the motion energy" (MEI), and the "image of the movement history
"(MHI). These images are formed by the accumulation of motions of each pixel over
a time window (see fig 1.2 (a)). The images are described with the invariants of Hu,
and gestures are classified using the Mahalanobis distance. Tonescu et al. [59] propose
a method for dynamic gesture recognition based on skeletons. Static signatures of the
beginning and the end of gestures are calculated with a Histogram of Oriented Gradient.
The dynamic signature is obtained by superimposing the skeletons of sequence images
(see fig 1.2 (b)). Zhu et al. [115] segment the hand with the color, associated with
motion detection.

The spatio-temporal representation of a gesture is made with motion estimation
based on a parametric model and a description the shape of the hand with the geo-
metrical moments. After a temporal normalization with a method of linear sampling,
the recognition is performed with a distance with models that were learned previously.
In their application, 12 gestures are used to navigate with a panoramic view. Kong
and Ranganath [68] use a hierarchical approach to recognize 3d trajectories, periodic
or not (see figure 1.3). The detection of periodicity is based on Fourier analysis. The
trajectories are then recognized with a variant of the ACP.

The Hidden Markov Models (HMM) have been successfully used for long time in the
field of speech recognition. By analogy, they have been used for gesture recognition
and interpretation of sign language, first with data gloves (Braffort [23]), then with
computer vision where different models have been developed. Among the first studies
in this field, Starner and Pentland [100, 101| use the HMM for the recognition of 40
signs from the American Sign Language (ASL), with a single camera.

The features used are the center of the hand and elliptical bounding box, obtained
with the principal axes. Marcel et al. [74] propose a hybrid approach between HMM
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Figure 1.3 — 3D trajectories [68] : (a) non-periodic and (b) periodic.

and neural networks, called "Input-Output Hidden Markov Models", to recognize four
gestures in using the center of gravity of the hand. Wilson and Bobick [109] propose
a HMM parametric form, to estimate the direction of movement in a pointing gesture.
Vogler and Metaxas [105, 106] propose the "Parallel HMM " to model separately the left
and right hands, and to recognize 53 gestures of American Sign Language, continuously.

Sato et al. [85, 93] track a monitoring of the hand and the fingertips, in two
dimensions, for Enhanced Desk system. An infra-red camera facilitates the detection
of the hands, and then each finger tip is detected by correlation with a circle, and
followed with a Kalman filter. The thumb is detected to differentiate a "handling"
mode from a "symbolic gesture" mode. The symbolic gestures recognition is based on
HMM with 12 different gestures (see figure 1.4). Similarly, Martin and Durand [79] use
HMM for handwriting recognition in 2D, with letters from an alphabet.

Figure 1.4 — The EnhancedDesk system [85] : (a) track multiple finger tips, and (b) trajectories
recognized by HMM.

1.3 Hand characterization

In this section, we focus on the extraction of a vector or matrix of features to represent
the shape of the hand. Since the appearance of the hand in an image can vary greatly
depending on the perspective, for the same configuration, we seek euclidean transfor-
mations (translation, rotation, scaling), which represent most of the changes we face.
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In order to characterize an object (various hand postures) that can appear at different
scales and orientations, descriptors which are invariant to these transformations must
be used.

The descriptors can be divided into four classes: the global descriptors that work
on the entire image, the semi-local descriptors that work on a set of sub-images repre-
senting cuts of the complete image, the local descriptors that combine interest points
detection and characterization of the neighborhood of each detected keypoint and the
geometric descriptors that utilize low level features to express object shape. In the
following paragraphs, we detail some descriptors for each class.

1.3.1 Global approach

e Zernike moments [66] are built around a family of complex polynomials forming
an orthogonal basis, defined in the unit circle. This orthogonal basis can reduce the re-
dundancy between the moments. Standardizations can turn these descriptors invariant
to transformations involving rotations, translations and scaling.

Ana = "ELSOS 1 Vi) (1.1)

™

Where 22 4+ 92 < 1,m = 0,1,2...,00 is the moment’s order and n is an integer
respecting the following conditions:

m — |n| is an even number
In| <m

The Zernike descriptor is among the most used in the literature (see equation (1.1)).
It is built from a set of Zernike polynomials. This set is complete and orthonormal
inside the unit circle.

Vi (7, 0) = Ry (1) 7™ (1.2)

with (r,6) defined on the unit disk, and R,,,(r) is the radial polynomial.

3

—|n|

R (1) = (—1)°

s=0

(m —s)!

szl — gyl — )

pme2s (1.3)

The Zernike moments have shown their performance in terms of robustness to noise
and near zero value in redundancy of information. Modules of Zernike moments
are invariant to rotation. To obtain the translational invariance and scaling, the
images are normalized using the moments of order 0 and 1. According to Kumar
and Singh [69], it is sufficient for the recognition to the moments of order 2 to 15,
which represent 70 moments. The major drawback of Zernike moments is their
elevated computational load. Various methods have been proposed (Hwang and
Kim [56]) to allow faster computation times. Chong et al. [32] compare different



1.3. HAND CHARACTERIZATION 13

methods available and offer to calculate the moments up to order 24 in 50 millisec-
onds instead of 1,10 seconds using the direct method for a binary image of 50 x 50 pixels.

e Hu moments [52|, compound a family of invariants which have been used for a long
time for recognition. The knowledge of the center of gravity (z¢,yq) of the region is
required to calculate the centered moments, w,,:

upg = Y (= 26)"(y —ya) ' (z,y) (1.4)

(z,y)el

The centered moments are invariant to translations. To obtain invariance to scaling
factor, normalized moments are calculated:

Tpg = —24 withy:]%ﬂ,vpmﬂ (1.5)
Upq

Using normalized moments up to order 3, we can calculate the seven Hu moment
invariants:

I = 120 + N2 (1.6)
I = (20 + M02)” + 41y (1.7)
I = (30 + 3m2)* + (3021 — n03)* (1.8)
Iy = (30 + 7712)2 + (021 — 7703)2 (1.9)
Is = (30 + 3m2) (M0 + m2)[(M30 + 712)* — 3(M21 + 103)?]
9 9 (1.10)
+ (3121 — M03) (M21 + Mo3) [3(M30 + M12)” — (M21 + Mo3)”]

Is = (120 — M02)[(m30 + M12)” — (21 + M03)* + 4mu1 (130 + 712) (121 + 103 (1.11)

I = (3121 — m03) (30 + m2)[(M30 + m2)? — 3(N21 + 103)?] (1.12)
+ (130 — 3m2)(M21 + M03) [3(n30 + M2)* — (M21 + 103)]

The first six features characterize the shape with invariance to translation, rotation

and scaling. The seventh invariant distinguishes symmetrical shapes.

e Fourier descriptors (FD) were known thanks [35, 88]. They are extensively used for
the characterization and shape classification for a closed contour, as they allow a good
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representation of shapes and have interesting invariance properties. FD are calculated
from the coefficients of the Fourier transform of the contour . Fourier descriptors have
been usually used for gesture recognition [31, 71, 84| as one component of a complete
system of recognition. Thus, the performance of the FD has not been analyzed in
detail, and independently of other system components. In general, in existing work,
complex signature is used, as well as the module of the Fourier coefficients (FD1). The
second family of descriptors (FD2) has not been used for gesture recognition.

FD are calculated on the contour of the hand region, extracted from the segmented
image. Points of this contour can be represented with various signatures (complex
coordinates, central distance, curvature, cumulative angular function) [113]. We con-
sider the case of closed planar curves under the action of Euclidean transformations. If
71 (1) and 75(l) denote the respective arclength parametrization of two closed contour
objects, having the same shape and different poses, we can write [30,31]:

’}/Q(Z) = aejefyl(l -+ lo) —+ b (113)

with a the scale factor, # the rotation angle, b the translation and [y the difference
starting between description points , [y € [0, L] with L the length of the contour.
The scale invariance is obtained by normalizing the arc-length parametrization with
an equal length of 1, leading to Iy € [0,1]. The translation invariance is given by
describing the contours according to their center of mass.

Before calculating the Fourier Transform, with the Fast Fourier Transform (FFT),
shape is first sampled to a fixed number of points. In general, object shape and model
shape can have different sizes. Consequently, the number of data points of the object
and model representations will also be different. For matching purposes, the shape
boundary or the shape signature of objects and models must be sampled to have the
same number of data points. The sampling process not only normalizes the size of
shapes but also has the effect of smoothing the shape. The smoothing eliminates the
noise in the shape boundary and the small details along the shape boundary as well,
what may be a drawback in a hand posture recognition method.

The number of resolution levels at which the shape signature will be decomposed
is determined by the length of the shape boundary. By varying the number of
sampled points, the accuracy of the shape representation can be adjusted. The
larger the number of sampled points, the more details in the representation of the
shape; consequently, the matching result will be more accurate. In contrast, a smaller
number of sampled points reduce the accuracy of the matching results but improve
the computational efficiency.

There are generally three methods of normalization : (i) equal points sampling; (ii)
equal angle sampling; (iii) equal arc-length sampling. Assuming N is the total number
of candidate points to be sampled along the shape boundary, the equal angle sampling
selects candidate points spaced at equal angle 6§ = 2.

The equal points sampling method selects candidate points spaced at equal number of
points along the shape boundary. The space between two consecutive candidate points
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is given by P/N, where P is the total number of boundary points. The equal arc-length
sampling method selects candidate points spaced at equal arc length along the shape
boundary.

The space between two consecutive candidate points is given by L/N, where L is
the perimeter of the shape boundary. Among the three sampling methods, the equal
arc-length sampling method apparently achieves the best equal space effect, because
the use of arc length as parameter in the signature achieves the unit speed of motion
along the shape boundary [87].

We use the complex coordinates, each point M; of the shape contour is represented
by a complex number z;, with N the number of points of the contour:

Vie [0,N — 1], Mi(z,y;) & 2 = x; + jy; (1.14)

This number must be chosen as a compromise between a reliable description of the
shape, with enough details, and shape smoothing, which eliminates the finest details
more subject to noise. Therefore, we choose the equal arc-length sampling to normalize
the sizes of the shapes. For each shape, we select 64 candidate points with equal arc-
length space between them. Another factor is the computation time, which increases
with the number of points. For computational efficiency of the fast Fourier transform,
the number of points is chosen to be a power of two. Hence, the Fourier transform
leads to N Fourier coefficients C}, :

N-1
Cr(y) =Y ze ™ F k=0,..,N—1. (1.15)

i=0
In the frequency domain, Eq.(1.13) and Eq.(1.15) gives:

27kl

Crl(a) = %678 " Cry) + b (1.16)

where ¢}, is the Kronecker delta. The first coefficient Cy is discarded because it contains
only the position of the hand shape. Rotation of the shape affects only the phase
information, thus rotation invariance of the Fourier descriptors is achieved by taking
the magnitude of coefficients. Scale invariance is achieved by dividing coefficients by
the magnitude of the second coefficient, C';. Starting point invariance is also achieved
by taking the magnitude, as a change of the starting point affects only the phase. So,
Eq.(1.16) can be written as follows:

. 2mklg

Cr(72) = /™% Chry), k=0, ..., N — 1. (1.17)

A common way to obtain FD which are invariant to similarities is to take the
magnitude of Fourier coefficients [35, 88]. Then, we obtain the N —2 FD1 coefficients:

I(7) = k=2 . N—1. (1.18)
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contour sampled with N = 64 points

However, this set of invariants is not complete as it does not hold the phase information
of the shape. The completeness of a set of invariant features (FD2) expresses the fact
that two objects have the same shape if and only if they have the same set of features.
A set of features which is complete but not stable is proposed in [35]. Stability means
that a small distortion of the shape does not induce a noticeable divergence in the
values of invariant features. The complete and stable set of invariant descriptors is
defined by [43]:

Iy (7) = |Cko ()], for kg such that Cy,(v) # 0, (1.19)
I, () = |Cky ()], for ky # ko such that C,(y) # 0, (1.20)

Cra()f R Cly (7)1 FCly () F o
Ty (7)1 =k=P [ (7y)k—ho—a

Ii(v) = (1.21)

with p,q € R, and k1 < kO.

For experiments in order to simplify the expression of I;(7y), following [43], we take

Notlce that the cepstral descriptors can be investigated as used in speech recognition
front-ends to enhance the robustness [45].

Figure 1.5 shows that the low frequency coefficients contain information on the
general form of the shape and the high frequency coefficients contain information on
the finer details of the shape. We can notice that with more than 20 coefficients the
hand shape is well reconstructed.

e legendre moments: Any shape may theoretically be characterized by its set of
regular moments. However, this kind of description is information redundant and prone
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to numerical instability. A better representation is obtained by using an orthogonal
basis [102], such as Legendre polynomials. Assuming, without loss of generality, that
the image domain is [—1, 1] x [—1, 1], the (p, ¢)-th order normalized Legendre moment
is defined as:

Apq = Cpq //Q Pp(x)Pq(y) dzdy, (1.22)

with normalizing constant: C,, = (2p + 1)(2¢ + 1)/4. The p — th order Legendre
polynomial is given by:

1 dP
Pp(x)

— 2p_p!ﬁ(gﬂ -1 | xel-1,1]. (1.23)

Legendre polynomials generalize regular moments in the sense that the monomial 2Py?
is replaced by an orthogonal polynomial P,(z)P,(x) of the same order. Moreover, if
we rewrite Py(z) as:

P,(z) = Zapkxk, (1.24)
k=0
then we come up with a simple relationship between Legendre moments and normalized
central regular moments:

p p
)‘pvq = Cpq Z Z apuaqvnu,v- (125)

u=0 v=0

Any reference shape, discretized on a sufficiently fine grid, can be described by the
vector of its central normalized Legendre moments up the order N : )\I’fg,p +q < N.

This description inherits scale and translation invariance from normalized central
moments. The invariance to rotation may be proved but it is not the purpose of
this work. For the complexity of computation (order to ensure scale, translation and
rotation invariance), this method can be considered more CPU consuming compared
to other descriptors of global approaches like fourier descriptors.

1.3.2 Semi-local Approach

e Histogram of Oriented Gradient (HOG) descriptors are features widely used
by the object detection and object recognition community. They have been shown to
be distinctive and robust under small affine transformations and illumination changes.
They are constructed by dividing the image into a dense grid of uniformly spaced cells
and then computing the orientation histograms of the image gradient values on each
cell. The illumination and contrast changes are taken into account by local normal-
ization of the gradient strengths which requires grouping the cells together into larger,
spatially-connected blocks.

The HOG descriptor is then the vector of the components of the normalized cell his-
tograms for all the block regions. Dalal et al. [82| have proposed Histogram of Oriented
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Gradients in the case of human detection. They have also been used for hand posture
recognition [38] and gesture recognition [64].

1.3.3 Local Approach

e The Scale Invariant Feature Transform (SIFT) is a well known local de-
scriptor created in 1999 by Lowe [72], allowing to detect and extract features which
are invariant to rotation and scale and robust to some variations of illuminations,
viewpoints and noise. The SIFT descriptor is computed in four steps. The two first
stages correspond to the choice of keypoints, first identifying potential interest points
that are scale and rotation invariant and then rejecting the ones that have low contrast
and stability. The two last stages correspond to the descriptor vector computation,
assigning one or more orientations to each selected keypoint based on local image
gradient directions and using a 4*4 location Cartesian grid to compute the gradient
on each location bin on the patch around the keypoint.

The STFT descriptor gives good results in the case of object recognition when it can
find relevant keypoints. It has been used by Wang et al. [107] for hand posture
recognition with the objective of human-robot interaction.

e Speeded Up Robust Feature (SURF) was first presented by Bay et al in 2006
[10]. Partly inspired by the SIFT descriptor, SURF also consists in interesting points
localization followed by feature descriptors computation. In both cases, the output is
a representation of the neighborhood around an interest point as a descriptor vector.
SURF is based on the distribution of first order Haar wavelet responses [49]. One of
the principal advantages of SURF is to be several times faster than SIF'T while having
more discriminative power. It uses the integral images to simplify and to accelerate
the computations. Yielding a lower dimensional feature descriptor, it reduces the time
for feature computation and matching. In [39], a fast multi-scale feature detection,
SURF-inspired, and a description method for hand gesture recognition is proposed.

1.3.4 Geometrical Approach

e Varied Form Descriptor (Var). Full reconstruction of the hand is not essential
for gesture recognition. Many approaches have instead used the extraction of low-
level image measurements for that purpose [83|. Being fairly robust to noise, these
characteristics can be extracted quickly. In this approach we created a geometry-based
feature vector by gathering simple geometrical characteristics described hereunder:

hand's perimeter?

Isometric rate = (1.26)

hand's area X 4 X 7

radius of the biggest hand inscribed circle

Lengthening = (1.27)

radius of the smallest hand circumscribed circle
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perimeter of the hand's convex hull

Concavity = (1.28)

hand's perimeter

major axis of the hand's smallest elliptical hull (1.29)

El tion =
OMGanon = inor azis of the hand's smallest elliptical hull

1.3.5 Comparative Study

Collumeau et al. [33] assess that the geometrical approach Var and the geometry-based
global approach Hu moments perform best (see table 1.1) but require a segmentation
step prior to their computation. They are followed by keypoint-based local methods
(SIFT, SURF) whose performance is slightly enhanced by the segmentation step. HOG
proved to be especially dependant on the correct framing of the hand, performing poorly
when facing a large background-enclosed hand but achieving second best recognition
rate when the hand is well-framed. Although less improved than Hu moments by
the segmentation step, HOG’s performance nevertheless suffers from its lack. Zernike
moments come last with the smallest recognition rate.

These results outline the worthiness of simple, geometrical descriptors for de-
scribing a single object, namely the user’s hand, displayed in various configurations.
Predominance of such descriptors conveying the hands shape will therefore focus
future research on descriptors whose relevance have been established when dealing
with shapes.

‘Gray-level hand ‘Gray-level hand ‘Binary
and background’ on black background’ object’

ZER 21.1 24.9 25.6

HU 19.7 52.5 68.1
HOG 33.2 44.3 38.2
SIFT 58.1 60.3 63.5
SURF 51.5 60.1 66.8

VAR - - 76.4

Table 1.1 — Mean recognition rates obtained over the 4 speakers with images presenting palmar
aspect [33]

Bourennane et al. [19] have shown that Fourier descriptors (FD1) outperforms Hu
moments for all deformations (see table 1.2), they notice that Hu moment invariants
and Zernike’s moment invariants are calculated on the global image space. It has been
shown that the values of Hu’s moment invariants and Zernike’s moment invariants are
sensitive to noise [19].
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The FD1 outperforms the other shape descriptors in terms of discrimination
between visually close gestures. Either moment invariants or Fourier coefficients are
computed from the segmented hand posture. When the postures lead to similar
segmentation results, some details of the hand contour are smoothed, and both
moment invariants and Fourier coefficients are affected.

‘HU’ ‘Zernicke’ ‘FD1’ ‘FD2’

Learning set : 38.9 81.5 81.5 80.3
Test set o 37.1 74.9 77.8 77.0
Cross-validation : 30.5 76.7 77.0 76.2

Table 1.2 — Recognition rates (%) with Triesch database and Euclidean distance For FD1, 6
invariant features are used, and 4 for FD2 [19].

1.4 Hand posture classification

The classification represents the task of assigning a feature vector or a set of features
to some predefined classes in order to recognize the hand gesture. In previous years
several classification methods have been proposed and successfully tested in different
recognition systems. In general, a class is defined as a set of reference features that
were obtained during the training phase of the system or by manual feature extraction,
using a set of training images. Therefore, the classification mainly consists of finding
the best matching reference features for the features extracted in the previous phase.
The classification consists in maximizing or minimizing a discriminant function d;(x)
between a vector of measurements x and the N classes of gestures. For example, in
the case of a function to be minimized, such as a distance, we look for the class C

such that: C' = argmin (d;(z)).
1€[1,N]

The classification is usually performed with a distance, or methods such as

nearest neighbors. The number of images used for learning is an important factor for
classification.

Chen et al. [31] use the FD and motion analysis to recognize dynamic gesture with
Hidden Markov Models (HMM).
Wah Ng and Ranganath [84] use the FD and Radial-Basis Function (RBF) as
classifier-type to recognize five postures. They then propose to recognize fourteen
dynamic gestures, some of which are made with both hands, with HMM or neural
networks.

The Adaboost classifier, short for Adaptive Boosting, is a machine learning
algorithm, formulated by [41]. It is a meta-algorithm, and can be used in conjunction
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with many other learning algorithms to improve their performance. AdaBoost is
adaptive in the sense that subsequent classifiers built are tweaked in favor of those
instances misclassified by previous classifiers. AdaBoost is sensitive to noisy data
and outliers. In some problems, however, it can be less susceptible to the overfitting
problem than most learning algorithms.

Caplier et al. [27] use of Hu moments and a neural network "Multi-layer percep-
tron" to classify eight gestures made by three people.

The Euclidean distance is the "ordinary" distance between two points that one
would measure with a ruler, and is given by the Pythagorean formula. By using this
formula as distance, Euclidean space (or even any inner product space) becomes a

metric space. The Euclidean distance between the measurement vector x and the class
1 is defined by:

dpi(x) = V(& — )T (& — ;) (1.30)
with p the mean vector of class i. This is the usual metric for calculating a distance
between the invariants vectors I of contours v; and ~,.

dp(1,7) = \/Z () — Le()? (1.31)

Bayesian classification is based on Bayes’ theorem:

p(|Ci)p(C)

(1.32)

p(Cilz)  the posterior probability of the class C; knowing that the measurement vector is z,
p(z|C;) the conditional probability of x, knowing that the class C;,
p(C) the prior probability of the class C;
p(z) the conditional probability of measurement vector x
N
plx) = p(x|Ci)p(C;) (1.33)
i=1

In this case, the discriminator function is given by the maximum a posteriori:
di(x) = p(Cilx) (1.34)
the Bayes Theorem (Eq. 1.32) can be rewritten as follows [78]:

di(z) = dari(z) + log(A;) (1.35)
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with dps(x) the Mahalanobis distance:

dyri(r) = (& — pa) AT (2 = ) (1.36)

the Mahalanobis distance appears as an Euclidean distance weighted by the inverse
of the covariance matrices for each class.

The K-nearest neighbors classification method uses the feature-vectors gathered in
the training to find the K nearest neighbors in a n-dimensional space. The training
mainly consists of the extraction of (possible well discriminable) features from training
images, which are then stored for later classification. Due to the use of distance
measuring such as the euclidian or manhattan distance, the algorithm performs
relatively slowly in higher dimensional spaces or if there are many reference features.
In [114], an approximate nearest neighbors classification was proposed, which provides
a better performance.

Support vector machines (SVM) are supervised learning models with associated
learning algorithms that analyze data and recognize patterns, used for classification
and regression analysis. The basic SVM takes a set of input data and predicts, for
each given input, which of two possible classes forms the output, making it a non-
probabilistic binary linear classifier. Given a set of training examples, each marked as
belonging to one of two categories, an SVM training algorithm builds a model that
assigns new examples into one category or the other.

An SVM model is a representation of the examples as points in space, mapped so
that the examples of the separate categories are divided by a clear gap that is as wide
as possible. New examples are then mapped into that same space and predicted to
belong to a category based on which side of the gap they fall on.

The SVM is based on kernels that allow optimal separation of points into sets. The
solution is optimal in the sense that the margin between the hyperplane and vectors
of each class of the learning data is maximum. Also, SVM solve the problem of non-
linearly separable data by projecting the data into a space of higher dimension. This
projection is done with a polynomial kernel, Gaussian or hyperbolic.

Bourennane et al. [19] prove that the results are significantly better when using
the Bayesian classifier on the Triesch database (100% see Table 1.3). For their internal
database, with Fourier descriptors (6 invariants), the recognition rates also increase,
in comparison with Euclidean distance, and results are similar for the three classifiers
with a small advantage for k-NN.

The Hidden Markov Model (HMM) classifiers belong to the class of trainable clas-
sifiers. An HMM represents a statistical model, in which the most probable matching
gesture-class is determined for a given feature vector, based on the training data. In
order to train the HMM, a Baum-Welch re-estimation algorithm, which adapts the
internal states of the HMM according to some feedback concerning the accuracy, was
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‘BAYES’ ‘SVM’ ‘K-NN’’EUCL’

Triesch, test set : 100 89.1 93.3 77.8
Internal database, learning set : 99.9 99.9 100 96.8
Internal database, test set : 84.7 84.2 87.9 83.9

Table 1.3 — Recognition rates (%) with Triesch database and FD1, 6 invariant features are

used, and different classifiers: Bayesian classifier (BAYES), support vector machine (SVM), k-nearest
neighbors (k-NN) and Euclidean distance (EUCL) [19].

used.

The Multi Layer Perceptron (MLP) classifier is based on a neural network. There-
fore, MLPs represent a trainable classifier (similar to Hidden Markov Models). They
use three or more layers of neurons that are all connected. During the training phase,
the weights of the connections between the neurons are adapted, based on the feedback
that describes the difference between the output and the expected result.

1.5 Conclusion of the chapter

In this chapter, we reviewed several existing methods for supporting vision-based
human-computer interaction based on the recognition of hand gestures. The provided
review covers research work related to all three individual subproblems of the full
problem, namely detection, characterization and recognition or classification.

In the detection step we mentioned two types of detection: detection for static
gestures and detection for dynamic gesture:

e The detection of postures (static gestures) is usually based on the color of the
hand. This detection is very limited in the case where there is a background of
the same color as the hand or if there are other objects in the scene which also
have the same color. As it is known, to make a detection based on the color of
the hand, we must have prior knowledge and it will be limited if we try to extend
it to all users.

e Concerning dynamic gestures we have mentioned several methods as HMM, DTW
or a method based on the skeleton. These methods give satisfactory results but
sometimes have a large computational time or are limited to a small and although
accurate dictionary of gestures.

For these reasons, a new method of detection must be found, or we have to
combine existing methods to overcome these limitations and make the detection,
which is the major step in our process, very reliable.
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The purpose of characterization, or features extraction, is to transform an image
into a signature which characterizes a clearly defined a contour of posture and
which permits to compare, in the next step of process, test postures with references
postures stored and characterized in learning step. However, we have seen that the
characterization needs to validate properties of invariance (rotation, translation, scale
factor), and we must be able bijectively reconstruct the image from these signals. We
mention many methods such as descriptors or geometric methods but also local or
semi-local methods. As fast as possible, the main objective is to find and combine the
methods that give the best results and faster and which also discriminates very close
postures, thinking in this sense is highly essential.

Classification is an important step in our process, it is often based on the criterion
of distance (Euclidian, Bayesian, KNN) or on geometric criteria (SVM), but it will
be very difficult to implement if the feature vector or the characteristic matrix has
many parameters, or if there’s multiple classes. So our choice will be set according
to the number of parameters that characterizes our gesture but also by the complicity
of classifying and computational time. That’s why we will perform the dimension
reduction and decrease the number of classes. This seems to be a good strategy to use
the easiest and fastest classifier.



CHAPTER
Hand database

2.1 Introduction of the chapter

ESTURES are an important modality for human-machine communication, and

robust gesture recognition can be an important component of assistive environ-
ments and human-computer interfaces in general. A key problem in recognizing ges-
tures is that the appearance of a gesture can vary widely depending on variables such
as the person performing the gesture, or the position and orientation of the camera.
For example, the same handshape can look very different in different images, depending
on the 3D orientation of the hand and the viewpoint of the camera. Similarly, in the
domain of sign language recognition, the appearance of a sign can vary depending on
the person performing the sign and the distance from the camera. This database-based
framework is applied to two different gesture recognition domains.

The first domain is handshape categorization. Handshapes can hold important in-
formation about the meaning of the gesture, for example in sign languages, or about
the intent of an action, for example in manipulative gestures or in virtual reality in-
terfaces. A large database of tens of thousands of images is used to represent the
wide variability of handshape appearance. A key advantage of the database is that it
provides a very natural way to characterize the appearance of each handshape class.
Furthermore, databases containing tens or hundreds of thousands of images represent-
ing several people can ensure a learning more consistent to the reality.

The second gesture recognition domain where we apply the proposed approach is
recognition of signs in American Sign Language (ASL).

2.2 Various hand databases

According to the literature, and best of our knowledge, there are a few publicly available
gesture image databases. Athitsos and Sclaroff [7] published a database for hands posed
in different gestures. The database contains more than 107000 images. Despite the
fact that the database covers 26 gestures and has ground truth tables, the images
actually present only the edges of the hands. Tests for algorithms that are not based
on edges are not feasible. Athitsos also contributed to the creation of an American
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Sign Language (ASL) video sequence database. These videos present the upper body
part of a person signaling short texts in ASL. The videos were recorded at a rate of
60 frames per second. Some frames present the hands in a small scale and they are
sometimes blurred. It is also difficult to cluster sets of hands where the gesture is of
a certain type. There are images from 4 different cameras. This database would be
suitable for testing detection algorithms, but it would be difficult to use those images
for training.

Figure 2.1 — Exemple of ASL postures

In handshape recognition for ASL database, there are 20 postures to recognize as
shown on Fig. 2.1. For the evaluation of hand tracking methods in sign language recog-
nition systems a database has been prepared. The RWTH-BOSTON-Hands database is
a subset of the RWTH-BOSTON-104 videos with additional annotation of the signer’s
hand positions. The positions of both hands have been annotated manually in 15
videos. 1119 frames in total are annotated.

¢[1 <14~
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Figure 2.2 — The gestures base of Triesch and von der Malsburg [103]

There are also some other databases that are not specifically related to gesture but
are particularly related to the subject.
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The gestures base of Triesch and von der Malsburg [103] is a base of reference used
in several studies, and made available on Internet. It contains 10 hand postures (Fig.
2.2), realized by 24 people and in front of different backgrounds (white, black and
complex). Pictures are in gray level, PGM format, and in 128 x 128 size.

4
n
(@) fc)

Figure 2.8 — Exemple of image with gestures "c" in Triesch base[103]

)

We can use sets of pictures with black and white backgrounds, but it’s always a
white hand. The variation of the form of the gestures in terms of size, translation and
rotation is very limited. However, the form of the hand of different users can be very
variable (see figure 2.3).

Figure 2.4 — Some images of the samples from the Massey Hand Gesture Database

The Massey Hand Gesture Database is an image database containing a number
of hand gesture and hand posture images. The database has been developed by the
authors to evaluate their methods and algorithms for real-time gesture and posture
recognition. It is posted on the web with the hope of assisting other researchers in-
vestigating in the related domains. At this stage, the Database includes about 1500
images of different hand postures, in different lighting conditions. The data was col-
lected by a digital camera mounted on a tripod from a hand gesture in front of a dark
background, and in different lighting environments, including normal light and dark
room with artificial light. Together with the original images there is a clipped version
of each set of images that contains only the hand image. The maximum resolution of
the images is 640 x 480 with 24 bit RGB color. So far, the database contains material
gathered from 5 different individuals.
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2.3 Proposed hand database

As new hand detection and gesture recognition algorithms are being developed, the
use of features such as color, size, and shape of the favorite object are more likely to
be used. Currently available databases are either for special purposes, or suffer from
the lack of the desired features (e.g. not being in color or exhibiting a very small size
of the samples). Previous works show that color is one of the important features in
body tracking [31, 33, 34, 39, 113]. Color can be found to be invariant to changes in
size, orientation and sometimes occlusion. In addition, according to Moore’s law, every
18 month the processing speed and available memory size of processors double. So,
possibly in the near future, using samples with higher details would be preferred by
researchers.

Different gesture bases have several limitations: the number of images is small, the

angle of view, the size and orientation of the hand is always the same, the images are
grayscale and contain solely a hand without any other object in the background. Or
even the database is not accessible. The common point of these bases is the use of white
hands only. Our goal was to create a man-machine interface that applies everywhere
(non-uniform background), for any kind of hand (adult or child, male or female, white
or color).
This requires a much better developed database, but also a database where you can
combine static and dynamic recognition, with simple but various postures, which are
easily achievable by any user. Thus, to achieve a more realistic test base which could
be the closest to our HMI configuration, we established our own database.

Figure 2.5 — Examples of images in Simon Conseil’s database

At first it was decided to use the database from Simon Conseil [34], although it
is limited to white hands (see figure 2.5), but it allows, first, to test the effectiveness
of our characterization method before expanding them to other types of hands. Also,
with this database we can compare the different methods of shape description with
our method of characterization and deduce the contribution and performance as well
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as the limitations of our signature. the most important in the choice of database is to
choose postures that are adapted to industrial applications, but also simple, practical
and realizable by any user.

This base is inspired by the 8 postures of Cued Speech presented by Caplier et al
[27]. The Cued Speech is a language which differs from the language of signs, and
which aims at facilitating lip reading for deaf and hard of hearing (see figure 2.6).

However, postures "5" and "8" have been added to Cued Speech database to assess
the performance of the methods we propose.

Figure 2.6 — The 11 postures of our database

This database is available within GSM group,where is performed by this thesis,
and was built with a monoscopic video acquisition system. The video sequences were
then split into images, to be processed separately. This database is composed of 11
postures performed by 18 persons (1000images/personne/posture) which represents
roughly 200,000 images.

Once of the relevance of this database is validated, it can be extended to colored
hands just by introducing new image in the learning base. The hand contours charac-
terization is performed out of a binary image which includes only the contours. So the
generalization and extension of the algorithm to a database including colored hands
will mainly the first images preprocessing steps.

2.4 Conclusion of the chapter

One of the typical applications for an image database is to use it as a training set
for learning algorithms. The same database could also be used for the testing phase,
but it is more convenient to perform tests with real images acquired separately from a
different person.

In this chapter we are interested in various existing databases, that are either in-
tended for recognition of hands or for the language of signs where different gestures
are used. it appears that these databases are limited by their format, the color of the
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hand, or even the number of stored images. So we decided to create our own database
with postures which are easy to produce by all users, which will be for us a universal
database without forgeting to compare our method with references databases as the
Triech database.



Part 11

Recognition process and results






CHAPTER
Array processing models
and methods adapted to
contour detection

3.1 Introduction of the chapter

ONTOUR detection is an important step in image processing. After a low-level

processing such as denoising, it permits to enhance fitting lines, and the interest
is to delimitate structures of interest such as roads, buildings, vehicles, etc. A
large amount of methods have been proposed to characterize either parametrized or
free-form contours. The most common method is still the derivative approach with
linear filtering. Many derivative filters have been studied and used to compute the
intensity gradient of gray-level images: Roberts, Sobel, Prewitt or Canny operators
[26]. Other approaches have followed, such as mathematical morphology, Markov
random fields, surface models, histogram automatic threshold [86].
General contours are called free-form. Detecting them is the purpose for instance of
snakes [65] which have been improved in various ways such as Gradient Vector Flow
[110, 111]. This type of method makes a single contour evolve while ensuring an
attach to the image gradient, but also a control of the properties of the snake such
as elasticity. Free-form contour detection is also the purpose of levelset [8, 29, 58|.
Levelsets exhibit the advantage of retrieving multiple contours, in particular blurred
contours for some specific version [29]. It is however well-known that an elevated
number of parameters must be tuned and that they rely on an optimization strategy
which is sensitive to initialization.

Very simple contours which are therefore encountered in many applications can be
characterized by a few parameters: straight lines with orientation and offset, or circles
with center coordinates and radius. The Hough transform for instance [37, 51, 67| was
proposed under different versions, to retrieve straight lines. The generalized Hough
transform (GHT) provides an estimation of the circle center coordinates when their
radius is known [9, 57]. But in this chapter we concentrate on original methods for
the detection of linear-like or circular-like contours. These methods rely on the array
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processing paradigm. This chapter is logically divided into four parts, starting from
the first issue of this framework, the estimation of straight lines with a linear antenna,
proposed in [6] in the early nineties, and concluding with the estimation of highly
distorted star-shaped contours [61], which inspired the method for the characterization
of hand contours exposed further in this manuscript. In between, we also present the
estimation of circular contours and blurred contours.

3.2 Straight contour retrieval

3.2.1 Data model, generation of the signals out of the image
data

To adapt array processing techniques to distorted curve retrieval, the image content
must be transcripted into a signal. This transcription is enabled by adequate con-
ventions for the representation of the image, and by a signal generation scheme|2, 5|.
Once a signal has been created, array processing methods can be used to retrieve the
characteristics of any straight line. Let I be the recorded image (see Fig. 3.1(a)).

£—=d |

a) b)

Figure 8.1 — The image model (see [5]): (a) The image-matrix provided with the coordinate
system and the rectilinear array of N equidistant sensors, (b) A straight line characterized by its
angle 6 and its offset xq.

We consider that I contains d straight lines and an additive uniformly distributed
noise. The image-matrix is the discrete version of the recorded image, compound of a
set of N x C pixel values. A formalism adopted in [6] allows signal generation, by the
following computation:

2(i) = Y I(i, k)exp(—jpk), i=1,...,N (3.1)

C
k=1
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where {I(i,k); i € {1,...,N}; k€ {1,...,C}} denote the image pixels. Eq. (3.1)
simulates a linear antenna: each row of the image yields one signal component as if it
were associated with a sensor. The set of sensors corresponding to all rows forms a linear
antenna. We focus in the following on the case where a binary image is considered. The
contours are composed of 1-valued pixels also called "edge pixels", whereas 0-valued
pixels compose the background. When d straight lines, with parameters angle {6}
and offset xqg, (k = 1,...,d), are crossing the image, and if the image contains noisy
outlier pixels, the signal generated on the i*" sensor, in front of the i*" row, is [6]:

M&

exp(ju(i — 1)tan(0y))exp(—juzor) + n(i) (3.2)
k=1

where p is a propagation parameter [3] and n(i) is due to noisy pixels on the i® row.
Defining: a;(0y) = exp(ju(i — 1)tan(6y)), sk = exp(—juzor), Eq. (3.2) becomes:

d
Zaleksk—l—n i), i=1,--- N (3.3)
k=1

Grouping all terms in a single vector, Eq. (3.3) becomes: z = A(f)s + n, with A(0) =
[a(6y),---,a(,)] where a(0),) = [a1(0k), as(0k), -, an(0)]F, with a;(0)) = exp(ju(i—
)tan(6y)), i = 1,..., N, superscript 7 denoting transpose. SLIDE (Subspace-based
LIne DEtection) algorithm [6] uses TLS-ESPRIT (Total-Least-Squares Estimation of
Signal Parameters via Rotational Invariance Techniques) method to estimate the angle
values. To estimate the offset values, the "extension of the Hough transform" [67] can
be used. It is limited by its high computational cost and the large required size for the
memory bin. [20, 22| developed another method. This method remains in the frame of
array processing and reduces the computational cost: A high-resolution method called
MFBLP (Modified Forward Backward Linear Prediction) [20] is associated with a spe-
cific signal generation method, namely the variable parameter propagation scheme [3].
The formalism introduced in that section can also handle the case of straight edge
detection in gray-scale images [4].

3.2.2 Angle estimation, overview of the SLIDE method

The method for angles estimation falls into two parts: the estimation of a covariance
matrix and the application of a total least squares criterion.

Numerous works have been developed in the frame of the research of a reliable estimator
of the covariance matrix when the duration of the signal is very short or the number
of realizations is small. This situation is often encountered, for instance, with seismic
signals. To cope with it, numerous frequency and/or spatial means are computed
to replace the temporal mean. In this study the covariance matrix is estimated by
using the spatial mean [46]. From the observation vector we build K vectors of length
M with d < M < N —d+ 1. In order to maximize the number of sub-vectors
we choose K = N + 1 — M. By grouping the whole sub-vectors obtained in matrix
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form, we obtain: Zy = [z, - ,zk], where z; = Ay (0)s;+1n;,, [=1,---, K. Matrix
A (0) = [ap(61), - - ,an(64)] is a Vandermonde type one of size M x d. Signal part of
the data is supposed to be independent from the noise; the components of noise vector
n; are supposed to be uncorrelated, and to have identical variance. The covariance
matrix can be estimated from the observation sub-vectors as it is performed in [5]. The
eigen-decomposition of the covariance matrix is, in general, used to characterize the
sources by subspace techniques in array processing. In the frame of image processing
the aim is to estimate the angle 6 of the d straight lines. Several high-resolution
methods that solve this problem have been proposed [92]. SLIDE algorithm is applied
to a particular case of an array consisting of two identical sub-arrays [4]. It leads to
the following estimated angles [4]:

A 1 Ak
0 = tan![———TIm(In(+=))], (3.4)
(b A) | Al
where {\g, &k =1,...,d} are the eigenvalues of a diagonal unitary matrix that relates

the measurements from the first sub-array to the measurements resulting from the
second sub-array. Parameter p is the propagation constant, and A is the distance
between two sensors. TLS-ESPRIT method used by SLIDE provides the estimated
parameters in closed-form, in opposite to the Hough transform which relies on maxima
research [67]. Offset estimation exploits the estimated straight lines angles.

3.2.3 Offset estimation

The most well-known offset estimation method is the "Extension of the Hough Trans-
form" [96]. TIts principle is to count all pixel aligned on several orientations. The
expected offset values correspond to the maximum pixel number, for each orienta-
tion value. The second proposed method remains in the frame of array processing:
it employs a variable parameter propagation scheme [2, 3, 4] and uses a high resolu-
tion method. This high resolution "MFBLP" method relies on the concept of forward
and backward organization of the data [46, 90, 104]. A variable speed propagation
scheme [3, 4], associated with "MFBLP" (Modified Forward Backward Linear Predic-
tion) yields offset values with a lower computational load than the Extension of the
Hough Transform. The basic idea in this method is to associate a propagation speed
which is different for each line in the image [4]. By setting artificially a propagation
speed that linearly depends on row indices, we get a linear phase signal. When the

first orientation value is considered, the signal received on sensor i (i = 1,--- ,N) is
then:
di
2(i) = Z exp(—jrxor)exp(jT(i — 1)tan(0y)) + n(i) (3.5)
k=1

dy is the number of lines with angle #;. When 7 varies linearly as a function of the
line index the signal vector z contains a modulated frequency term. Indeed we set

T=a(i—1).
2(i) =
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dy
Z exp(—jali — V)xop)exp(ja(i — 1)*tan(6y)) + n(i) (3.6)
k=1
This is a sum of d; signals that have a common quadratic phase term but different
linear phase terms. The first processing consists in obtaining an expression containing
only linear terms. This goal is reached by dividing z(i) by the non zero term a;(6;) =
exp(ja(i — 1)?tan(6,)). We obtain then:
dy
w(i) =Y exp(—jali — Do) +n (i), (3.7)
k=1
The resulting signal appears as a combination of d; sinusoids with frequencies :
fo= 2Ok 1y (3.8)
27
Consequently, the estimation of the offsets can be transposed to a frequency estima-
tion problem. Estimation of frequencies from sources having the same amplitude was
considered in [104]. In the following a high resolution algorithm, initially introduced
in spectral analysis, is proposed for the estimation the offsets.
After adopting our signal model we adapt to it the spectral analysis method called
modified forward backward linear prediction (MFBLP) [104] for estimating the offsets:
We consider dj, straight lines with given angle 6, and apply the MEBLP method. We
consider dj, straight lines with given angle 6;, and apply the MFBLP method, to the
vector w.
An outline of the method is as follows: 1) For a N-data vector w, form matrix Q of
size 2% (N — L) x L, where 1 < L < N — 1. The j column q; of Q is defined by:
Q= [w(L—j+1), . wN—7),w(+1),..,w(N—-L+j)]".
Then build a length 2 % (N — L) vector:
h = [w(L+1),...,w(N),w*(1),...,w*(N — L)]". Calculate the singular value decom-
position of Q: Q = UAVZ,
2) Form a matrix X, setting to 0 the L — 1 smallest singular values contained in A.
3) Form vector g from the following matrix computation: g = [g1, 2, ..., g1]" =
—V % X% %« U x h where Xf is the pseudo-inverse of X.
4) Determine the roots of polynomial function H, where H(y) =1+ g7 + goy 2 +
ot gL'y_L.
5) One zero of H is located on the unit circle. The complex argument of this zero is
the frequency value; according to Eq. (3.5) this frequency value is proportional to the
radius, the proportionality coefficient being —a.
More details about MEBLP method applied to offset estimation are available in [22].
MFBLP estimates the values of fx, k = 1,--+ dg. According to Eq. (3.8) these fre-
quency values are proportional to the offset values, the proportionality coefficient being
—a. The main advantage of this method comes from its low computational load. In-
deed the complexity of the variable parameter propagation scheme associated with
MFBLP is much less than the complexity of the Extension of the Hough Transform as
soon as the number of non zero pixels in the image increases. This algorithm enables
the characterization of straight lines with same angle and different offset.
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3.2.4 Exemplification of the straight line retrieval methods

We propose an application of our method in the case of robotic vision. Fig. 3.2 is a
photography taken by a camera and transmitted to the automatic command of a vehicle
moving on the railway. This vehicle is used in particular for servicing of railways, i.e.
for the replacement of the parallel crosspieces. The vehicle, when moving along the
railway, determines first the position of the rails from the obtained picture. Then, the
position of the nearest crosspiece is detected.

Figure 3.2 — (a) - Image transmitted to the automatic command of a vehicle that is moving on

a railway for the servicing of the railways. (b) Detection of the rails for the progress of the vehicle. (c)

Localization of the first crosspiece that the vehicle has to replace. The process is iterated crosspiece
after crosspiece: photography, detection of the rails and detection of the next crosspiece.

3.3 Retrieval of circular contours

Signal generation upon a linear antenna yields a linear phase signal when a straight
line is present in the image. While expecting circular contours, we associate a circular
antenna with the processed image. By adapting the antenna shape to the shape of the
expected contour, we aim at generating linear phase signals.



3.3. RETRIEVAL OF CIRCULAR CONTOURS 39

3.3.1 Problem setting and virtual signal generation

Our purpose is to estimate the radius of a circle, and the distortions between a closed
contour and a circle that fits this contour. We propose to employ a circular antenna
that permits a particular signal generation and yields a linear phase signal out of an
image containing a quarter of circle. In this section, center coordinates are supposed
to be known, we focus on radius estimation, center coordinate estimation is explained
further. Fig. 3.3(a) presents a binary digital image I. The object is close to a circle
with radius value r and center coordinates (l.,m.). Fig. 3.3(b) shows a sub-image
extracted from the original image, such that its top left corner is the center of the
circle. We associate this sub-image with a set of polar coordinates (p,#), such that
each pixel of the expected contour in the sub-image is characterized by the coordinates
(r+ Ap, 0), where Ap is the shift between the pixel of the contour and the pixel of the
circle that roughly approximates the contour and which has same coordinate . We
seek for star-shaped contours, that is, contours that can be described by the relation:
p = f(0) where f is any function that maps [0, 27| to R,. The point with coordinate
p = 0 corresponds then to the center of gravity of the contour.

Generalized Hough transform estimates the radius of concentric circles when their
center is known. Its basic principle is to count the number of pixels that are located
on a circle for all possible radius values. The estimated radius values corresponds to
the maximum number of pixels.

P+

le F=—=-——m :,\-

7 4 -"r+ap "_\f—/)

Figure 3.3 — (a) Circular-like contour, (b) Bottom right quarter of the contour and pixel

coordinates in the polar system (p, §) having its origin on the center of the circle. r is the radius

of the circle. Ap is the value of the shift between a pixel of the contour and the pixel of the circle
having same coordinate 6.

Contours which are approximately circular are supposed to be made of more than
one pixel per row for some of the rows and more than one pixel per column for some
columns (see Fig. 3.3a)). Therefore, we propose to associate a circular antenna with
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the image which leads to linear phase signals, when a circle is expected. The basic
idea is to obtain a linear phase signal from an image containing a quarter of circle
(such as in Fig. 3.3b)). To achieve this, we use a circular antenna. The phase of the
signals which are virtually generated on the antenna is constant or varies linearly as a
function of the sensor index. A quarter of circle with radius r» and a circular antenna
are represented on Fig. 3.4.

The antenna is a quarter of circle centered on the top left corner, and crossing the

bottom right corner of the sub-image. Such an antenna is adapted to the sub-images
containing each quarter of the expected contour (see Fig. 3.4). In practice, the extracted
sub-image is possibly rotated so that its top left corner is the estimated center. The
antenna has radius R, so that R, = v/2N, where N, is the number of rows or columns
in the sub-image. When we consider the sub-image which includes the right bottom
part of the expected contour, the following relation holds: Ny = maxz(N — ., N —m,)
where [, and m, are the vertical and horizontal coordinates of the center of the expected
contour in a cartesian set centered on the top left corner of the whole processed image
(see Fig. 3.3). Coordinates [. and m, are estimated by the method proposed in [2], or
the one that is detailed later in this chapter.
Signal generation scheme upon a circular antenna is the following: the directions
adopted for signal generation are from the top left corner of the sub-image to the
corresponding sensor. The antenna is composed of S sensors, so there are S signal
components.

L— sensor S
Py
s
/Aty
sensor |
sensor 1
Figure 8.4 — Sub-image, associated with a circular array composed of S sensors

Let us consider D;, the line that makes an angle §; with the vertical axis and crosses
the top left corner of the sub-image. The i*" component (i = 1,...,S5) of the signal z
generated out of the image reads:

(i) = 3" 11 m)eap(—ju/E & m), (3.9)

lm=

(l,m)GDZ‘
The integer [ (resp. m) indexes the lines (resp. the columns) of the image. j stands
for v/—1. p is the propagation parameter [4]. Each sensor indexed by i is associated

with a line D; having an orientation §; = 7(i’1;'”/ 2.
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In Eq. (3.9), the term (I, m) € D; means that only the image pixels that belong to D;
are considered for the generation of the i*! signal component. Satisfying the constraint
(I,m) € D;, that is, choosing the pixels that belong to the line with orientation 6;, is
done in two steps: let setl be the set of indexes along the vertical axis, and setm the
set of indexes along the horizontal axis.

If 6, < 7/4, setl = [1: Ni] and setm = [[1 : Ng| - tan(6;)].
If ; > w/4, setm = [1 : Ng| and setl = [[1 : Ny| - tan(w/2 — 0;)].
Symbol |-| means integer part.

The minimum number of sensors that permits a perfect characterization of any
possibly distorted contour is the number of pixels that would be virtually aligned on
a circle quarter having radius v/2N,. Therefore, the minimum number S of sensors is

V2N,.

3.3.2 Proposed method for radius estimation

In the most general case there exists more than one circle for one center. We show how
several possibly close radius values can be estimated with a high-resolution method.
For this, we use a variable speed propagation scheme towards the circular antenna.
We propose a method for the estimation of the number d of concentric circles, and
the determination of each radius value. For this purpose we employ a variable speed
propagation scheme [4]. We set u = a(i — 1), for each sensor indexed by i =1,...,S.
From Eq. (3.9), the signal received on each sensor is:

d
2(i) =Y exp(—jali — )ry) +n(i), i=1,...,5 (3.10)

k=1
where 1,k = 1,...,d are the values of the radius of each circle, and n(i) is a noise

term that can appear because of the presence of outliers. All components z(i) compose
the observation vector z. TLS-ESPRIT method is applied to estimate ry, k = 1,...,d,
the number of concentric circles d is estimated by MDL criterion. The estimated
radius values are obtained with TLS-ESPRIT method, which also estimated straight
line orientations (see section 3.2.2). A further section is dedicated to the estimation of
one-pixel wide nearly circular distorted contours. Let us now concentrate on ’blurred’
contours, that is, contours which are composed of more than one pixel.

3.3.3 Linear antenna for the estimation of circle center param-
eters

Usually, an image contains several circles which are possibly not concentric and have
different radii (see Fig. 3.5). To apply the proposed method, the center coordinates
for each feature are required. To estimate these coordinates, we generate a signal with
constant propagation parameter upon the image left and top sides. The ['™® signal
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component, generated from the I row, reads: 2, (1) = SN_ I(l, m)exp(—jum),

where u is the propagation parameter. The non-zero sections of the signals, as seen at
the left and top sides of the image, indicate the presence of features. Each non-zero
section width in the left (respectively the top) side signal gives the height (respectively
the width) of the corresponding expected feature. The middle of each non-zero section
in the left (respectively the top) side signal yields the value of the center [. (respectively
m.) coordinate of each feature.

Figure 3.5 — Nearly circular or elliptic features. r is the circle radius, ¢ and b are the axial
parameters of the ellipse.

3.3.4 Exemplification of the circle characterization method

In Fig. 3.6, we exemplify the proposed method and the Hough tranform [67] on the
same type of hand-made image containing a single circle. In both cases, the image
is impaired with an additive Gaussian noise, with mean 0.02 and standard deviation
0.009, on 20% of the pixels.

The error on the radius value is 0.1 for the proposed method and 0.05 on the Hough
transform. In both cases, this error is less than 1 pixel.

3.4 Blurred contour retrieval

3.4.1 Problem statement

In this subsection, we provide the models that we adopt for the image and the blurred
contours therein. We remind a specific technique to generate a signal out of the image.
Let I(l,m) be an N x N recorded image (see Fig. 3.7(a) or Fig. 3.7(b)). We assume
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Figure 8.6 — One circle: radius estimation by the proposed method and GHT: (a) Processed
image and result with our method, (b) Processed image and result with GHT.

that (I, m) is compound of either several blurred linear contours or one blurred circu-
lar contour, and an additive uniformly distributed noise, whose gray level values follow
a Gaussian distribution. A linear-like contour is supposed to have main orientation 6.
We define its center offset xy as the distance between the top left corner of the image
and the pixel with maximum gray level value I, in the first row (see Fig. 3.7(a)). The
spread of the contour is characterized by the parameter o, and we define the parameter
G such that I« = ﬁ The value of G depends on the number of bits which are
used to encode the image. When d blurred linear contours are present, they are defined
by the set of parameters

{0k, zor, ok, k=1,...,d}. A circular-like contour is supposed to have center coordi-

nates {l.;;m.}. The pixels with value ﬁ compound a circle with center coordinates

{l;;m.} and radius rg. In both cases the gray level values of the pixels decrease grad-
ually aside the set of pixels with value ﬁ Blurred linear contours have width 2.X;.
A circular-like contour has width 2r;.

To set the link between image data representation and sensor array processing
methods, an array of sensors is associated with the image |6, 76|, as previously explained
in this manuscript. Fig. 3.8 represents the linear and circular arrays associated with
an image containing a blurred contour. The shape of the array is adequately chosen,
considering the shape of the expected contour. To retrieve linear-like contours, the
array sensors are supposed to be placed in front of each row (or each column) of the
image [6] (see Fig. 3.8(a)). To retrieve circular-like contours, the array sensors are
supposed to be placed along a quarter of circle centered on the center point of the
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Figure 3.7 — Contour models: (a) blurred contours characterized by main orientations 61, 2,
offsets o1 and xo2, and width 2Xf; (b) blurred circular contour characterized by center coordinates
{le;me}, radius ro, and width 2r.
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Figure 3.8 — Signal generation: (a) linear antenna for the generation of signal components

z(1), 2(2),..., z(IN) on left and bottom sides, blurred linear-like contour with orientation 6 and

offset zo; (b) sub-image of size Ng X Ng circular antenna [76] for the generation of signal components

2(1), 2(2),..., z(S) with i*? sensor at angular position 0; and associated direction of generation D;,
blurred quarter of circle

expected circle [76]. The intuition behind this choice is to adapt the antenna shape
to the expected contour shape and get similar signal models. How to choose between
linear or circular antenna is explained in subsection 3.4.2. Fig. 3.8(b) shows part of
Fig. 3.7(b), which is selected to perform circle characterization. The top left corner of
Fig. 3.8(b) coincides with the center of the blurred circular contour. The antenna is
compound of S sensors, each one related to the angular position 6, = (Flk)g"r/Q
the direction of generation D;.

In the case where linear-like contours are expected, we adopt the signal generation
scheme proposed in [6] and exposed previously in the manuscript (see Eq. (3.1)).
Pixels along one row yield one signal component. Let ¢ be any of the row indices
(i = 1,...,N). The i'" row yields the signal component z(i) as in Eq. (3.1). The
signal components form the following signal vector: z = [2(1), 2(2), ..., z(N)]". In the
case where circular-like contours are expected, an adequate signal generation process
adapted to a quarter of the image also yields signal components. Pixels along the

, and to

direction of generation D; (i = 1,...,S) yield the i*" signal component z(i) (see Fig.
3.8(b)) which reads as in Eq. (3.9).
The signal components form the following signal vector: z = [2(1), 2(2), ..., 2(S)]".

The propagation parameter is further adapted so that the signal vector fits an array
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processing model.

3.4.2 Signal models

In this section, we derive exponential signal models for both linear blurred contours
and circular blurred contours, and show that both contour types share the same signal
model. To get a model for the signals generated, we first need a model for the contours,
that is, or equivalently for their grey level values. We assume the gray level values
I(1,m) evolve aside a central position of the contour as an exponential function of the
pixel position (see Fig. 3.7(a) and Fig. 3.7(b)). For linear-like contours:

G .
e 27 (3.11)

I(l,m) =

where x = m — (g — (I — 1)tan(0)). For circular-like contours, we get:

G (/) (m—me)2—rg)?
e 202

I(l,m) = (3.12)

2o
Referring to Eqgs. (3.11) and (3.12), ﬁ is the maximum gray level value. We expect
that the exponential distribution, for instance a Gaussian distribution, of the gray
level values in both cases facilitates the transfer of array processing methods to the
considered parameter estimation issue.

Linear blurred contour

Firstly, we assume that the image contains only one blurred contour of width 2.Xj,
main orientation 6, offset zo, and spread parameter o. Referring to Eqgs. (3.1) and
(3.11), the signal generated on the i*" sensor is expressed as:

(i) = &= S —inzota—(i—Dtan(0)) o~ 2o
+ 2GM Zf:fl e‘jﬂ(zo—x—(i—l)tan(é’))e*% (3.13)
+ \/2%0 o—in(@o—(i—1)tan(9))
That is: 2
2(i) = = Zf:fixf e‘jﬂ(mo-{-m—(i—l)tun(@))6757—2 51

If o is small enough compared to the number of columns in the image, we can turn
the considered discrete calculation into a continuous case calculation. The intuition

behind this approximation is that the values of the term e 2.2 decrease rapidly when
x increases, that is, when we get far from the pixels with gray level value ﬁ
Therefore a summation between —X; and Xy can be approximated as a summation
between —oo and +o0o. A deeper study of this approximation is proposed in [60] for

blurred circular contours. Eq. (3.14) becomes:
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22
—\/g e—juxoeju(’l—l)tan(e) ftoj e_]uxeiﬁdx (315)

A general formula provides the equality:

+o0 2
/ eI g — \/ge_ébl_a (3.16)
T=—00 a

Referring to Eq. (3.16), it is easy to express Eq. (3.15) by

2,2

2(i) = G eI ginli=Dtan(0) = 5= (3.17)
Eq. (3.17) is the signal received on the i-th sensor if one blurred contour is present.

Secondly, we consider the case where the image contains:

e d blurred contours, with orientations 6y, offsets oy, and spread parameters o, (k =
1,...,d);

e uniformly distributed noise pixels, whose gray level values follow a Gaussian dis-
tribution.

The expression of the signal received by i*" sensor becomes:

20_ 2
2(i) =G 2221 e—naok pip(i—1)tan(0r) o— 55 4 n(i) (3.18)

where n(i) is a noise term originated by the noise pixels during the signal generation
process. It has been shown that this noise follows a Gaussian distribution [6]. We
notice that, when o tends to 0, Eq. (3.18) is equal to the equation obtained in the case
of a one-pixel wide contour (refer to [6]). The signal components in Eq. (3.18) follow
an array processing signal model, involving source amplitudes and steering vectors.
Equation (3.18) can be expressed as:

d

2(i) =Y s(k)ci(0r) + n(i) (3.19)

k=1

For this we define:

1. the source amplitude associated with the k-th contour as:
2

i X i~ s .
s(k) = QGM e Imrok N1 eTIMe 2 | = 1,--- d. When the continuous
approximation holds, the source amplitude components are expressed as:

2 2
k

s(k) = Ge Imoore= "2 (3.20)




3.4. BLURRED CONTOUR RETRIEVAL 47

2. the steering vector associated with the k-th contour as:
c(0) = [e1(0k), ca(Bk), -+, en(0p)]", with ¢;(6y) = e7#(—1) tan(0),

In a matrix form, we get:

z=C(f)s+n (3.21)

where C(0) = [c(TGl),c(@g),...,c(Gd)]T, s = [s(1),s(2),...,s(d)]", and n =
n(1),n(2),...,n(S)]" .

Extension to a circular blurred contour

In the case of blurred circular contours, it was shown in [60] that we get an array
processing signal model if, instead of the fixed parameter u, we choose a parameter
which depends on the sensor index y = a(i — 1), where « is a constant. As shown in
[60], a circular blurred contour with spread parameter o which is small enough yields
the following signal components:

o?a?(i —1)*
2

We notice that, contrary to Eq. (3.17), Eq. (3.22) contains a quadratic term, which is
the modulus of each signal term. If we account for noise and consider the signal terms
2 (i) such that:

2(1) = exp(—ja(i — 1)rg)exp(— ). (3.22)

= exp(—ja(i — 1)rg) + n(i) (3.23)
we get the following expression:

z =c(ry) +n (3.24)

withz' = [2'(1),...,2'(S — 1)]T, c(ro) = [1, exp(—jary), . .., exp(—ja(S — 1)ro)]",
and n = [n(1),...,n(S —1)]" being the noise vector. In the next subsection, we set
the link between linear-like contours and circular-like contours: we propose a common
signal model for both types of contours.

Common signal model

The notations above permit to express the signal generated out of the image in a matrix
form:

z=C()s+n (3.25)
where:
z=[2(1),2(2),...,2(Ng)",
and C(¢) = [c(t1),¢(t2), -+, c(tq)]- In the case of linear-like contours, Ng=N, and in
the case of circular-like contours, Ns=S. Vector n = [n(1),n(2),...,n(Ng)]" repre-

sents noise resulting from possibly present outlier pixels. For linear blurred contours,
s = [s(1),5(2),---,s(d)]T, and C(t) = C(6). For circular blurred contours, s is a
scalar: s = 1, and C(¢) = c(ro).
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Estimation of prior information needed for contour characterization

The proposed method is entirely blind. We propose to distinguish between line and
circle with two linear antennas, placed aside the image on the left or the bottom side.
A threshold value is applied to the generated signals to get rid of noise. When the
signals received on both antennas exhibit first and last components which are zero-
valued, one or several circles are present. Their center coordinate [, (resp. m,.) are
the middle of the non-zero sections of the signal generated on the left (resp. bottom)
array. If only the left (resp. bottom) array signal contains zero sections, at least
one nearly horizontal (resp. vertical) line is present. If no array signal contain zero
sections, a diagonal line is present. If a horizontal line is present, the signal generated
on the bottom array is further used instead of the signal generated on the left array.
The number of lines is estimated by MDL (minimum description length) criterion, as
explained in the following.

3.4.3 Subspace-based methods for the estimation of contour
parameters

In this section, we adapt subspace-based methods coming from array processing to
estimate some of the parameters of blurred contours. Firstly, we seek for linear blurred
contours: a subspace-based method and Fourier processing provide orientations and
offsets {0k, zox, kK =1,...,d}. Secondly, we seek for a circular blurred contour, and a
subspace-based method provides the radius 7.

Linear blurred contours

We adapt a subspace-based method coming from array processing to retrieve the main
orientation of the contour, and apply Fourier processing to retrieve its center offset.

e Estimation of the blurred contour orientation Equation (3.25) is exactly anal-
ogous to an array processing equation [94]. Therefore, an array processing method
can be applied to the signals generated from the image. However, we do not afford
several signal snapshots, and an array processing method such as MUSIC [94] cannot
be directly applied. We have to simulate artificially multiple signal snapshots out of
a single sample array data by splitting the array (of length N) into smaller overlay-
ing sub-arrays (of length M). This is called spatial smoothing technique. For more
information about spatial smoothing, refer to |6, 76]. We get P snapshots, where P is
such that: M = N — P 4+ 1. From the observation vector z we obtain P overlapping
sub-vectors. By grouping all sub-vectors obtained in matrix form, we obtain:

ZP = [Zl,' . ,ZP] (326)

The covariance matrix of all sub-vectors of Eq. (3.26) is defined by:

R.. = ZpZp" (3.27)



3.4. BLURRED CONTOUR RETRIEVAL 49

MDL criterion, when applied to R..., provides the number of dominant eigenvalues of
R.., which is equal to the number of contours d [6]. We estimate the parameters 6y,
k=1,...,d through the maxima of the pseudo spectrum F () [94]:

1

FO) = om0, P

(3.28)

where 6 is the parameter upon which the optimization is done, and c () is a model for
the signal subspace vectors: ¢(8) = [c1(6), c2(), - -+ , car(0)]", with ¢;(0) = edni=1)tan(®)
Matrix Uy columns span the noise subspace of the data: it is composed of the M — d
columns of the covariance matrix R, associated with its M — d smallest eigenvalues.
We notice that a constraint on M and P with respect to the number of expected
sources is the following: M > d and P > d (to get a full rank covariance matrice).
From M =N — P+ 1 we also get: M < N —d+ 1.

e Estimation of the blurred contour offset The estimation of the offset parameters
of linear contours falls into two steps: first, an approximation is made to get a rough
value of the offsets, which is needed to estimate the spread parameters. Supposing we
have at disposal the spread parameters (whose estimation is presented further in this
chapter), it is possible to get a more accurate estimate of the contour offsets. They are
first grossly estimated, and then the accurate estimate is retrieved with the knowledge
of the spread parameters.

Once the orientation values are known, the offset values can be estimated by variable
speed generation scheme [21] and TLS-ESPRIT algorithm [6]. We set p = a(i — 1).
Eq. (3.18) becomes:

2(i) = G X +n(i) (3.29)
with ¥ =

d L SR (a(i—1))20,2
E e~ Jali=lzog pja(i-1) ta”(ek)e_fk

k=1
Then, each contour is considered successively. We can consider for instance the first

orientation #;. As 6; value has been estimated, we can divide z(i¢) by the term
ele(i=1)%tan(0) We obtain:

w(z) _ Z(Z')/eja(ifl)Qtan(%) _

G emati-Nan o= A |y (3.30)
where /(i) is a noise term resulting from the influence of noisy pixels and all but
the first contour. At this point, the value of o; is not known and we propose an
approximation which permits to get a gross estimate of xg; without the prior knowledge
of oy. If the propagation parameter « is chosen such that a(i—1) << 1, Vi=1,..., N,
we can adopt the following approximation:

w(i) = (i) = G e IeE=Dror 4 p(j) (3.31)
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The signal W = [@(1),@(2),...,®(N)]" can be analysed by Fourier transform, which
provides the estimated offset value xp;:

xo1 = argmaz(|FT(W)|) (3.32)

Zo1

where F'T denotes Fourier transform. The term argmax means that we seek for the
o1
value of zg; which maximizes |FT(W)|. The division process of Eq. (3.30) and the

Fourier analysis of Eq. (3.32) are repeated for each value k = 1,...,d. Fourier analysis
is fast and easy to implement. At this point a gross estimate of the offset values is
available, which will be used to estimate the spread parameter values o, k= 1,...,d.
The estimation of the spread parameters out of the grossly estimated offset values is
explained further in this chapter. Let’s assume that all spread values are available,
and avoid the approximation of Eq. (3.31).

Starting from the expression of w(7) in Eq. (3.30), we derive the signal w(i), i =1,...,d:

(a(i-1))%012

w(i) =w(@) /(e =)
= @G e Jali-Dzor . n/ (i) (3.33)

where n/(7) is a noise term resulting from the influence of all but the first contour. The
signal components w(7) form the signal vector

w = [w(1),w(2),...,w(N)]" which can be analysed by Fourier transform to provide
the estimate xg; of the offset value:

xo1 = argmaz(|FT(w)|) (3.34)
Zo1
The division processes performed in Eqs. (3.30) and (3.33) are applied d times, that
is, for each contour, to retrieve the refined estimates zqo,, k= 1,...,d.

Circular blurred contours: estimation of the radius

At this point the center coordinates {l.;m.} are known (see subsection 3.4.2). From
Eq. (3.24), we notice that the problem of radius estimation is similar to the retrieval of
harmonics in several signal processing fields such as radar, sonar, communication. The
resulting signal appears as a single sinusoid with unitary amplitude and frequency:

f=—ary/27 (3.35)

MFBLP method (Modified Forward-Backward Linear Prediction), which was previ-
ously presented in the manuscript, in subsection (3.2.3), is adequate for frequency
retrieval from coherent signals, in particular signals with unitary amplitude. We adapt
it to the signal vector z (see Eq. (3.24)) to estimate the radius of a single circle. To
reduce the computational load of radius estimation, and on condition that still one
circle is solely expected, the Fourier transform with adequate frequency can yield the
radius value.
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3.4.4 Optimization strategy for spread parameter estimation of
the blurred contours

In this subsection we propose least-square criteria which involve the generated signals
and either the signal model of Eq. (3.25) for linear contours, or the signal model of
Eq. (3.22) for circular contours. The proposed optimization strategy should provide
the spread parameter o for either each of the blurred linear contours or for the blurred
circular contour.

Linear blurred contours

The contour orientations estimated by MUSIC algorithm are used to compute the
steering matrix C(f) (see Eq. (3.25)). The source vector s depends not only on
the offset parameters xo, (k = 1,...,d), but also on the spread parameters oy (k =
1,...,d). Therefore we propose to retrieve the components of the source vector s,
through the following criterion minimization:

8 = argmin(||z — Cs||?) (3.36)

where ||.|| represents the norm induced by the usual scalar product of CV. Tt is easy
to show that the density function of the measurement noise is Gaussian if the noise
pixels are identically distributed over the image [6]. Therefore, the above least-squares
problem provides the maximum likelihood estimate for the source vector. We remind
that the relationship between the source vector components and the spread parameter
values is given by (see Eq. (3.20)):

20k2

s(k) = f(oy) = G e THore= "3 (3.37)

We denote by o = [0y, . .. ,ad]T the vector containing all spread parameter values,
and by f(o) = [f(01),..., floa)]" = [s(1),...,s(d)]" the source vector. We denote by
G =[o1,..., a}]T the vector containing the estimates of all spread parameter values.
From Egs. (3.36) and (3.37), we get:

b= arg;mn(Hz — Cf(0)|]?) (3.38)

which can be expressed as:
G = argmin(Jyne(o)) (3.39)
o
where Jj;,. denotes the criterion to be minimized. To solve Eq. (3.38) and minimize
criterion Jy,., we adopt a recurrence loop to modify recursively the vector 6. The
series vectors are obtained from the relation

51— £(67) = Jyne(67),¥ ¢ €N (3.40)
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When ¢ tends to infinity, the criterion Jy;,. tends to zero and 6 = oy, VE=1,...,d.
The criterion Jy;,. presented in Eq. (3.39) is a Lipschitz continuous function of the
vector of variables ¢ and therefore fulfils the requirements of the DIRECT (Dlviding
RECTangles) method [62]. Therefore, to carry out this recurrence loop, we can adopt
the robust DIRECT optimization method [62]. DIRECT method is initialized by 67,
and a research space which is an acceptable interval for each value. Vector 6% and
the research space are a priori fixed by the user. The main property of DIRECT is
that it is able to obtain the global minimum of a function. DIRECT normalizes the
research space in a hypercube and evaluates the solution which is located at the center
of this hypercube. Then, some solutions are evaluated and the hypercube is divided
into smaller cubes, supporting the zones where the evaluations are small. When the
required number of iterations ¢ = It is reached, DIRECT provides the estimated vector

of spread parameters 6t = [0y, 09, ..., 04].

Extension to a blurred circular contour

In the case of a blurred circular circle, we propose the following algorithm: we start
from the signal z = [2(1),2(2),...,2(S)]" whose components z(i) are defined in Eq.
(3.22). The value of 7y is known at this point, and can be used to obtain the signal

components 2 (i) defined as follows: 2" (i) = 2(4) /exp(—ja(i—1)ry). Let’s then denote
o?2a?(i—1)2

" (2 ) ),
and let’s denote by z;,,,. the signal whose components are defined by: 2;,,,,.(i) =
2(i)/exp(—ja(i — 1)rg) and obtained from the signal components z(7) generated out of

the image. With these notations, the spread parameter o can be estimated as follows:

" 4o the signal whose components are defined by z ..(i) = exp(—

1"

by z

mode

1" 1"

o= argmin(HZimage - Zmodel||2) (341)

which can be expressed as:
o = argmin(Jeiee(o)) (3.42)

g
where J,.,. denotes the criterion to be minimized. Contrary to the case of linear
blurred contours described in subsection 3.4.4, the global optimization method DI-
RECT [62] is not adequate to minimize the criterion J,;... presented in Eq. (3.42).
An advanced well-known local minimizer is adapted: the Nelder-Mead Simplex Method
[70]. Tt is meant to minimize a scalar-valued nonlinear function of n real variables. It is
then adequate to minimize the criterion J..q.(0), which constitutes a nonlinear func-
tion of the parameter o. Nelder-Mead method involves four scalar parameters: the
coefficients of reflection (pyus), expansion (xnas), contraction (yyas), and shrinkage

(O'NM).
3.4.5 Exemplification of the blurred contour retrieval methods

In the following experiment, we analyse an image including two linear blurred con-
tours, with different spread values (see Fig. 3.9). The image has size 400 x 400. The
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center offsets of the two blurred contours are xg; = 200 and x¢p, = 170, and the main

orientation of two contours are #; = —18° and 6y = 18°. The spread values are o; = 8
and o9 = 1.
Bxlo‘3
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Figure 8.9 — Blurred linear contours: (a) processed image with a blurred contour and a one-

pixel wide contour; (b) pseudo spectrum when MUSIC algorithm is exploited; (c) center contours;
(d) final result

The estimated orientations of the blurred contours are él = —18° and 0} = 18&°.
The offsets are estimated as xp; = 200.5 and xpo = 211 pixels. The estimated spread
parameters are g; = 10.9 and g, = 2.4. Fig 3.9(b) shows that the contour with low
spread value is hardly detected by MUSIC algorithm. The dominating influence of the
most blurred contour in the generate signals of Eq. (3.26) also explains the slight bias
(41 pixels) obtained on the offset of the least blurred contour.

We present a result obtained from an image of size 200 x 200 pixels (see Fig. 3.10),
containing a blurred circle. The experimental conditions and expected values for the
blurred circular contour are as follows: the center coordinates are {l., m.} = {70,60};
the radius is rg = 45 pixels; the spread value is ¢ = 5. The proposed methods yield
the following estimated parameters out of the generated signals: the estimated center
coordinates are < [, {le,m:} mc} = {70,60}, the estimated radius value is 7y = 45.4
pixels, and the estimated spread value is 6 = 5.6. As a comparative method we chose
Chan and Vese levelset algorithm. As expected, this method manages to focus on
the blurred contour boundaries, but it does not characterize the blur, contrary to the
proposed method.
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Figure 3.10 — Blurred circular contours: (a) initial image; (b) initialisation circle; (c) final
result; (d) results by Chan and vese method

3.5 Retrieval of distorted contours

3.5.1 Nearly rectilinear contour retrieval

We keep the same signal generation formalism as for straight line retrieval. The more
general case of distorted contour estimation is proposed. The reviewed method relies
on constant speed signal generation scheme, and on a recursive optimization method.

Initialization of the proposed algorithm

To initialize our recursive algorithm, we apply SLIDE algorithm, which provides the
parameters of the straight line that fits the best the expected distorted contour. In
this section, we consider only the case where the number d of contours is equal to one.
The parameters angle and offset recovered by the straight line retrieval method are
employed to build an initialization vector X, containing the initialization straight line
pixel positions:

Xo = [0, o — tan(d), ..., 2o — (N — 1) tan(d)]"

Fig. 3.11 presents a distorted curve, and an initialization straight line that fits this
distorted curve.
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Figure 3.11 — A model for an image containing a distorted curve

Distorted curve: proposed algorithm

We aim at determining the N unknowns z(i), ¢ = 1,..., N of the image, forming a
vector Xn,ut, each of them taken into account respectively at the i*" sensor:

2(i) = exp(—jpx(i)), Vi=1,...,N (3.43)

The observation vector is

. ‘ T
We start from the initialization vector xg, characterizing a straight line that fits a
locally rectilinear portion of the expected contour. The values x(i), ¢ = 1,..., N can

be expressed as: z(i) = xg — (i — 1) tan(f) + A x(i), i = 1,..., N where A z(i) is
the pixel shift for row ¢ between a straight line with parameters ¢ and x, and the
expected contour. Then, with k& indexing the steps of this recursive algorithm, we aim
at minimizing

J(Xk) = ||Zinput — Zestimated for xy, | |2 (345)
where ||.|| represents the CV norm. For this purpose we use fixed step gradient
method: VE € N ' x5 = x5 — AV(J(xx)), A is the step for the descent. At
this point, by minimizing criterion J (see Eq. (3.45)), we find the components of vec-
tor x leading to the signal z which is the closest to the input signal in the sense of
criterion J. Choosing a value of p which is small enough (see Eq. (3.1)) avoids any
phase indetermination. A variant of the fixed step gradient method is the variable step
gradient method. It consists in adopting a descent step which depends on the iteration
index. Its purpose is to accelerate the convergence of gradient. A more elaborated
optimization method based on DIRECT algorithm [62] and spline interpolation [75]
can be adopted to reach the global minimum of criterion J of Eq. (3.45). This method
is applied to modify recursively signal Zestimated for x,: at each step of the recursive
procedure vector x; is computed by making an interpolation between some "node"
values that are retrieved by DIRECT. The interest of the combination of DIRECT
with spline interpolation comes from the elevated computational load of DIRECT. De-
tails about DIRECT algorithm are available in [62]. Reducing the number of unknown
values retrieved by DIRECT reduces drastically its computational load. Moreover, in
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the considered application, spline interpolation between these node values provides a
continuous contour. This prevents the pixels of the result contour from converging
towards noisy pixels. The more interpolation nodes, the more precise the estimation,
but the slower the algorithm.

After nearly linear contours, we focus on nearly circular contours.

3.5.2 Nearly circular contour retrieval

To retrieve the distortions between an expected star-shaped contour and a fitting quar-
ter of circle, we work successively on each quarter of circle, and retrieve the distortions
between one quarter of the initialization circle and the part of the expected contour
that is located in the same quarter of the image. As an example, in Fig. 3.3, The right
bottom quarter of the considered image is represented in Fig. 3.3(b).

The optimization method that retrieves the shift values between the fitting circle
and the expected contour is the following:
A contour in the considered sub-image can be described in a set of polar coordinates
by: {p(7),0(i), i =1,...,S}. We aim at estimating the S unknowns p(7), it =1,...,5
that characterize the contour, forming a vector:

p=p(1),p(2),....p(S)]", (3.46)

The basic idea is to consider that p can be expressed as: p = [r + Ap(l),r +
Ap(2),....,7+ Ap(9)]T (see Fig. 3.3), where r is the radius of a circle that approxi-
mates the expected contour. The parameters Ap(1),..., Ap(S) can be estimated by a
gradient-type algorithm or DIRECT combined with spline interpolation, as was per-
formed in |77]. However, these two methods exhibit limitations when the considered
contour is highly distorted. The computational load required by gradient is elevated,
and the regularity constraints on spline interpolation prevent from providing to the dis-
tortions their actual shape. Hence the method proposed in [61], which is summarized
in the next subsection.

3.5.3 Highly distorted star-shaped contour retrieval

In this subsection, we consider star-shaped contours. On the one hand, this is a limiting
model because for one angle value in a polar set of parameters, there must be only one
pixel of the contour. On the other hand, this allows the distortion amplitudes to be as
elevated as possible, as soon as the contour remains in the processed image. The signal
generation method is still based on virtual sensors placed along a circular antenna, but
the formula providing the signal components is slightly different.

Problem formulation

Assume that a closed circular contour is in an N x N recorded image I, ,,, (see Fig. 3.12).
The most simple star-shaped contour is the circle. A circle is supposed to have center
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coordinates (l., m.) and radius . Note that, for a binary image, I, ,,, = 1 on the contour
and I; ,, = 0 otherwise. The signal component for a given sensor 7 is generated by the
pixels in every D; direction as follows:

= S P =S

l,m)EDi

(3.47)

where Ny is the maximum number of rows and columns in the sub-image. The
. . T
signal components form the signal vector z = [21, 29,..., 25| .

Zo z;

Figure 3.12 — A model for an image containing a highly distorted circle

The considered signal generation process requires the knowledge of the center co-
ordinates (l.,m.). We explain in subsection 3.3.3 how to estimate these center coor-
dinates. When a single one-pixel wide circular contour with radius r is present, the

signal components read:
z=r, i=1,...,8 (3.48)
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When a distorted nearly circular contour is considered, the signal components read:
zi=r+Ap@i), i=1,...,8 (3.49)

In the rest of the subsection, we denote Ap(i) as x;, i =1,...,Q.

From the signals z = [z1, 22, -+ , 2¢|" of Eq. (3.49), we wish to retrieve the radius
value r, and the oscillations x;, ¢ = 1,---,@Q, in particular from contours presenting
a strong concavity. Without loss of generality, we define r as the mean value of the
components z; ¢ = 1,...,Q. r is estimated as:

r==z (3.50)
where Z is defined as: z = %Zil z;. Then, we can compute:
r=z-—ri=1,...,Q (3.51)

The values x;, © = 1,--- , Q) are exactly the edge oscillation values in the case where the
image is not impaired with noise. If the image is impaired with uniformly distributed
noise, the computation of Eq. (3.51) provides signal components x;, i = 1, ..., Q which
are impaired by random noise, due to the influence of random noise pixels on the signal
generation process. Therefore, we seek for a method which retrieves the oscillations of
possibly strongly concave contours, and which is robust to noise. For this, we propose
in the following a model for edge oscillations x;, i = 1,---, (. We will further adapt
an advanced damped frequency retrieval method to characterize the edge oscillations,
in accordance with the proposed model.

Edge oscillations modelled as damped sinusoids

For the edge oscillations of a star-shaped contour, the pixel coordinates in a polar
representation are supposed to follow a generalized version of the sinusoidal model,
that is, X' damped sinusoidal components, each of which has respective amplitude,
frequency and damping factor. So we model the edge oscillations as follows:

2K 2K
ri= Y aped eI N )Y =1 Q (3.52)
k=1 k=1

where j = /=1. In Eq. (3.52), x; represents the oscillation magnitude for
1=1,...,Q, a; is amplitude of the k-th sinusoidal component, d,, its damping factor,
wy its angular frequency, and ¢, its initial phase. Note that damping factor dy
may be negative. In this case, the amplitude of k-th component grows with index
i. cp = ape’® is the complex-valued amplitude of k-th component, and wy, = e(~%+iwk),

The observed signal segment x = [x1, 29, ..., 7|7 is entirely characterized by the
parameters ay, d, wg, ¢, kK = 1,...,2K. The number K of sinusoidal components
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can be estimated by MDL criterion [108].

We then have to determine the parameters cited above by applying a variant of the

parameter estimatorFirstly, we rearrange the signal segment x in a Hankel matrix with
L x M as follows:

T ) c. Vs
) T3 e Ty

X=|"7 " _ (3.53)
ry, Trp+1 .- ZQ

where L, K, and @) are related by: L > 2K, M > 2K and Q = L + 2K — 1.

Then, by implementing the Vandermonde Decomposition (VD) for Hankel data
matrix of Eq. (3.53) with rank of 2K, X can be written as:

VD
X = SCT7,
where ()T denotes matrix transposition, C = diag(cy, s, . . ., Corc),
1 1 1
1 1 1
wy Wy Wyk
S == . )
L-1  L-1 L-1
wy w; Ce WY
1 1 . 1
1 1 1
w w W
1 2 2K
T =
M-1  M-1 M1
wy wy Ce Whp

According to the shift-invariant property in column space,
St =8z, (3.54)

where S is a matrix containing all but the first row of S, and S*' is a matrix containing
all but the last row of S. Z is a diagonal matrix whose nonzero terms depend on the
expected parameters. By performing SVD, X can be decomposed as:

X "2 [U, Uy [201 202} lzg] (3.55)

where (-)# is the Hermitian transposition, 3; contains the largest 2K singular values
of X and X5 the L — 2K singular values of X. The matrices U; and Vf contain the
first 2K left and right singular vectors, and their dimension is L x 2K and M x 2K,
respectively. Because the rank of X is 2K, all values of ¥, are null. Therefore, we can
express X as:

X =U,%, VI, (3.56)
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and we get the following equation from Eq. (3.54) by orthogonal basis transforma-
tion.

Utz = Ut (3.57)

where UY" contains all but the last row of matrix U;, U¥ contains all but the first
row of matrix Uy, and Z" is a similarity transform of Z. The damping factors d; and
frequencies wy, (k = 1,...,2K) of the exponential sinusoidal model (see Eq. (3.52))
are estimated from the eigenvalues of Z". Then we substitute these estimated d; and
wr in Eq. (3.52) and compute the least-squares solution of the N linear equations.
Finally, the amplitude a; and phase ¢ of each component are determined from the
magnitude and angle of ¢; in Eq. (3.52). According to these estimated parameters, we
can reconstruct the contour with oscillations. The pixel coordinates in the contour are
given as:
pi=r+d, i=1,,Q

where Z; is initial estimation of z;, ¢ = 1,---,@Q. We now afford the values of the
contour distortions, for any angle coordinate ;. We also afford, r, the radius of the
fitting circle. With the knowledge of the center, whose estimation is the purpose of
subsection 3.3.3, we reconstruct perfectly the expected contour.

3.5.4 Exemplification of the distorted contour retrieval meth-
ods

We consider two approximately linear distorted contours, with different distortion am-
plitude. These contours are the ones of Figs. 3.13(a) and (b). The pixel of the least and
most distorted contours, and their estimation by the proposed method and by GVF
[111] are drawn on Figs. 3.13(a) and (b).

We now consider highly distorted approximately circular contours. We denote by
M Ey the mean error between actual and estimated radial coordinate oscillations. In
some cases, due to the acquisition conditions or the image quantization, the contin-
uous form of contour edge is not perfect. It is therefore very interesting to evaluate
the robustness of the proposed method to pixel location errors. We produce test im-
ages by initially creating a star-shaped contour (see Fig. 3.14 (a)); and then adding
pixel displacement by modifying the actual pixel radial coordinates with a Gaussian
random variable with mean value 0 and standard deviation 1 (see Fig. 3.14(b)). We
assume there exists equally distributed random noise in the image, with mean value
0 and standard deviation 1072. Referring to Figs. 3.14 (d)-(i), when the proposed
method is applied, the mean error is M Ey, = 1.61 when small random displace-
ments are added; and M FEy = 1.86 when larger random displacements are added.
When Gradient method is applied, the mean error value is increased dramatically from
ME, =1.78 to ME, = 2.25. When GVF is applied, the mean error value is increased
from M Ey = 1.90 to M E, = 2.42. So, Figs. 3.14 (d)-(i) show that the proposed method
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Figure 8.13 — (a) Least distorted contour: initialization, results obtained (b) Most distorted
contour: initialization, results obtained by the proposed method and GVF respectively.

is not sensitive to the random pixel displacements, contrary to Gradient method and
GVF method. This is due to the fact that the proposed method processes the sig-
nal generated from the image as a whole, providing parameters of interest, whereas
Gradient method and GVF are local methods, which may focus on random pixels.

This type of contour, though being rigourously star-shaped, makes us think about
the outside borders of hands, captured on video frames. In the next sections of this
manuscript, we will show how this intuition yields a specific signature inspired by the
signal generation methods presented above.

3.6 Conclusion of the chapter

This chapter presents an overview of an original approach of contour detection which
has been proposed during the past years. Array processing signal models and methods
have been adapted to various aspects of contour detection. Originally, this approach
consisted in considering a contour as a wavefront and the image background as a
propagation medium [6]. In this framework, a signal generation scheme along the rows
of the image yields signal components. Each row is associated with a virtual sensor, and
the whole set of sensors forms a uniform linear antenna. This approach was extended
to circles, by adapting the shape of the antenna [76|, and choosing radial directions for
the generation of signal components.

An extension of these methods, inspired from real-world issues, was proposed there-
after: it consists in characterizing blurred contours. Blur can indeed occur because of
de-focus, transmission media inhomogeneities, etc. We reminded what are the princi-
ples of characterization of either linear of circular blurred contours. An outline of the
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Figure 3.1/ — (a) processed image: & = 2.7 1073, with small edge perturbation and noise

(0,1072); (b) processed image, with large edge perturbation and noise (0, 1072); (c) initialization of

the methods for both processed images; (d-f) superposition processed and result obtained on ’a’ by the

proposed method (M Ex = 1.58), Gradient method (M Ex = 1.78), and GVF method (M Ex = 1.90);

(g-1) result obtained on ’b’ by the proposed method (M Ex = 1.86), Gradient method (M Ex = 2.25),
and GVF method (M Eyx = 2.42).

proposed blurred contour estimation methods is as follows:

e find out the mean position of the pixels of the contour:

For blurred linear contours:

— choose p as a constant value, and estimate the orientations 0y (k =1,...,d)
through Eq. (3.28);

— choose 1 as a variable value = a(i — 1), and estimate the offsets zo, (k =
1,...,d) through Eq. (3.32), for each orientation value.

For blurred circular contours: choose p as a variable value p = «(i — 1), and
estimate the radius ry by determining the roots of the polynomial function H;
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e estimate the spread parameters o (k = 1,...,d) by DIRECT optimization method
(see Eq. (3.39) for linear contours) or Nelder-Mead method (see Eq. (3.42) for
circular contour);

e obtain a refined estimation of o, (k = 1,...,d), knowing oy, values (linear con-
tours, see Eq. (3.34)).

The methods dedicated to straight line estimation and circle retrieval were extended
to distorted linear contours and distorted circular contours. For this, a pixel shift
term was introduced in the model which is followed by the signal generated on the
uniform linear antenna or the circular antenna. In the case of linear contours, an
optimization method, based either on gradient [21] or on the combination of DIRECT
and spline interpolation [76]. Table 3.1 provides the directions for signal generation,
the parameters which characterize the initialization contour and the distortions when
either linear or circular contours are expected.

Straight | Circular
Direction for signal generation | row i D;
Initialization parameters 0, xq r, center
Pixel shift Ax(1) Ap(7)
Table 3.1 — Similarities between nearly straight and nearly circular distorted contour estimation

A summary of the estimation nearly rectilinear distorted contour is given as follows:

e Signal generation with constant parameter on linear antenna, using Eq. (3.1);

e Estimation of the parameters of the straight lines that fit each distorted contour
(see subsection 3.5.1);

e Distortion estimation for a given curve, estimation of x, applying gradient algo-
rithm to minimize a least squares criterion (see Eq. 3.45).

The optimization method based on gradient or DIRECT combined with spline in-
terpolation yield satisfactory results when the distortions are of low amplitude. In the
case of any star-shape contour, with either low amplitude or high amplitude distortions,
a method proposed in [61] is preferable. It models the pixel radial shifts as damped
sinusoids. A method dedicated to the estimation of the damp factor, the frequency
and the phase shift of multiple sinusoids was adapted in [61]. Tt permits to retrieve the
contour distortions with a computational load which is independent from the distortion
amplitude, contrary to the optimization methods which were proposed previously. The
proposed method for star-shaped contour estimation is summarized as follows:

e Variable speed propagation scheme upon the proposed circular antenna : Esti-
mation of the number of circles by MDL criterion, estimation of the radius of
each circle fitting any expected contour (see Egs. (3.9) and (3.10)) or the axial
parameters of the ellipse;
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e Estimation of the radial distortions, in polar coordinate system, between any ex-
pected contour and the circle or ellipse that fits this contour. In the case of low
amplitude distortions, either the gradient method or the combination of DIRECT
and spline interpolation may be used to minimize a least-squares criterion. In
the case of star-shape contours with possibly large distortions, a damped sinu-
soid characterization method is adapted to the signals generated on the circular
antenna.

Now, the methods presented in this chapter cope with either linear, or star-shape
contours. The results presented above while exemplifying the methods for strongly dis-
torted star-shape contours lead to an intuition: this kind of methods could be adapted
to hand contour characterization. However, we will show further in this manuscript
that, although this intuition is justified, a completely new signal generation method is
necessary to characterize hand contours, which are most often non star-shape. This is
the purpose of a next chapter of this manuscript.



CHAPTER
Novel signature for hand
characterization

4.1 Introduction of the chapter

AND characterization appears to be a necessary and important step in the hand

recognition procedure. Several methods have proven successful and have given
promising results but they are applied on a reduced base of postures. Thinking in this
direction is more essential than ever because existing descriptors based for instance on
moments exhibit drawbacks.

From the comments provided in section 1.3, it appears that a new characterization
method is now required. It must ensure maximum discrimination between the postures
that are very close, it must also ensure the properties of invariance such as rotation,
translation and the scale factor. Finally it must guarantee the consistency between the
reconstructed image (with the vector or matrix characterization) and the initial image.

With the experience of the GSM team in the field of antenna treatment and the
transfer of array processing to image processing using the tools of signal processing (see
section 3), we managed to find a new method of characterization, but the questions
that arise are as follows:
how could antenna tools processing be adapted to the generation of a discriminative
hand signature? how does this method guaranteed the invariance properties? And
finally, what are the required preprocessings which permit to respect the conditions of
use of this novel signature?

4.2 Signature generation

A planar object shape can be characterized through two-dimensional moment invari-
ants, obtained for instance with Hu [53|, Zernike [28, 66], or Legendre [40] moments.
One-dimensional moment invariants can also be used as signatures to characterize
contours, for instance Fourier descriptors [30, 88|, which are obtained by Fourier
transform of the arclength parametrization, in complex coordinates, of a closed
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contour. The image scan in [98] provides a contour signature as a matrix involving
the contour polar coordinates.

An equivalent descriptor called shape context descriptor is presented in [44] as a
compact human pose representation. The processed image is divided into different
ranges of radius and angle values. Each range couple compounds a bin. Counting
the number of pixels in each bin yields a 2-D histogram. The main drawback of
such a descriptor is that it does not provide a 1-pixel precision: it is impossible to
distinguish between the pixels of a given bin, so details which are smaller than the
bins are skipped. And, the more accurate the description, the smaller the regions, but
the higher the computational load and the storage place. On the contrary, we propose
a contour signature which offers a resolution of one pixel.

The proposed novel scan is inspired from [98] but also from [61, 77]. In [77] and
[61], an image scan is proposed to characterize star-shaped contours. In a system of
polar coordinates with adequately chosen pole, a contour is star-shaped if the radial
coordinates (p) of its pixels are function of their angular coordinates (6): p = f(). In
the general case, hand contours are not star-shaped: it is impossible to find a pole for
which the relation p = f(0) holds for all contour pixels. That is why we seek for a
characterization method which handles non-star-shaped contours.

The proposed method for contour characterization splits the image into several
rings centered on a reference point. The requirements on the location of this reference
point are low, contrary to the condition imposed by the method in [61]. With
this characterization method, we aim at distinguishing very similar postures with a
computational load which is lower than what the generally used Fourier descriptors
would require.

The image I¢, denoted by I in the following for convenience, is supposed to have size
N x N, and its pixels are referred to, starting from the top left corner of the image, as
I (see Fig. 4.1.a). The 1-valued pixels compound the expected contour. The contour
pixels are located in a system of polar coordinates with pole {l.,m.} (see Fig. 4.1.a).

Contrary to the methods proposed in [61], where the center must be chosen in such
a way that the contour is star-shaped, the computation of the center coordinates is not
essential. For instance, this pole can be the center of mass obtained in the previous
section. What we call signature in this thesis is a set of data which characterizes the
corresponding contour. The novel signature that we propose in this thesis is based
on the generation of signals out of an image. As in [61], a circular array of sensors is
associated with the image. The sensor array is supposed to be placed along a circle
centered on the pole {l.,m.}. The number of sensors is denoted by @ and one sensor
corresponds to one direction for signal generation D;, which makes an angle 6; with
the vertical axis. See for instance the i*" and the Q™ sensors in Fig. 4.1.b. The other
sensors are not represented for sake of clarity.



4.2. SIGNATURE GENERATION 67
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(a) (b)

Figure 4.1 — Image and edge model (a); signal generation process (b).

The method proposed in [61] is valid only for contours exhibiting at most one
pixel for one direction D;. We wish to overcome this limitation and characterize
non star-shaped contours, because the hand contours considered in this thesis are
mostly non star-shaped. To separate the influence of each pixel located along a
given direction D;, we no longer generate one 1-D signal, but a number P of 1-D
signals on the antenna. Each signal corresponds to one 'ring’ represented on Fig. 4.1.b.

We assume that, for each direction D;, there is only one pixel in each of the P
intervals. P differs from one direction D; to another. Its maximum theoretical value
is, for instance, %, if . = N/2 and m, = N/2. In these conditions also, the value
of () should not exceed V27 N: it is sufficient to take into account all pixels of a
given interval p. So, we generate P signal vectors for each direction D;. For the p
interval (p = 1,..., P) and the direction D; (i = 1,...,@Q), the signal component z,,

is computed as follows:

i = Dymgi ] Ui = 107 + (s — e (4.1)

The components z,; (p =1,...,P,i=1,...,Q) can be grouped into a matrix Z
of size P X Q:

21,1 21,2 0 Z1,Q
zZ— | (42

zP,l . . . zP,Q
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where several z,; = 0

221 -0
7= - o (4.3)
0 0 0
Zp1 0 0 ZPQ

All columns of Z should have the same number of rows, so for the directions D;
which cross less than P intervals, 0-valued components are set in Z for the correspond-
ing indices . If the width of the intervals is chosen such that there is at most one
pixel per direction D; and per interval, this matrix permits to reconstruct exactly the
contour: it contains the radial coordinates of the contour in the system of pole {l., m.}.

However the purpose of the signature is not obligatorily to reconstruct exactly the
contour: it should characterize a contour so that all postures can be distinguished.
Also, the signature should be invariant to rotation. To ensure this, the components z, ;
of a given interval p are sorted. As a consequence, all non-zero values of the p' row
of Z, issued by contour points, are turned as the last components of the p' row. This
method differs from the method proposed in [15], where the images were straightened
up through several rotations and the maximization of the hand Feret’s diameter in
the horizontal direction. This process was much more time consuming.

Before getting the image I which is fed to the method of characterization, we apply
some adequate preprocessings.

From the initial processed image, we select the smallest subimage containing the
expected contour. This subimage is called "enclosing box". The enclosing box is
obtained in the following way: the image content is projected onto the left and the
bottom sides (it could be also the right and the top sides). We get two signals,
z'*ft and z%%°™ from this projection: Their components are obtained as follows:
29 = SN Ll =1,--- N and zrtom = SN [ m = 1,---,N. For each
signal, a non-zero section indicates the presence of the expected feature. The [ and
m indices of the non-zeros sections yield a box enclosing the contour. Extracting this
box reduces the computational load of the signature generation.

Eventually, through the following remarks (e) we can assess that the rows of matrix
Z compose a complete set of invariant features:

e They describe entirely the hand contour: the rows of matrix Z compose a
complete set of invariant features when only couple (p, ) correspond to only one
pixel.

Fig. 4.2 illustrates this by showing a segmented hand posture (see Fig. 4.2(a)),
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Figure }.2 — Segmented contour (a); contour reconstructed from the signature Z (b).

and the contour which is reconstructed out of its signature Z (see Fig. 4.2(b)).

e They are invariant to translation: the box which encloses the contour is blindly
estimated, whatever the hand position in the initial image.

e They are invariant to scaling: whatever the size of the subimage (small number
of pixels if the camera is far from the hand, large number of pixels if the camera
is near to the hand), the number of intervals for the radial coordinate values P is
always the same. Also, the number of directions for signal generation is always
the same. As a consequence, the size of matrix Z will be constant, whether the
user’s hand is near to or far from the camera. This makes the method invariant
to scaling. Hence, the signature depends on the shape of the hand, not on its size.

e They are invariant to rotation: whatever the initial orientation of the hand,
straightening up the hand contour makes the proposed method invariant to
rotation.

These invariance properties permit to use the proposed contour signature (matrix
Z) as for hand posture classification purpose.

4.2.1 Dimensionality reduction and Bayesian distance compu-
tation

Let’s consider H classes of hand postures. For the purpose of hand posture classi-
fication, Euclidean and Bayesian distances are used in [15]. We will compare the
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results obtained with Euclidean and Bayesian distances. We vectorize any matrix
Z characterizing a posture into a P.() vector x. For each class h, a subset of hand
photographs is available. The H subsets compose the learning set. This set was
created by an expert who knows exactly what position his fingers should have to
fit each posture in Fig. 2.6. Let X;, be the matrix whose columns are the vectors
Xp,, M, = 1,..., M} obtained from the images belonging to class h. It is obvious from
Fig. 4.1.b that, the higher P and (), the more details we keep in the signature Z, and
the more accurate the hand posture classification method involving this signature.

However, for large values of P and (), X, exhibits a large number of rows, and it
is a sparse matrix. The principles of posture classification are as follows: a test set is
created from persons who are not the expert. We aim at associating a label with any
image chosen from the test set. This label is one of the 11 postures presented in section
2.3. To improve the recognition rate with respect to the work presented in [15], we
propose in the following to reduce the number of candidates for a posture and, in sub-
section 4.2.1, to reduce the dimensionality of matrix X, obtained from the learning set.

For a classification purpose, two main distances may be chosen: the Euclidean
distance and the Bayesian (Mahalanobis) distance. Let x}, , n, = 1,..., M}, denote
the columns of X§. The mean invariant vector is computed as p;, = Mih Z%} " Xy, and
the covariance matrix is computed as A;, = Mih Zi{l’;l(x;h — pp) (x5, — pa)7, for each
class h = 1,..., H. Even if there are small variations from one posture provided by the
expert to another, these variations are smoothed through the computation of the mean
invariant vector p,. Any image coming from the test set and characterized by vector x
is classified by minimizing the Mahalanobis distance applied to the compressed vector
Ulx:

Dy, = (Upx — )" A, (Ul x — pp) (4.4)

Computing the Bayesian distance involves, as shown in Eq. (4.4), the inversion of the
covariance matrix Aj. This is not the case for the Euclidean distance which is then
easier to implement than the Bayesian distance, but the Bayesian distance usually
provides better classification results, which has been verified in the frame of hand
posture recognition in [34].

Consequently, we propose to use the Bayesian distance. To enable the inversion of
matrix Ay, and thereby the computation of this distance, Aj; should not exhibit a too
large dimension. That is why we perform dimensionality reduction of the data, with
principal component analysis (PCA).

Let K (K < P.Q) be the number of dominant singular values in X,,. Let Uy be
the matrix whose columns are the K singular vectors associated with the K largest
singular values of X;. Each singular vector corresponds to a mode of variation of the
considered hand posture of class h, and its corresponding eigenvalue is related to the
variance specified by the eigenvector.



4.3. PRE-SELECTION OF BEST POSTURE CANDIDATES 71

In [81], such a data compression is also performed on human motion descriptors.
In [81], each singular vector reflects a natural mode of variation of human gait. In our
case each singular vector reflects a natural mode of variation of presenting the hand
in the desired posture in front of the camera. The compressed version of the data is
obtained by: X§ = U7X}, where T denotes transpose. With this compressed version
of the data, we obtain a lower-dimensional representation of reference hand postures
which is more suitable to describe any test posture: in [81], each dimension on the
PCA space describes a natural mode of variation of human motion, in the case of
hand posture, each dimension describes a natural mode of variation of how the user
presents its hand in front of the camera.

Dimensionality reduction permits to reduce the computational load dedicated to
matrix inversion in Eq. (4.4): matrix A, was computed from the compressed data and
has low K x K dimensionality. This also prevents from inverting an ill-conditioned
matrix. For sake of comparaison, the proposed signature can be also exploited with
Euclidian distance, computed as follows: ||[Ufx — pl[, where ||.|| denotes Frobenius
norm.

4.3 Pre-selection of best posture candidates

Through a careful look at the dictionary of posture (see Fig. 2.6), we can distinguish
two large categories of postures. To characterize these categories, we introduce a
isometric rate, denoted by S, which involves the geometric hand criterion computed
from I/ and the length of the hand contour, computed from I¢. S is the hand contour
length divided by the hand surface. In practice, we compute the isometric rate as
S = hand's perimeter® - poireg 2,3, 7,8, 9 and 11 exhibit a high sphericity criterion,

hand's area xX4xXw ] )
and postures 1, 4, 5, 6, and 10 a low isometric rate.

Our purpose is then to pre-select one of these two large categories of postures, and
to look for the reference posture which is the closest to the test image posture inside
of this category. For this, we compute the distance D,, of Eq. (4.4) with respect to
a low number of reference postures, which are pre-selected from the dictionary by
considering the isometric rate.

The criterion S is computed for all images of each class in the learning set. Then
we choose the following criterion: |S; — Sj,| where S; is the isometric rate for the test
image and S}, the mean isometric rate for all images of class h in the learning set. We
select the 6 classes (about half of the total number of reference postures) which yield
the minimum criterion value. They compose a new dictionary with a reduced number
of candidates, and distance D,, of Eq. (4.4) is computed only six times to perform
classification.
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4.4 Conclusion of the chapter

We propose a novel signature for the characterization of hand postures. This signature
is made of several 1-D signals. Each signal contains radial coordinates of the pixels in
an image region which has the shape of a ring. This signature permits to reconstruct
the corresponding contour with a precision of one pixel.

By applying some preprocessing, we ensure that this signature forms a complete set
of features which are invariant to translation, scaling and rotation. This makes this
signature fit for hand posture recognition, we facilitate the classification step with
dimensionality reduction by PCA because we reduce the size of characteristic matrix
to K x K.

The new matrix can be used to improve classification and learning steps. In the learning
step we should represent all user(adult, child,male, female, left hand, right hand and
color hand) to calculate the referent matrix which can be used in classification.



CHAPTER
Optical Flow

5.1 Introduction of the chapter

HILE detecting hand contours, the diversity of users is one of the constraints to

solve. Indeed, the detection and recognition must be carried out for all hands
(white or colored, with or without gloves), and we found that most of the methods
used for the detection step are based on the skin color. In [91] for instance, the authors
use green-colored gloves to detect easily a moving hand. In [99], Soriano et al. propose
a dynamic skin color model, for a segmentation purpose. Their method copes with
changes in illumination. However, their method still relies on relevant color properties
of the skin. No result is presented concerning dark skins or hands wearing gloves. In
[80], the authors modelled their object colors as a Gaussian mixture and recursively
adapted the mean, covariance and prior probabilities of each Gaussian cluster. In [112],
a set of relevant grey level values are selected from chromatic histograms to segment
faces. To summarize these approaches, either the user affords a prior knowledge of the
scene and the target or he assumes that the hand is white.

On the contrary, we aim at detecting the contour of a hand, whatever its color.
Thinking in this direction leads us to look for other methods that allow us to solve
this problem. A promising method for the detection of hands, whatever their color,
consists in adapting optical flow (as used in Fig. 5.1). It appears to us as a reliable
technique especially because we combine static and dynamic hand recognition.
Therefore, questions arise while implementing and using this method. They are con-
sidered successively in sections 5.2, 5.4, 5.3 of this chapter: what are the conditions
and assumptions required to use the optical flow algorithm? How to adapt the optical
flow for the recognition of hand postures 7 What is the efficacy of this technique for
the determination of hand movements in any scene ?

5.2 Definition and conditions of use

Optical flow is the pattern of motion, as it appears to a camera, of objects, surfaces,
and edges in a visual scene caused by the relative motion between an observer (an
eye or a camera) and the scene. The concept of optical flow was introduced by the
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Figure 5.1 — Example of motion detection with optical flow.

American psychologist James J. Gibson in the 1940s to describe the visual stimulus
provided to animals moving through the world. As already mentioned, optical flow
may often want to assess motion between two frames (or a sequence of frames) without
any other prior knowledge about the content of those frames. Typically, the motion
itself is what indicates that something interesting is going on.

Optical Flow |

Image sequence Tracked sequence
(single camera)

Figure 5.2 — Optical Flow

Movement, characterized by optical flow, has been exploited by roboticists, who use
optical flow techniques (including motion detection, luminance, motion encoding, and
stereo disparity measurement) for image processing and control of navigation.

As already mentioned, optical flow may often want to assess motion between two frames
(or a sequence of frames) without any other prior knowledge about the content of those
frames. A result that can be obtained by optical flow is illustrated in Figure 5.2.

The principles of optical flow are as follows: if color images are considered, a
conversion to one channel is done. For instance, we can select the C'r component of the
Y CbCr representation, but this is valid only when white hand are considred. We also
can retain only the luminance component from the HSL (Hue, Saturation, Lightness)
representation of the RGB image. We can associate some kind of velocity with each
pixel in the frame or, equivalently, some displacement that represents the distance a
pixel has moved between the previous frame and the current frame. It associates a
velocity with every pixel in an image. There exist two approaches to calculate the



5.2. DEFINITION AND CONDITIONS OF USE 75

optical flow.

The first approach is the dense technique which tries to match large windows around
each pixel of an image to another, as the algorithm of Horn and Schunk [50]. This al-
gorithm was developed in 1981; it puts aside the hypothesis of constancy of brightness
by minimizing the regularized Laplacian of optical flow velocity components. This
turns as a valid one the hypothesis of smoothness constraint on the velocities. Also,
there exists a whole class of similar algorithms in which the image is divided into
small regions called blocks [11, 55].

These blocks are generally square and may overlap. These algorithms attempt to
divide the two previous and current images in blocks and then calculate the movement
of these blocks. Such algorithms are of great interest in many video compression
techniques and in computer vision. Black and Anadan have created dense optical
flow techniques [12, 13| that are often used in movie production, where, for the sake
of visual quality, the movie studio is willing to study in detail the flow information,
in practice the movement of the actors or objects. The block-matching algorithms
operate on aggregates of pixels, not on individual pixels.

If the overlap between blocks is very important, the returned images of "flow" are
usually of a lower resolution than the input images. Algorithms of this approach have
superior quality but are slow and cannot be applied in real time and cannot resolve
the case of large displacements. In practice, calculating dense optical flow is not easy.
Let’s consider the motion of a white sheet of paper. Many of the white pixels in the
previous frame will simply remain white in the next. Only the edges may change, and
even then only those orthogonal to the direction of motion. Hence the idea of creating
a sparse optical flow, developed originally in [73].

The second approach is a popular sparse tracking technique, Lucas-Kanade (LK)
optical flow. This version of optical flow relies on some means of specifying beforehand
the subset of points that are to be tracked. If these points have certain desirable
properties, such as the "corners", then the tracking will be relatively robust and
reliable. The LK algorithm [73], as originally proposed in 1981, was an attempt to
produce dense results. However, because the method is easily applied to a subset of
the points in the input image, it has become an important sparse technique. The LK
algorithm can be applied in a sparse context because it relies only on local information
that is derived from some small windows surrounding each of the points of interest.
This contrasts with the intrinsically global nature of the Horn and Schunck algorithm.

The basic idea of the Lucas-Kanade algorithm is based on three assumptions (see
Fig. 5.3):
e Brightness constancy: A pixel from the image of an object in the scene does not
change in appearance as it (possibly) moves from frame to frame. For grayscale images
(LK can also be done in color), this means we assume that the grey level of a pixel
does not change as it is tracked from frame to frame.
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o Temporal persistence or “small movements™ The image motion of a surface patch
changes slowly in time. In practice, this means the temporal increments are fast enough,
relative to the scale of motion in the video sequence, to prevent the object from moving
much from frame to frame.

e Spatial coherence: Neighboring points in a scene belong to the same surface, have
similar motion, and project to nearby points on the image plane.

Assumptions

Brightness Constancy
Nl iy e

flaruy+veel) = fx.1)

Temporal Persistence Spacial Coherence

Image plans
Figure 5.3 — Assumptions behind Lucas-Kanade optical flow

As mentioned above, the disadvantage of using small local windows in Lucas-Kanade

approch is that large motions can move points outside of the local window and thus
become impossible for the algorithm to find. Indeed large and non-coherent motions
are often observed in practice. The key idea in the Lucas-Kanade approach is to avoid
this problem, by tracking first over larger spatial scales, by using an image pyramid
and then by refining the initial motion velocity assumptions by working its way down
the levels of the image pyramid until it arrives at the raw image pixels.
Hence, this problem led to the development of the "pyramidal" LK algorithm, which
tracks an object starting from the highest level of an image pyramid (lower detail
resolution) and working down to lower levels (finer detail resolution). Thus we minimize
the violations of our motion assumptions and we can track faster and longer motions.
This more elaborated function is known as "pyramidal Lucas-Kanade" optical flow
and is illustrated in Figure 5.4. Hence, tracking along the resolution levels as downhill
along pyramids allows large motions to be characterized by local windows.

In the following section, we detail the initial purpose of optical flow, which is orig-
inally meant to characterize movements.

5.3 Optical Flow: an algorithm originally dedicate to
trajectory detection

The first and most common application of optical flow is to track a target between
two frames. Motion estimation and video compression have been the most common
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Figure 5.4 — Pyramid Lucas-Kanade optical flow

application fields of optical flow. A direct application of optical flow consists in tracking
a hand in a video sequence. Starting from the moving points, as represented in Fig.
5.1, which are essentially part of the hand contours, but may also be outliers, we aim
at finding some representative points of the hand. For this, we first remove outliers:
we suppress the points which contain at least one extreme coordinate: these outliers
are the nearest to the image corners. The center of mass of the remaining points is
considered as the most representative to locate the hand.

Therefore, studying the overall trajectory of the hand is equivalent to studying the
trajectory of this representative point. However, we notice that this method is not
sufficient to characterize the hand shape, and thereby the hand posture itself. The
moving points provided by optical flow compose part of the hand contour points. A
method must be found to get a continuous hand contour. We address this issue in
section 5.4.

5.4 Optical flow adapted as a contour detection
method

A promising method for the detection of hands, whatever their color, consists in adapt-
ing optical flow. Indeed, as it is based on movement properties and not on intrinsic grey
level values, optical flow may characterize indistinctly white-skin hands and colored-
skin hands. Moreover, optical flow attracts the interest of the image processing com-
munity, showing its adaptability. It has been recently improved to cope with dense
optical flow fields by integrating rich descriptors [24], and to face discontinuities on
motion boundaries [47]. We wish to adapt this method to segmentation purposes. Our
idea is to take profit from the information provided by optical flow to isolate a target
which is moving in the scene, namely the hand.

There are many kinds of local features that one can track. If we pick a point on a
large blank wall then it won’t be easy to find that same point in the next frame of a
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Figure 5.5 — Selection of good features without prior knowledge: 'Lena’ image under study

video. If all points on the wall are identical or even very similar, then we won’t have
much luck tracking that point in subsequent frames. On the other hand, if we choose
a point that is unique then we have a good chance of finding that point again. In
practice, the point or feature we select should be unique, or nearly unique, and should
be parameterizable in such a way that it can be compared to other points in another
image. Or if we consider that the hand color and the background color are different,
we are certain that the hand contour by itself represents good points to track, and
this feature limits properly the region of the hand. This permits to highlight the main
constraint on the applicability of optical flow: it can be used as detection method if
the background color is different from that of the hand.

In our acquisition conditions, a hand may cross the whole acquired scene rather
rapidly, hence, we adapt a pyramidal version [18] of Lucas-Kanade optical flow. This
pyramidal version includes a multi-scale strategy, which permits to handle larger

displacements, while keeping the reduced computational load of Lucas-Kanade sparse
method [73].

If strong derivatives are observed in two orthogonal directions then we can hope
that this point is more likely to be unique. For this reason, many trackable features are
called corners. Intuitively, corners are the points that contain enough information to be
picked out from one frame to the next. The most commonly used definition of a corner
was provided by Harris [48]. This definition relies on the matrix of the second-order
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Ml goodFeatures

Figure 5.6 — Selection of good features without prior knowledge: detected corners

derivatives of the image intensities. Corners, according to Harris definition, are places
in the image where the autocorrelation matrix of the second derivatives has two large
eigenvalues. In essence this means that there are texture properties (or edges) going in
at least two separate directions centered around such a point, just as real corners have
at least two edges meeting in a point.

It was later found by Shi and Tomasi [97] that good corners were selected as long
as the smaller of the two eigenvalues was greater than a minimum threshold. See for
instance the corners that were obtained, in Fig. 5.6, from the 'Lena’ picture (Fig. 5.5).

If we have a prior knowledge on the location of the expected corners, we can delim-
itate a search box to an area defined beforehand, called a mask, which can limit the
region of good features to track. This is illustrated in Fig. 5.8, which was obtained
with the mask presented in Fig. 5.7.

In the context of hand posture characterization, the region of interest can be selected
through least square ellipse fitting. The implementation of this algorithm will be
detailed further in the manuscript.
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Figure 5.7 — Selection of good features with prior knowledge: mask selecting the region of
interest

5.5 Conclusion of the chapter

In this chapter we present a method used to track movements in a video sequence or
between two successive frames, and we try to adapt it to hand detection. Respecting
the various constraints in this work, this adaptation exhibits huge advantages.

In section 5.1, we remind the main goal of optical flow, and the problematics that
arise while applying this method. In section 5.2, we present optical flow in a historical
context. We present the different optical flow techniques and their conditions of use,
insisting on the version from Lucas-Kanade [73], which is the one that we have chosen
for our hand detection application. In Section 5.3 we state the essential role of optical
flow for tracking a moving object. We explain briefly how it can be adapted to the
localization of the hand. Optical flow thereby characterizes dynamic gestures in a video
sequence. In section 5.4, we discuss a novel way to use optical flow, as we adapt it to
the detection of hand contours. Optical flow thereby characterizes static gestures, also
called postures, in a series of frames extracted from a video sequence.
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Figure 5.8 — Selection of good features with mask: resulting detected corners, appearing only
in the region selected by the mask






CHAPTER
Overall algorithm, results
and discussion

6.1 Introduction of the chapter

N this chapter we propose the hole hand posture recognition method, which over-

comes the main drawbacks of existing methods [19, 53, 115]: our method should
be valid whatever the hand color; for this, we adapt optical flow, which is originally
meant to detect moving objects, to improve hand detection. Also, we wish to improve
recognition rate, especially for very similar postures, while keeping the computational
load and the memory requirements as low as possible; for this we have proposed a novel
approach for hand posture characterization in 4.
Our overall approach is based on the optical flow as a detector, and signature gen-
eration as characterization, combined with the reduction of matrix characteristic by
PCA, but also to the reduction of dictionary of gestures with the geometric criterion
(isometric rate).
To validate this approach a comparison with other existing approaches in the litera-
ture is needed, but the questions that arise, what are the different preprocessing used
to improve our approach? how is it organized this algorithm? is that we have good
recognition rate compared to other methods? and eventually the constraints imposed
by the industrial context are resolved?

6.2 Preprocessing and proposed algorithm

We process images of size 320 x 240 with a 2-core processor @3.2 GHz, using Matlab®.
This result section falls into two subsections: we first present the results of hand
contour segmentation with optical flow; and secondly we present the results of hand
posture recognition obtained with Bayesian distance from the images containing the
hand contours.
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6.2.1 Hand image acquisition setup

This setup contains a CMOS camera (see Fig. 6.1). It has the size of a webcam, and
could further be integrated in an embedded system. The camera is placed over the
desk surface, it axis is orthogonal to the desk surface. Wide angle optics (90°) are used
so that the field of vision is wide enough. The acquisition format can be either CIF, or
VGA. The video stream is transmitted to the computer by a USB connection in RGB
format. The user can then interact with his computer, and follow the evolution of his
experiment directly on the screen.

Figure 6.1 — Camera

6.2.2 Preprocessing and algorithm

As we will show in the result section, only the hand contour is retrieved by optical
flow. Thus, this result is not used as final hand contour. It is however essential for the
selection of a region of interest, which is the first preprocessing applied to the processed
image: Let Nop be the number of moving points of interest, retrieved by optical flow,
from two frames: one obtained at time ¢, the other at time ¢ > t. The coordinates of
these points are denoted by {(x,,4,), 0 =1,..., Nor}.

The selection of a region of interest (ROI) is based on ellipse least-squares fitting
[42]. Because of the sensitivity of least-squares fitting methods, and to ensure the
robustness of the ROI selection, the moving points of interest which include an ex-
treme (minimal or a maximal) coordinate value are removed. Let I? denote the image
containing the remaining moving points.

Firstly, a rather large ROI is extracted. Indeed the ellipse might not include
the whole hand, so we choose as ROI a rectangle which is somehow larger than the
rectangle which strictly includes the ellipse.

The second preprocessing is hand surface segmentation: firstly, we compute the
center of mass of the pixels of interest; secondly, we deduce the hand pixel grey level
distribution in each RGB band from the region next to the center of mass; thirdly,
according to this distribution, we perform histogram threshold to each RGB band
of the ROI. The combination of each threshold image provides a binary image. The
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binary image obtained at this point, denoted by I7", contains the hand surface filled

with 1-valued pixels and noise, that is, 1-valued pixels randomly distributed in the

image.
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Figure 6.2 — Improved algorithm for hand gesture recognition

The third preprocessing consists in removing isolated pixels and filling out holes.
First, we select the largest set of connexe pixels, assuming that this object is the hand.
Then, we remove the pixels which are connected to the hand but unexpected with
morphological filtering operations -erosions and dilations [115]. These mathematical
morphology operations remove the possibly remaining unexpected pixels from the
background. This third preprocessing turns the whole algorithm robust to variations
in illumination and inclusion of unexpected objects in the background. We then select
once again a region of interest: the smallest square subimage containing the whole
hand. The number of rows or columns of this image is max(FDy, FD,) where F Dy,
and F'D, are the horizontal and vertical Feret diameters of the hand. Extracting
this ROI, independently of course from its location in the processed image, ensures
the invariance to translation and scaling. We get an image I/ which is supposed to
contain only a filled hand.

The fourth preprocessing consists in retrieving the hand contour, with a linear
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‘roberts’ filter. This yields an image ¢ where the hand contour consists in 1-valued
pixels, over a background of 0-valued pixels. This image will be used to compute a
contour signature.

The preprocessing operations presented in this subsection permit to focus on a region
of interest and isolate the hand contour, but also to ensure invariance proprieties of
the characterization method which is presented in section 4.2.

6.3 Results and Discussion

Adapting optical flow exhibits advantages but also requirements on the experimental
conditions and specific preprocessings. The required experimental conditions for which
the optical flow works properly are as follows: the hand whose posture must be rec-
ognized should be moving between two frames of the database, the background color
must be different from the hand color, and the variations of luminosity should be as
low as possible. This may be the case for instance if all images are subsequent frames
of a video sequence where the user’s hand is moving. However, optical flow may still
yield poor results if the luminosity varies too much between frames.

A test permits to get rid of the images which are not in compliance with these require-
ments: it involves the ellipse which is supposed to fit the moving points of interest.
The image is skipped by the program and not considered for posture recognition in the
following cases: if one axis of the fitting ellipse is larger than the image size, or if the
large axis is larger than 3 times the small axis. The consequence for the user of the
hand posture recognition method is that he may wait a bit longer for the recognition
result, until the luminosity does not vary too much, or until his hand, while exhibiting
a novel posture, is moving fast enough for optical flow to consider it as a moving object.

6.3.1 Performance assessment on colored hands

The main advantages of the proposed method, which adapts optical flow [17] instead
of the classically used Y C,C, mapping, are as follows: it handles the case of colored
hands, such as those wearing gloves of any color, or hands of coloured people. This is
a great advantage respect to the existing method which are supposed to fail as soon as
the hand surface cannot be distinguished from the background in the C}, component.
Figures 6.3 and 6.4 show the results obtained by optical flow on a white and a black
hand. It consists in pixels which are about to move between the current and the next
frame. These pixels of interest match part of the the hand contour pixels.

As shown in Figs. 6.3 and 6.4, the optical flow method provides a set of points,
among the moving points of the scene. As a sparse version of optical flow was chosen,
these points are mainly focused on the hand contour.

In Fig. 6.5 we exemplify the steps of the proposed method, on a hand posture of
type '3’. Fig. 6.5 shows how the moving points provided by optical flow contribute
to the image threshold: in Fig. 6.5(b) we show the moving points detected by optical
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Figure 6.3 — Motion detection with optical flow: white hand.

Figure 6.4 — Motion detection with optical flow: colored hand.

flow, their center of mass, and the fitting ellipse. The hand grey level distribution is
computed around the center of mass, and its knowledge permits to apply a threshold
and obtain the image ™" of Fig. 6.5¢c).

In Fig. 6.6 we exemplify the method in the same way, with a hand wearing a black
glove.

The results obtained on these two hands show the ability of the proposed method

to handle white, but also colored hands. The preprocessings permit to remove the
undesired pixels which are present in the threshold image I7" (see Fig. 6.5¢) and (Fig.
6.6¢)).
To exemplify the proposed method for hand contour segmentation on more examples,
including all postures for both white and colored hands, a website presents the image
I containing the hand contour obtained from eleven cases -one for each posture type-,
for a white and a colored hand [1].
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Figure 6.5 — White hand, Steps of the proposed method. (Read from left to right. First row:

processed image; moving points, fitting ellipse, and center of mass. Second row: threshold image I7"

in the ROI defined from the fitting ellipse; result obtained after mathematical morphology operations.

Third row: If -square ROT whose height is the maximum Ferret diameter of the hand; I¢, obtained
from Roberts linear filtering, and containing the expected hand contour).

6.3.2 Statistical of posture recognition performance

In this subsection, we present a statistical study involving a database of hand posture
images. We study the performance of hand posture recognition of the proposed method.
We remind that it includes optical flow for hand contour detection. This turns the
method adequate for colored hands, but we chose a database of white hands to enable
the comparison with existing methods.

To generate the signature Z whose components are z,;, with p = 1,..., P, and ¢ =
1,...,Q (see Eq. (4.1)), a value P = 24 levels is large enough to get an exclusive
signature for each posture and small enough to get a reasonable computational load.
To ensure the invariance to scaling, the number ) of directions depends only on the
maximum size of the enclosing box. To perform dimensionality reduction we chose
K = 12, that is, the size of the posture dictionary +1. This value yield the best
results, which was observed empirically.

We compare the proposed method with two comparative methods: The first
method combines Gabor filter, PCA, and SVM (support vector machine) [54]. The
second comparative method relies on Fourier descriptors [19, 34]. The third compar-
ative method relies on the same process for signature generation [15, 16|, but differs
in the obtention of the binary image I which is used as an input for the computation
of the contour signature: in [15, 16|, this binary image is obtained mainly through a
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Figm’e 6.6 — Colored hand, steps of the proposed method. (Read from left to right. First row:

processed image; moving points, fitting ellipse, and center of mass. Second row: threshold image I7"

in the ROI defined from the fitting ellipse; result obtained after mathematical morphology operations.

Third row: If -square ROT whose height is the maximum Ferret diameter of the hand; I¢, obtained
from Roberts linear filtering, and containing the expected hand contour).

Y C,C, mapping and a threshold applied to the C, component. In [16], PCA is already
used to reduce the dimensionality of the data.

In Table 6.1, we present the results obtained with Y C,C, mapping and Fourier
coefficients as invariant characteristics. This table shows that Fourier descriptors en-
counter difficulties with postures 4 (60.8%), 8 (64.8%), and 10 (74.4%). This is due
to the unability of Fourier coefficients to preserve details: contours are smoothed, and
subtle differences such as the presence of one supplementary finger as occurs between
posture 4 and posture 5, and between posture 8 and posture 9, are not detected when
Fourier coefficients are used. On the contrary, our method based on the proposed sig-
nature generation technique offers a 1-pixel resolution, and does not encounter such
problems.

In Table 6.2, we present the confusion matrix of the comparative method based on
Y C,C, mapping [16] and using the signature generation process presented in [17]. It
shows that it exhibits good results, except that: posture 4 is recognized as 5 in 11.3 %
of the cases, posture 8 is recognized as posture 9 in 25.6 % of the cases; posture 5 as 4
in 5.5 % of the cases.

The confusion matrix obtained with the proposed method [17] is presented in Table
6.3.
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‘1’ ‘2’ ‘3’ ‘4’ ‘5’ ‘6’ ‘7’ ‘8’ ‘9’ ‘10’ ‘11’

1 86.6 0 0 0 0 0 0 0 0 0 0
2 0 90.8 0.4 0.4 0.2 0.2 0.1 0 1.7 0.1 0.1
3 0 079.405 04 1 04 0 0.7 0.1 3.3
4 55 0 0 60.8 0 0.1 04 O 0 0 0
5 2.9 1.8 0.5 35.997.8 0.9 7.8 3.2 4.9 20.2 0.1
6 46 0.1 0 0.1 0.394.30.8 0 0.2 2 0
7 0.2 0.4 0.1 0.7 0.5 1.1 80.6 8.3 0.3 2.8 O
8 0.2 0 03 0.3 0.1 1.9 64.8 2.8 0.5 0
9 59 1.7 0.9 0.3 0.4 6 23.288.6 0.9 0.4
10 0.1 0.1 0.3 0O 0.2 0.8 0.4 0.2734 O

11 0.2 0.2 0.8 0.1 0.1 1.6 1.1 0.1 0.7 O 96.2

Table 6.1 — Confusion matrix (in %, precision 0.1). Obtained with: Fourier coefficients, and
Bayesian distance [34]

41’ 42’ L3’ 44’ L5’ 46’ L7’ ‘8’ 49’ 410’ 411’
1’ 977 0 0 0 0 0 0 0 0 0
2’ 0 100 O 0 0 0 0 0 0
0
0

’3> 0 0 90.8 0 0

o O O o o o o o

0
0
4’ 0 0 0 86.4 5.5 0 0 0 0
’5> 23 0 23 11.391.7 O 0 0 0 0
’6’ 0 0 0 0 0 95.5 0 0 0 0
7 0 0 0 0 0 0 93.1 23 O 0
8’ 0 0 0 0 0 0 2367424 0
9’ 0 0 45 23 28 0 23 25692.8 21 0
’10° 0 0 0 0 0 45 0 0 24 979 0
’11’ 0 0 24 0 0 0 0 0 0 0 100

Table 6.2 — Confusion matrix (in %, precision 0.1). Obtained with: proposed signature, PCA,
and Bayesian distance.

This confusion matrix obtained with the method proposed in this thesis, shows
that our method involving optical flow exhibits better recognition results for postures
1, 3,4,5,6, 7, 8 and 9. The obtained results are better in particular for the similar
posture couples {4,5} and {8,9}, and even much better for posture 8, for which
the rate of good recognition increases from 67.4% to 82.8%. In the case where the
comparative method exhibits better recognition results, they were excellent (100%,
97.9%, and 100% for postures 2, 10, and 11 respectively), and they are still very good
when the proposed method is applied (99.2%, 96.7%, and 99.3%).

In the following in Table 6.4, we consider the performance of the proposed and
comparative methods in terms of speed, and overall recognition results.

The method combining Gabor filter, PCA, and SVM (support vector machine) [54]
processes 6 frames per second as well (see Table 6.4a). Fourier descriptors programmed
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‘1’ ‘2’ ‘3’ ‘4’ ‘5’ ‘6’ ‘7’ ‘8’ ‘9’ ‘10’ ‘11’

’1’ 98.2 0 0 1.0 O 0 0 0 0 0 0

2’ 0 99.2 0 0 0 0 0 0 0 0 0

3’ 0 0 93.1 0 0 0 0 0 0 0 0.7

4> 0.6 O 0 87.7 76 0 0 0 0 0 0

’5° 0 0 0 9392408 0 08 0 0 0

’6’ 0 0 0 0 0 95.8 0 0 0 25 0

7 06 O 0 0 0 0 94.3 3.1 0 0 0

’8’ 0 0 0 1.0 O 0 25 828 56 0 0

9> 0.6 08 49 1.0 0 0 32 13393.6 0.8 0

’10° 0 0 20 O 0 34 0 0 0.8 96.7 0

11’ 0 0 0 0 0 0 0 0 0 0 99.3

Table 6.3 — Confusion matrix (in %, precision 0.1). Obtained with: optical flow, proposed
signature, PCA, and Bayesian distancecite [17].
’Classif. method’ ’Speed’ ’System’ ’Soft’ "%’ ’Database’

a) PCA+SVM 4 frames/sec 3.4 GHz C 93.7 11*120
b) Fourier + Bayesian 20 frames/sec 2 GHz C 84.6 11*1000
c) PCA + Bayesian 6 frames/sec 3.1 GHz Matlab ~ 91.8  11*45
d) OF + PCA + Bayesian 4 frames/sec 3.1 GHz Matlab + C 94.1 11*110

Table 6.4 — Proposed and comparative methods, comparison of performances. a) Gabor filtered
+ PCA + SVM [54] ; b) Fourier descriptors (FD1) + Bayesian; ¢) Y C,C, mapping, PCA and
Bayesian distance [16]; d) proposed method involving optical flow (OF) [17].

in C++ [34] are faster, namely 20 frames per second (see Table 6.4b). The method
involving Y C,C,., PCA and Bayesian distance [16]| (see Table 6.4c) mapping is faster
(6 frames per second) but it exhibits a major drawback as all methods using Y C,C.,
mapping: it does not handle colored hands. Also, the overall recognition rate is lower
(91.8%). When we consider the method that we propose [17] (see Table 6.4d), we
notice that the computational load dedicated to the recognition of the 1210 images of
the database is 302 sec., that is, a mean rate of 4 frames per second. Our method
exhibits the best overall recognition rate (94.1%) of all considered method. This good
performance relies on the quality of the binary images I which are provided to the
signature generation method: whereas the Y C,C,. mapping tended to blur the frontiers
and reduce the contrast between hand surface and background on the C). channel,
optical flow permits to apply a threshold to the R,G, and B channels of the RGB color
image, where the contrast between hand surface and background is elevated. Currently,
the programmes dedicated to optical flow, that is, 15% of the programs, are written
in C++. we can expect that transferring all our programmes from Matlab® to C++
would decrease the required computational time.
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6.4 Conclusion of the chapter

The issue of hand posture recognition is considered in this chapter. This work is based
on a signature generation which divides the image into rings and signal generation
directions, thereby getting a matrix. To generate this signature, a binary image con-
taining the contour of the considered hand must be available. To get this binary image
from any input image, which is any frame of a video sequence, we adapt, for the first
time, optical flow as a contour detection method: we avoid the classically used Y C,C'
mapping, which turns the proposed algorithm fit for colored hands.

Ellipse fitting of the moving points detected by optical flow permits to select a region
of interest, thereby ensuring the invariance of the signature to scaling and translation.
We assume the center of gravity of the moving points is located in the hand, which
provides the grey level distribution for each RGB channel and permits to apply the
adequate threshold which segments the hand surface. We then remove the unexpected
pixels, which are either isolated or connected to the hand, by retaining the largest
connexe region and applying mathematical morphology operations.

The proposed signature is a sparse matrix, hence our proposal to apply principal com-
ponent analysis to reduce the data dimensionality. We also reduce the dimension of
the test set through a first rejection test based on geometric criterion (isometric rate).
Hand posture recognition is eventually performed by computing a Bayesian distance
between test and pre-selected reference signatures. The visual results show that, de-
spite a complex background, a hand contour is correctly retrieved.

Statistical results summarized as a confusion matrix show that the difficult cases of
close postures yield a correct recognition result in more than 82% of the cases. Overall,
the mean recognition rate reaches 94.1%, which is more than the rate obtained with
the selected comparative methods, in similar testing conditions involving white hands.
Our method offers a good compromise between recognition rate and computational
load. Our hand posture recognition method has been combined with movement track-
ing. This could yield a complex but effective set of instructions, in the frame of a
Human-machine interaction system.



Conclusion and
perspectives

N this thesis we are interested in achieving a gesture recognition system as part

of the design of a touchless Human-machine interface. We studied the various
components of such a system and we proposed solutions taking into account important
applicative constraints, including the processing of a video stream in real-time. The
addressed issues concern hand detection in a video stream, extraction of features
representing the shape and position of the hand, recognition of postures from a
previously determined vocabulary. This summary outlines the main results of this
study and the contributions of our work to achieve a system of recognition. We then
give some tracks to further our work.

To evaluate and compare the recognition results, we created a database consisting
of 11 postures performed by different people. This database is representative of
gestures that can be used in our application, and easy to perform by all users.

We first presented the different methods used for gesture recognition in the
literature, and we discussed the constraints in computer vision in general and the
industrial context of this thesis in particular. We then proposed a set of methods to
achieve these goals.

The first step concerns the detection of the hand in a video stream with a robust
method for hand movement and the presence of other objects of same color as the
hand in the scene. We found that the segmentation of the hand is a sensitive phase
of hand posture recognition. The obtained contour is sometimes too vague, especially
because of brightness variations, which affect feature extraction and the recognition
of postures (based on the contour). To solve this problem we used the technique of
optical flow that we adapted to contour detection. It has allowed us to detect the
hand especially for colored people, assuming that the hand moves in the scene in the
video stream even if its slightly, but especially more than the other objects.

The extraction of moving points, combined with a least-squares fitting method, allows
to determine the ROI of the hand. Then we compute the histogram on the ROI, and
apply histogram threshold, with some preprocessings to provide a perfect segmentation
of the hand.

For the first time to our knowledge, we handle, by adapting optical flow, the case of
colored hands, either wearing gloves or of colored people. Also, we get a dynamic
gesture recognition system, which combines hand tracking and hand posture charac-
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terization.

The second phase of our work relates to the characterization of postures and

feature extraction of the hand. We studied and compared several shape descriptors to
calculate a feature vector representing the shape of the hand, taking into account the
invariance to Euclidean transformations (translation, rotation and scaling). We notice
that the hand contour is generally approximately circular and non star-shaped. Hence,
we apply specific methods inspired from array processing. We propose, for the first
time in this thesis, a review of all possible types of contours and the corresponding
characterization methods inspired by array processing models and methods. Such
methods have given, in the past, good results in the frame of possibly distorted linear
and circular contours. We insist on the case of highly distorted star-shaped contours,
and notice their shape is similar to a hand contour’s one. This yielded us to propose a
novel 2-D signature which involves the generation of signals. The main difference with
respect to the previously existing methods which are inspired from array processing
method is that this signature handles the case of non star-shaped contours. We detail
how the signals are generated and we prove the different properties of invariance of
this new characterization method.
In this step, reviewing all the variants of the methods of array processing transferred
to image processing is an important contribution. However, the most novel aspect is
our 2D-signature. This signature ensures essentially the invariance to rotation, but
also the invariance to the axial asymmetry which allows us recognize both left and
right hands, whatever the learning phase.

The proposed signature is a matrix with very large size, which turns very difficult
the classification with a geometric classifier. To solve this problem, we have reduced
the size of the matrix using the principal component analysis. This dimensionality
reduction allowed us to classify the postures with a Bayesian distance criterion, which
involves a matrix inversion that scales the components of reference and test vectors.
This distance gave us the best results. Also to further improve our results and especially
the computational load (0.04 sec/frame), we make a first selection of candidates among
the vocabulary through a geometric criterion, the isometric rate.

In this step it can be estimated that the combination of signature generation method
and the method of geometric criterion has yielded excellent effects.

The results obtained show that we have reached the best compromise between
computational load (4 frames/sec) and recognition rate (94.1%) and we prove that
the difficult cases of close postures yield a correct recognition result in more than 82
% of the cases. This compromise corresponds perfectly to the wishes of our interface
utilization, in solving constraints as the presence of another object in the scene and
variations in acquisition conditions. We can conclude that our process perfectly meets
the requirement of our problem.

Among the various prospects of our work an extension and enlargement of vocab-
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ulary of postures to recognize are desired. The PCA has allowed us to reduce the
dimension of our matrix signature, but we could also apply other methods of dimen-
sionality reduction such as linear discriminant analysis (LDA). Other methods could be
applied. For instance adaptive dimension reduction combines dimension reduction and
unsupervised learning (clustering) together to improve the reduced data (subspace)
adaptively. To continue this work and improve it, we can also attempt to solve the
occlusion problem or solve the cases of the presence of multi-target (two hands). For
this we could turn our detection method into a multi target one. We can also per-
form classification by the combination of different classifiers or by SVM (in cascade
or multi-class SVM). An optimization of the algorithm, using a single programming
language (C++ language), is always possible to accelerate the process and facilitate
the industrialization of our algorithm. In the long term, cooperating with institutions
and organizations which take care of deaf and dumb persons could help building an
adequate vocabulary of postures and gestures which is suitable to define a dictionary
of sign language.
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