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Abstra
t

T
HIS thesis is devoted to the development of 
omputer vision methods whi
h must

be robust to variations due to a
quisition 
onditions and pro
essing in real-time

in appli
ative 
ontexts.

The obje
tive is to 
reate a tou
hless human-ma
hine interfa
e (HMI). At �rst, we de-

s
ribe the various problems whi
h are spe
i�
 to the existing databases. At the same

time we present the prin
ipal postures that 
ompose the di
tionary of gestures whi
h

we retained. This leads us to 
on
lude that we need to 
reate our own database. In a

se
ond phase, we are interested in a gesture re
ognition system that 
an be de
omposed

into 3 steps: dete
tion, 
hara
terization and re
ognition.

In the dete
tion step we mentioned two types of dete
tion methods: one for stati


gestures and the se
ond for dynami
 gestures (movements), we adapt opti
al �ow te
h-

niques to hand dete
tion. This adaptation allows us to extend the dete
tion of stati


gestures regardless of the 
olor of the skin and tra
k the traje
tory of the hand in a

video stream.

The 
hara
terization step 
ommits in transforming an image into a set of signals whi
h


hara
terizes a 
learly de�ned posture by its 
ontour. We noti
e that a hand 
ontour

is generally non star-shaped, so we apply the methods adapted from array pro
essing

to this type of 
ontours whi
h have given previously 
onvin
ing results. We propose a

new signature whi
h involves the generation of signals. We des
ribe the generation of

di�erent signals and we show the various invarian
e properties of this new 
hara
teri-

zation method.

The proposed signature is a sparse matrix of 
onsiderable size, hen
e our proposal to

apply prin
ipal 
omponent analysis (PCA) to redu
e the dimension of matrix signa-

ture. We also redu
e the dimension of the test vo
abulary set, through a �rst reje
tion

test based on a geometri
 
riterion (the isometri
 rate). The basi
 prin
iples of the

re
ognition step are as follows: a learning phase permits to de�ne a set of referen
e

signatures. In the subsequent test phase, the signature obtained from the tested images

is 
ompared with the referen
e signatures.

We present re
ognition results obtained with dimension redu
tion by PCA and by

adopting the Eu
lidean and Mahalonobis distan
es. Comparative methods are also


onsidered: we dis
uss the advantages and limitations of our methods, the re
ognition

rate and the 
omputational load.

Keywords: Hand posture; gesture re
ognition; 
lassi�
ation algorithm; prin
ipal


omponent analysis; biometri
s; array pro
essing; opti
al �ow; hand database; human-


omputer intera
tion.





Résumé

C
ETTE thèse est 
onsa
rée au développement des méthodes de vision par ordina-

teur robustes aux variations dues aux 
onditions pratiques et exploitable en temps

réel dans des 
ontextes appli
atifs.

L'obje
tif est de 
réer une interfa
e homme-ma
hine sans 
onta
t. Dans un premier

temps, nous dé
rivons les di�érents problèmes spé
i�ques aux bases de données exis-

tantes et les prin
ipaux postures qui vont servir pour 
onstruire et �xer le di
tionnaire

de gestes qui nous avons retenu. Ce qui nous à 
onduit à 
on
lure à la né
essité de


réer notre propre base de données. Dans un deuxième temps, nous nous sommes in-

téressés au système de re
onnaissan
e gestuelle qui peut être dé
omposé en 3 étapes :

la déte
tion, la 
ara
térisation et la re
onnaissan
e.

Dans l'étape de déte
tion nous avons mentionné deux types de déte
tion: la première

pour les gestes statiques et la se
onde pour les gestes dynamique (mouvements), nous

montrons l'adaptation des te
hniques de �ux optique pour la déte
tion de la main.

Cette adaptation nous permet d'étendre la déte
tion de gestes statiques indépendam-

ment de la 
ouleur de la peau et de suivre la traje
toire de la main dans le �ux vidéo.

L'étape de 
ara
térisation 
onsiste à transformer une image en un ensemble de sig-

naux qui 
ara
térise une posture 
lairement dé�nie par son 
ontour et qui permet

de 
omparer 
es 
ritères ave
 des 
ritères de postures sto
kées et dé�nis à l'étape

d'apprentissage. Nous notons que le 
ontour de la main peut être un 
ontour non

étoilé, par 
onséquent, nous appliquons des méthodes de traitement d'antenne qui ont

déjà donné de bons résultats pour 
e type de 
ontours.

Nous détaillons la génération de di�érents signaux et nous montrons les di�érentes

propriétés d'invarian
e de 
ette nouvelle méthode de 
ara
térisation. La signature pro-

posée est une matri
e 
reuse de taille 
onsidérable, d'où nous avons proposé d'appliquer

l'analyse en 
omposantes prin
ipales (PCA) pour réduire la dimension des données.

Nous réduisons également la dimension de l'ensemble de vo
abulaire de test à travers

un premier rejet basé sur le 
ritère géométrique (taux isométrique).

Nous présentons les résultats de la re
onnaissan
e obtenus ave
 rédu
tion de dimension

par PCA et en adoptant les distan
es eu
lidienne et de Mahalonobis, et nous les 
om-

parons ave
 d'autres méthodes. Finalement, nous dis
utons les avantages et les limites

de nos méthodes ainsi que le taux de re
onnaissan
e et le temps de 
al
ul.

Mots 
lé: Posture de la main; re
onnaissan
e des gestes; algorithme de 
lassi�
ation,

analyse en 
omposantes prin
ipales; biométrie, traitement d'antenne, �ux optique, in-

tera
tion homme-ma
hine.
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Introdu
tion

General 
ontext

T
HE subje
t of our resear
h 
on
erns the 
on
eption and the development of meth-

ods of 
omputer vision for hand gesture re
ognition. Our work is inserted in the

design of a human-ma
hine interfa
e whi
h aims transforming a 
lassi
al s
reen in an

interfa
e without 
onta
t and at allowing the use of the �nger as a pointing devi
e. The

hand gestures are a natural and intuitive way of 
ommuni
ation whi
h allow humans

to intera
t with their environment. They permit to designate or manipulate obje
ts,

to enhan
e the spee
h, or to 
ommuni
ate basi
ally in a noisy environment. They 
an

also represent a language in its own right with sign language. Gestures 
an have a

di�erent signi�
ation depending on the language and 
ulture : the sign languages in

parti
ular are spe
i�
 to ea
h 
ulture.

Thinking on what to use as gestures or postures is ne
essary, to ensure that users 
an

intuitively realize them, or with a limited period of learning. What gestures should

you use? Are they easy to reprodu
e? To what a
tions are they intuitively asso
iated?

These are the questions that should be asked while building a gesture database.

In general, the gesture is assimilated to all the movements of a body part. The hand

gesture is both a means of a
tion, per
eption and 
ommuni
ation.

For Cadoz [25℄, the gesture is one of the ri
hest way of 
ommuni
ation. Thus, in the

�eld of Human-Ma
hine Interfa
es (HMI), the hand 
an be used to point (to repla
e the

mouse), to manipulate obje
ts (for augmented or virtual reality), or to 
ommuni
ate

with a 
omputer through gestures. Compared to the a�uen
e of information 
onveyed

by hand gestures, the possibilities of 
ommuni
ation with 
omputers are redu
ed today

with the mouse and keyboard. The man-ma
hine intera
tion is 
urrently based on the

WIMP (Window, I
on, Menu, Pointing devi
e) paradigm that presents the fun
tional

basis for a 
omputer graphi
al interfa
e.

The majority of operating systems are based on this 
on
ept, with a pointing devi
e,

usually a mouse, whi
h allows to intera
t with graphi
al elements su
h as windows,

i
ons and menus, we 
an say with a more intuitive way than the textual interfa
e

(
ommand line). Using hand gestures, the interfa
e be
omes per
eptual (PUI 3).

The gesture re
ognition systems �rst used ele
troni
 gloves with sensors providing the

hand position and angles of the �nger joints. But these gloves are expensive and
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bulky, hen
e the growing interest for the methods of 
omputer vision. Indeed, with

the te
hnologi
al progress and the apparition of 
heap 
ameras, it is now possible to

develop systems of gesture re
ognition based on 
omputer vision, running in real time.

However, the hand being a 
omplex organ, deformable, having a many degrees of liberty

in the joints, it is di�
ult to re
ognize its form images without some limits and priors.

Indeed, human beings 
an naturally perform a very large number of di�erent gestures.

With the development of a
quisition te
hnologies and gesture re
ognition te
h-

niques, many appli
ation domains have emerged :

• Re
ognition of sign language.

• The Virtual reality, where the hand is used to manipulate virtual obje
ts and

trigger a
tions, or navigate within a virtual environment.

• The Augmented reality, where the physi
al world is in
reasing with virtual infor-

mation, for example by a retro-proje
tion.

• The Multimodal appli
ations, 
ombining gesture with other means of 
ommuni-


ation, su
h as spee
h or fa
ial expressions.

• The Coding and the transmission of gestures with low output for Tele-
onferen
e.

• The biometry, for the re
ognition of persons with the hand form.

Subje
t of resear
h and industrial 
ontext

We aim at developing 
omputer vision methods that meet spe
i�
 
riteria, in an

applied 
ontext. Indeed, 
omputer vision o�ers many possibilities, but some solutions

are not suitable for our appli
ation, mainly be
ause of a la
k of robustness to the

a
tual 
onditions or too mu
h 
omplexity to be implemented in real time.

For e
onomi
 and hygiene reason, this proje
t is based on the development

of a tou
hless human-ma
hine interfa
e, and allows to transform a 
lassi
 s
reen

into a ta
tile one. Manipulating an interfa
e without having to tou
h it redu
es

the maintaining 
osts, generalizes its use thanks to hygiene standards, and makes

intera
tion more 
onvivial. The industry 
ollaboration behind this thesis has guided

the 
hoi
e of the materials used, the sele
ted methods and 
onstraints to solve.

The thesis was 
ondu
ted in the 
ontext of a proje
t funded by the PACA re-

gion (Proven
e-Alpe-Cote d'Azur) and the �rm Intui-sense te
hnologies. Intui Sense

provides intera
tive solutions with intuitive interfa
es based on innovative tou
hless

te
hnologies for retail appli
ations, in parti
ular for the vending industry.

Among the 
onstraints imposed and to resolve, we 
ite:
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• 
ameras of low-
ost types,

• pro
essing in real-time,

• methods must be robust to a
quisition 
onditions,

• 
onstraints imposed on users should be minimal,

• presen
e of other obje
ts in the �eld of 
amera,

• treatment of fast and slow motion.

A study of the literature on the �eld is ne
essary and will allow us to analyze

the di�erent approa
hes and 
hoose the most suitable approa
h to our appli
ation.

We then propose te
hniques to implement the various steps of a gesture re
ognition

system, de
omposed a

ording to the following s
heme:

1. for ea
h frame:

• dete
tion and segmentation of the hand,

• extra
tion of features representing the posture of the hand,

• extra
tion of the 
enter of the hand,

• re
ognition of gestures from a prede�ned set (di
tionary).

2. for the video stream:

• tra
k of the 
enter of the hand to determine its traje
tory

Organization of the manus
ript

This manus
ript is organized in two parts.

1. A �rst part 
onsists of two 
hapters:

• Chapter 1 presents the state of the art of the whole pro
ess of gesture re
og-

nition pro
ess. This 
hapter is divided into three se
tions: se
tion 1.2 that

in
ludes various methods and te
hniques used for the dete
tion and segmen-

tation, se
tion 1.3 is devoted to the aspe
t of 
hara
terization and extra
tion

of features that 
an well des
ribe the same posture with di�erent transfor-

mations, se
tion 1.4 shows the di�erent te
hniques used in the literature to

dis
riminate and distinguish di�erent 
lasses.

• In Chapter 2 we des
ribe the di�erent problems of existing databases and

di�erent postures whi
h allows us to build and �x our di
tionary of gestures.

We dedu
e from these issues the ne
essity to 
reate our own database with

our postures. It seems very important to us to 
ondu
t this proje
t properly

forward.
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2. The se
ond part 
onsists of four 
hapters:

• Chapter 3 is devoted to the tools of image pro
essing adopted from array

pro
essing. We remind in se
tion 3.2 the dete
tion of straight 
ontours in im-

ages and in se
tion 3.3 we extend these methods to 
ir
ular 
ontours. Se
tion

3.4 shows the te
hnique to determine a blurred 
ontour. In the last se
tion

(3.5) we dis
uss the adaptation of these methods of array pro
essing to dis-

torted 
ir
ular 
ontours. We fo
us on the 
hara
terization of star-shaped


ontours whi
h are strongly distorted. Noti
ing that the hand 
ontour is ap-

proximately 
ir
ular and very distorted, we de
ided to in
lude these methods

in the 
hara
terization of hand postures. However, it has been ne
essary to

adapt these te
hniques be
ause none of them handles the 
ase of non star-

shaped 
ontours.

• Chapter 4 is devoted to the de�nition of a new feature extra
tion method for

hand postures. We propose a new signature whi
h involves the generation of

signals. We detail how the di�erent signals are generated and we prove the

di�erent properties of this new 
hara
terization method. Finally, we explain

the te
hnique of dimension redu
tion with PCA and its relevan
e.

• In Chapter 5 we de�ne the opti
al �ow te
hnique, whi
h is used for tra
k-

ing and smoothness and we prove the adaptation of this te
hnique for the

dete
tion of the hand. This adaptation allows us to extend the dete
tion to


olored people hand, whi
h was not treated yet.

• The �nal 
hapter (6) 
ontains the di�erent results and the whole pro
ess of

our algorithm. We detail the di�erent prepro
essings used to improve the

di�erent pro
ess steps. We present the results obtained with the new ap-

proa
hes used for the re
ognition and we 
ompare them with other methods.

Eventually we dis
uss the advantages and limitations of our methods as well

as the re
ognition rate and the 
omputation load.

We �nalize the manus
ript by a general 
on
lusion, as well as further prospe
ts.



Part I

State of the art and hand database





CHAPTER

1 State of the art

1.1 Introdu
tion of the 
hapter

W
ITH the development of 
omputer systems and their ever growing embedded

presen
e into our daily life, the question of 
onvenient and natural types of

human-
omputer intera
tion be
omes 
ru
ial. If user-
omputer relationships have al-

ready evolved in that sense, going from 
umbersome text-based 
ommand lines to ded-

i
ated devi
es su
h as mouse or pen, they still remain restri
tive. One way to simplify

the means of intera
ting with 
omputers 
onsists in using hand gesture interfa
es.

Two ways exist to turn hand gestures understandable by 
omputers. The �rst one

relies on the use of extra sensors, su
h as magneti
 ones or data gloves. If these instru-

ments often help in 
olle
ting a

urate information, they also a
t as a brake upon free

movements. The load of 
ables 
onne
ted to the 
omputer, indu
ed by this approa
h,

indeed hinders the ease of the user intera
tion. A less intrusive solution resorts to

vision-based systems. Even though it is di�
ult to intend a generi
 interfa
e using

this te
hnique, this approa
h has many appealing advantages. The most interesting

among these is undoubtly the naturalness of intera
tion, whi
h results in a mu
h more

intuitive 
ommuni
ation between human and 
omputers. Many appli
ation domains

take interest in gesture intera
tion, one 
an quote among others : 
omputer games

development, virtual reality, robot 
ontrol or sign language interpretation.

Systems that employ hand driven Human-ma
hine interfa
es (HMI) interpret hand

gestures and postures in di�erent modes of intera
tion depending on the appli
ation

domain. Previous works have 
on
entrated on hand gesture 
lassi�
ation [19, 115℄,

where gesture 
ommand is based on slow movements with large amplitude (see for

instan
e in [115℄ the twelve types of hand gestures). To our knowledge, future appli
a-

tions should 
on
ern the 
lassi�
ation of hand posture, for the purpose of automated

sign language de
oding for instan
e. Contrary to hand gesture, hand posture des
ribes

the hand shape and not its movement.

A hand 
an exhibit a great variety of postures, and it is extremely di�
ult to

re
ognize all possible 
on�gurations of the hand starting from its proje
tion on a 2-D

image. Indeed, some parts of the hand 
an be hidden. It is ne
essary to 
onsider

subsets of postures depending on the appli
ation. Di�erent te
hnologies have been



8 CHAPTER 1. STATE OF THE ART

developed in order to re
ognize gestures. It is therefore di�
ult to a
hieve a state

of the exhaustive art of the �eld. We try, in this 
hapter, to present a state of the

art of some approa
hes based on 
omputer vision in the 
ontext of Human-Ma
hine

Interfa
es. Generally, a gesture re
ognition system 
an be de
omposed in several steps:

dete
tion, 
hara
terization and re
ognition. The questions that arise here, and for

whi
h we have responded in di�erent se
tions are the following: how 
an we dete
t the

hand in any s
ene? How 
an we 
hara
terize the hand numeri
ally? What methods

are used to 
lassify or rather re
ognize the type of posture?

1.2 Hand dete
tion

A hand is the sour
e of a wide variety of postures. Di�erent devi
es allow intera
-

tion with a 
omputer through the hand (mouse, data gloves, tou
hes s
reens, ...).

However, these devi
es have some limitations. Moreover, the s
ienti�
 and te
hni
al

developments o�er new possibilities of intera
tion, more natural and intuitive, based

on gestural 
hannel. There are many appli
ations su
h as the augmented or virtual

reality, the re
ognition of sign language, the 
ontrol arti
ulated arms, or the biometri
s.

One of the more developed appli
ations 
onsists on making an intera
tive surfa
e. In

dete
tion step we 
an distinguish two main 
ategories of gestures: stati
 gestures and

dynami
 gestures.

1.2.1 Stati
 gestures re
ognition

The basi
 aim of this step is to optimally prepare the image obtained from a 
amera in

order to extra
t the features in the next step. How an optimal result looks like depends

mainly on the next step, sin
e some approa
hes only need an approximate bounding

box of the hand, whereas others need a properly segmented hand region in order to get

the hand silhouette. In general, some regions of interest, that will be subje
t of further

analysis in the next step, are sear
hed in this phase.

The most 
ommonly used te
hni
 to determine the regions of interest is skin 
olor

dete
tion. A previously 
reated probabilisti
 model of skin-
olor is used to 
al
ulate

the probability of ea
h pixel to represent some skin. Thresholding then leads to the


oarse regions of interest. Analysis of the skin 
olor is used to dete
t the fa
e and

hands. Indeed, Jones and Rehg [63℄ have shown that skin 
olor has a 
hara
teristi


distribution in 
ertain 
olor spa
es, and that this property 
an be used to segment

regions of skin 
olor, regions are delimited by 
ontours.

A rule of thumb about 
ontour 
hara
terization methods su
h as Fourier des
riptors

[19, 34℄ is that they require a binary image I, possibly noise-free. The same 
onstraint

holds in the frame of our work. To perform hand 
ontour dete
tion, some 
lassi
al pre-

pro
essing methods have been applied in previous works [15, 16, 19, 34℄: the Y CbCr

mapping, using the Y CbCr spa
e, whi
h 
onsists of a luminan
e 
omponent (Y ) and
two 
hrominan
e (Cb and Cr) and the sele
tion of the Cb 
omponent, emphasize the
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hand surfa
e with respe
t to the ba
kground. The transformation is linear with the

RGB spa
e. The non-moving ba
kground is then removed, by substra
tion of a frame

where the hand is not present.

Figure 1.1 � Hand segmentation examples: (a) and (b), on a gray image from the Tries
h

database, with threshold; (
) and (d) from internal database, with thresholds on Cb and Cr .

There are many other 
olor spa
es, the most used are RGB, HSV and YCbCr.

Phung et al. [89℄ 
ompared the performan
e of these spa
es and they found out that

the results are very similar, regardless of the 
olor spa
e. Thus, the 
hoi
e of a 
olor

spa
e must be depending on the format of the images and any pre-treatment. Some

further analysis 
ould for example involve the size or perimeter of the lo
ated regions

in order to ex
lude regions su
h as the fa
e.

In [99℄, Soriano et al. propose a dynami
 skin 
olor model, for a segmentation

purpose. Their method 
opes with 
hanges in illumination. However, their method

is applied to fa
es and not to hands. In [112℄, a set of relevant grey level values are

sele
ted from 
hromati
 histograms to segment fa
e. To 
reate a 
hromati
 histogram,

an HSI mapping is performed, and a 2-D map of the 
ouples (H,S) for ea
h pixel is


omputed. The 
hromati
 histogram exhibits the advantage of being insensitive to

s
aling, and rotation. However, authors must 
ombine the 
hromati
 histogram with

the prior knowledge of the approximate shape of fa
es to dete
t them. The main

drawba
k of Y CbCr or HSI mappings is that they do not handle hands of 
olored

people.

Yet another interesting approa
h is to use a previously a
quired image of the ba
k-

ground, substra
ting it from the image with the posture, as proposed in [95℄. Based

on perimeter lengths, the hand region 
an then be extra
ted.

1.2.2 Dynami
 gestures re
ognition

A dynami
 gesture 
orresponds to a time variation in the shape and the position of

the hand. The �rst 
hallenge is to lo
ate temporally the realization of a gesture, that

is to say, to determine the start and end of the gesture. A gesture is divided into three

stages: a preparatory phase, gesture, and withdrawal phase. A major di�
ulty arises

from the variation of the period of exe
ution of a same gesture. It is therefore ne
essary

to perform temporally normalization of the duration of the observations.
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The Dynami
 Time Warping (DTW) 
ompares two temporally sequen
es of di�er-

ent lengths, stret
hing or redu
ing their length, implying that the beginning and end

of the gesture are determined. Darrell and Pentland [36℄ use this method: gestures are

modeled by s
ores of 
orrelation with a set of models, whi
h are a

umulated to form

a signature. The Dynami
 Time Warping allows 
omparing signatures.

Figure 1.2 � Dynami
 gestures: (a) MEI and MHI [14℄, and (b) signature of a dynami
 gesture

by superimposing the skeletons of sequen
e images [59℄.

Bobi
k and Davis [14℄ use temporal models for the re
ognition of human movement:

the "image of the motion energy" (MEI), and the "image of the movement history

"(MHI). These images are formed by the a

umulation of motions of ea
h pixel over

a time window (see �g 1.2 (a)). The images are des
ribed with the invariants of Hu,

and gestures are 
lassi�ed using the Mahalanobis distan
e. Iones
u et al. [59℄ propose

a method for dynami
 gesture re
ognition based on skeletons. Stati
 signatures of the

beginning and the end of gestures are 
al
ulated with a Histogram of Oriented Gradient.

The dynami
 signature is obtained by superimposing the skeletons of sequen
e images

(see �g 1.2 (b)). Zhu et al. [115℄ segment the hand with the 
olor, asso
iated with

motion dete
tion.

The spatio-temporal representation of a gesture is made with motion estimation

based on a parametri
 model and a des
ription the shape of the hand with the geo-

metri
al moments. After a temporal normalization with a method of linear sampling,

the re
ognition is performed with a distan
e with models that were learned previously.

In their appli
ation, 12 gestures are used to navigate with a panorami
 view. Kong

and Ranganath [68℄ use a hierar
hi
al approa
h to re
ognize 3d traje
tories, periodi


or not (see �gure 1.3). The dete
tion of periodi
ity is based on Fourier analysis. The

traje
tories are then re
ognized with a variant of the ACP.

The Hidden Markov Models (HMM) have been su

essfully used for long time in the

�eld of spee
h re
ognition. By analogy, they have been used for gesture re
ognition

and interpretation of sign language, �rst with data gloves (Bra�ort [23℄), then with


omputer vision where di�erent models have been developed. Among the �rst studies

in this �eld, Starner and Pentland [100, 101℄ use the HMM for the re
ognition of 40

signs from the Ameri
an Sign Language (ASL), with a single 
amera.

The features used are the 
enter of the hand and ellipti
al bounding box, obtained

with the prin
ipal axes. Mar
el et al. [74℄ propose a hybrid approa
h between HMM
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Figure 1.3 � 3D traje
tories [68℄ : (a) non-periodi
 and (b) periodi
.

and neural networks, 
alled "Input-Output Hidden Markov Models", to re
ognize four

gestures in using the 
enter of gravity of the hand. Wilson and Bobi
k [109℄ propose

a HMM parametri
 form, to estimate the dire
tion of movement in a pointing gesture.

Vogler and Metaxas [105, 106℄ propose the "Parallel HMM " to model separately the left

and right hands, and to re
ognize 53 gestures of Ameri
an Sign Language, 
ontinuously.

Sato et al. [85, 93℄ tra
k a monitoring of the hand and the �ngertips, in two

dimensions, for Enhan
ed Desk system. An infra-red 
amera fa
ilitates the dete
tion

of the hands, and then ea
h �nger tip is dete
ted by 
orrelation with a 
ir
le, and

followed with a Kalman �lter. The thumb is dete
ted to di�erentiate a "handling"

mode from a "symboli
 gesture" mode. The symboli
 gestures re
ognition is based on

HMM with 12 di�erent gestures (see �gure 1.4). Similarly, Martin and Durand [79℄ use

HMM for handwriting re
ognition in 2D, with letters from an alphabet.

Figure 1.4 � The Enhan
edDesk system [85℄ : (a) tra
k multiple �nger tips, and (b) traje
tories

re
ognized by HMM.

1.3 Hand 
hara
terization

In this se
tion, we fo
us on the extra
tion of a ve
tor or matrix of features to represent

the shape of the hand. Sin
e the appearan
e of the hand in an image 
an vary greatly

depending on the perspe
tive, for the same 
on�guration, we seek eu
lidean transfor-

mations (translation, rotation, s
aling), whi
h represent most of the 
hanges we fa
e.
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In order to 
hara
terize an obje
t (various hand postures) that 
an appear at di�erent

s
ales and orientations, des
riptors whi
h are invariant to these transformations must

be used.

The des
riptors 
an be divided into four 
lasses: the global des
riptors that work

on the entire image, the semi-lo
al des
riptors that work on a set of sub-images repre-

senting 
uts of the 
omplete image, the lo
al des
riptors that 
ombine interest points

dete
tion and 
hara
terization of the neighborhood of ea
h dete
ted keypoint and the

geometri
 des
riptors that utilize low level features to express obje
t shape. In the

following paragraphs, we detail some des
riptors for ea
h 
lass.

1.3.1 Global approa
h

• Zernike moments [66℄ are built around a family of 
omplex polynomials forming

an orthogonal basis, de�ned in the unit 
ir
le. This orthogonal basis 
an redu
e the re-

dundan
y between the moments. Standardizations 
an turn these des
riptors invariant

to transformations involving rotations, translations and s
aling.

Amn =
m+ 1

π

∑

x

∑

y

I(x, y)V ∗
mn(x, y) (1.1)

Where x2 + y2 ≤ 1, m = 0, 1, 2...,∞ is the moment's order and n is an integer

respe
ting the following 
onditions:

{

m− |n| is an even number

|n| ≤ m

The Zernike des
riptor is among the most used in the literature (see equation (1.1)).

It is built from a set of Zernike polynomials. This set is 
omplete and orthonormal

inside the unit 
ir
le.

Vmn(r, θ) = Rmn(r)e
jnθ

(1.2)

with (r, θ) de�ned on the unit disk, and Rmn(r) is the radial polynomial.

Rmn(r) =

m−|n|
2

∑

s=0

(−1)s
(m− s)!

s!(m+|n|
2

− s)!(m−|n|
2

− s)!)
rm−2s

(1.3)

The Zernike moments have shown their performan
e in terms of robustness to noise

and near zero value in redundan
y of information. Modules of Zernike moments

are invariant to rotation. To obtain the translational invarian
e and s
aling, the

images are normalized using the moments of order 0 and 1. A

ording to Kumar

and Singh [69℄, it is su�
ient for the re
ognition to the moments of order 2 to 15,

whi
h represent 70 moments. The major drawba
k of Zernike moments is their

elevated 
omputational load. Various methods have been proposed (Hwang and

Kim [56℄) to allow faster 
omputation times. Chong et al. [32℄ 
ompare di�erent
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methods available and o�er to 
al
ulate the moments up to order 24 in 50 millise
-

onds instead of 1,10 se
onds using the dire
t method for a binary image of 50×50 pixels.

• Hu moments [52℄, 
ompound a family of invariants whi
h have been used for a long

time for re
ognition. The knowledge of the 
enter of gravity (xG, yG) of the region is

required to 
al
ulate the 
entered moments, upq:

upq =
∑

(x,y)∈I
(x− xG)

p(y − yG)
qI(x, y) (1.4)

The 
entered moments are invariant to translations. To obtain invarian
e to s
aling

fa
tor, normalized moments are 
al
ulated:

ηpq =
upq

uγ
pq

with γ =
p+ q

2
+ 1, ∀ p+ q ≥ 2 (1.5)

Using normalized moments up to order 3, we 
an 
al
ulate the seven Hu moment

invariants:

I1 = η20 + η02 (1.6)

I2 = (η20 + η02)
2 + 4η211 (1.7)

I3 = (η30 + 3η12)
2 + (3η21 − η03)

2
(1.8)

I4 = (η30 + η12)
2 + (η21 − η03)

2
(1.9)

I5 = (η30 + 3η12)(η30 + η12)[(η30 + η12)
2 − 3(η21 + η03)

2]
+ (3η21 − η03)(η21 + η03)[3(η30 + η12)

2 − (η21 + η03)
2]

(1.10)

I6 = (η20 − η02)[(η30 + η12)
2 − (η21 + η03)

2 + 4η11(η30 + η12)(η21 + η03)] (1.11)

I7 = (3η21 − η03)(η30 + η12)[(η30 + η12)
2 − 3(η21 + η03)

2]
+ (η30 − 3η12)(η21 + η03)[3(η30 + η12)

2 − (η21 + η03)
2]

(1.12)

The �rst six features 
hara
terize the shape with invarian
e to translation, rotation

and s
aling. The seventh invariant distinguishes symmetri
al shapes.

• Fourier des
riptors (FD) were known thanks [35, 88℄. They are extensively used for
the 
hara
terization and shape 
lassi�
ation for a 
losed 
ontour, as they allow a good
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representation of shapes and have interesting invarian
e properties. FD are 
al
ulated

from the 
oe�
ients of the Fourier transform of the 
ontour . Fourier des
riptors have

been usually used for gesture re
ognition [31, 71, 84℄ as one 
omponent of a 
omplete

system of re
ognition. Thus, the performan
e of the FD has not been analyzed in

detail, and independently of other system 
omponents. In general, in existing work,


omplex signature is used, as well as the module of the Fourier 
oe�
ients (FD1). The

se
ond family of des
riptors (FD2) has not been used for gesture re
ognition.

FD are 
al
ulated on the 
ontour of the hand region, extra
ted from the segmented

image. Points of this 
ontour 
an be represented with various signatures (
omplex


oordinates, 
entral distan
e, 
urvature, 
umulative angular fun
tion) [113℄. We 
on-

sider the 
ase of 
losed planar 
urves under the a
tion of Eu
lidean transformations. If

γ1(l) and γ2(l) denote the respe
tive ar
length parametrization of two 
losed 
ontour

obje
ts, having the same shape and di�erent poses, we 
an write [30,31℄:

γ2(l) = aejθγ1(l + l0) + b (1.13)

with a the s
ale fa
tor, θ the rotation angle, b the translation and l0 the di�eren
e

starting between des
ription points , l0 ∈ [0, L] with L the length of the 
ontour.

The s
ale invarian
e is obtained by normalizing the ar
-length parametrization with

an equal length of 1, leading to l0 ∈ [0, 1]. The translation invarian
e is given by

des
ribing the 
ontours a

ording to their 
enter of mass.

Before 
al
ulating the Fourier Transform, with the Fast Fourier Transform (FFT),

shape is �rst sampled to a �xed number of points. In general, obje
t shape and model

shape 
an have di�erent sizes. Consequently, the number of data points of the obje
t

and model representations will also be di�erent. For mat
hing purposes, the shape

boundary or the shape signature of obje
ts and models must be sampled to have the

same number of data points. The sampling pro
ess not only normalizes the size of

shapes but also has the e�e
t of smoothing the shape. The smoothing eliminates the

noise in the shape boundary and the small details along the shape boundary as well,

what may be a drawba
k in a hand posture re
ognition method.

The number of resolution levels at whi
h the shape signature will be de
omposed

is determined by the length of the shape boundary. By varying the number of

sampled points, the a

ura
y of the shape representation 
an be adjusted. The

larger the number of sampled points, the more details in the representation of the

shape; 
onsequently, the mat
hing result will be more a

urate. In 
ontrast, a smaller

number of sampled points redu
e the a

ura
y of the mat
hing results but improve

the 
omputational e�
ien
y.

There are generally three methods of normalization : (i) equal points sampling; (ii)

equal angle sampling; (iii) equal ar
-length sampling. Assuming N is the total number

of 
andidate points to be sampled along the shape boundary, the equal angle sampling

sele
ts 
andidate points spa
ed at equal angle θ = 2 π
N
.

The equal points sampling method sele
ts 
andidate points spa
ed at equal number of

points along the shape boundary. The spa
e between two 
onse
utive 
andidate points
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is given by P/N, where P is the total number of boundary points. The equal ar
-length

sampling method sele
ts 
andidate points spa
ed at equal ar
 length along the shape

boundary.

The spa
e between two 
onse
utive 
andidate points is given by L/N , where L is

the perimeter of the shape boundary. Among the three sampling methods, the equal

ar
-length sampling method apparently a
hieves the best equal spa
e e�e
t, be
ause

the use of ar
 length as parameter in the signature a
hieves the unit speed of motion

along the shape boundary [87℄.

We use the 
omplex 
oordinates, ea
h point Mi of the shape 
ontour is represented

by a 
omplex number zi, with N the number of points of the 
ontour:

∀i ∈ [0, N − 1],Mi(xi, yi) ⇔ zi = xi + jyi (1.14)

This number must be 
hosen as a 
ompromise between a reliable des
ription of the

shape, with enough details, and shape smoothing, whi
h eliminates the �nest details

more subje
t to noise. Therefore, we 
hoose the equal ar
-length sampling to normalize

the sizes of the shapes. For ea
h shape, we sele
t 64 
andidate points with equal ar
-

length spa
e between them. Another fa
tor is the 
omputation time, whi
h in
reases

with the number of points. For 
omputational e�
ien
y of the fast Fourier transform,

the number of points is 
hosen to be a power of two. Hen
e, the Fourier transform

leads to N Fourier 
oe�
ients Ck :

Ck(γ) =

N−1
∑

i=0

zie
−j 2πik

N , k = 0, ..., N − 1. (1.15)

In the frequen
y domain, Eq.(1.13) and Eq.(1.15) gives:

Ck(γ2) = ejθej
2πkl0

N Ck(γ1) + bδk. (1.16)

where δk is the Krone
ker delta. The �rst 
oe�
ient C0 is dis
arded be
ause it 
ontains

only the position of the hand shape. Rotation of the shape a�e
ts only the phase

information, thus rotation invarian
e of the Fourier des
riptors is a
hieved by taking

the magnitude of 
oe�
ients. S
ale invarian
e is a
hieved by dividing 
oe�
ients by

the magnitude of the se
ond 
oe�
ient, C1. Starting point invarian
e is also a
hieved

by taking the magnitude, as a 
hange of the starting point a�e
ts only the phase. So,

Eq.(1.16) 
an be written as follows:

Ck(γ2) = ejθej
2πkl0

N Ck(γ1), k = 0, ..., N − 1. (1.17)

A 
ommon way to obtain FD whi
h are invariant to similarities is to take the

magnitude of Fourier 
oe�
ients [35, 88℄. Then, we obtain the N − 2 FD1 
oe�
ients:

Ik(γ) =
|Ck(γ)|
|C1(γ)|

, k = 2, ..., N − 1. (1.18)
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Figure 1.5 � Examples of re
onstru
tion as a fun
tion of the 
uto� frequen
y, with an initial


ontour sampled with N = 64 points

However, this set of invariants is not 
omplete as it does not hold the phase information

of the shape. The 
ompleteness of a set of invariant features (FD2) expresses the fa
t

that two obje
ts have the same shape if and only if they have the same set of features.

A set of features whi
h is 
omplete but not stable is proposed in [35℄. Stability means

that a small distortion of the shape does not indu
e a noti
eable divergen
e in the

values of invariant features. The 
omplete and stable set of invariant des
riptors is

de�ned by [43℄:

Ik0(γ) = |Ck0(γ)|, for k0 su
h that Ck0(γ) 6= 0, (1.19)

Ik1(γ) = |Ck1(γ)|, for k1 6= k0 su
h that Ck1(γ) 6= 0, (1.20)

Ik(γ) =
Ck(γ)

k0−k1Ck0(γ)
k1−kCk1(γ)

k−k0

Ik0(γ)
k1−k−pIk1(γ)

k−k0−q
(1.21)

with p, q ∈ R+ and k1 ≤ k0.

For experiments, in order to simplify the expression of Ik(γ), following [43℄, we take
k0 = 2, k1 = 1, p = q = 0.5.

Noti
e that the 
epstral des
riptors 
an be investigated as used in spee
h re
ognition

front-ends to enhan
e the robustness [45℄.

Figure 1.5 shows that the low frequen
y 
oe�
ients 
ontain information on the

general form of the shape and the high frequen
y 
oe�
ients 
ontain information on

the �ner details of the shape. We 
an noti
e that with more than 20 
oe�
ients the

hand shape is well re
onstru
ted.

• legendre moments: Any shape may theoreti
ally be 
hara
terized by its set of

regular moments. However, this kind of des
ription is information redundant and prone
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to numeri
al instability. A better representation is obtained by using an orthogonal

basis [102℄, su
h as Legendre polynomials. Assuming, without loss of generality, that

the image domain is [−1, 1]× [−1, 1], the (p, q)-th order normalized Legendre moment

is de�ned as:

λp,q = Cpq

∫∫

Ωix

Pp(x)Pq(y) dxdy, (1.22)

with normalizing 
onstant: Cp,q = (2p + 1)(2q + 1)/4. The p − th order Legendre

polynomial is given by:

Pp(x) =
1

2pp!

dp

dxp
(x2 − 1)p , x ∈ [−1, 1]. (1.23)

Legendre polynomials generalize regular moments in the sense that the monomial xpyq

is repla
ed by an orthogonal polynomial Pp(x)Pq(x) of the same order. Moreover, if

we rewrite Pp(x) as:

Pp(x) =

p
∑

k=0

apkx
k, (1.24)

then we 
ome up with a simple relationship between Legendre moments and normalized


entral regular moments:

λp,q = Cpq

p
∑

u=0

p
∑

v=0

apuaqvηu,v. (1.25)

Any referen
e shape, dis
retized on a su�
iently �ne grid, 
an be des
ribed by the

ve
tor of its 
entral normalized Legendre moments up the order N : λref
p,q , p+ q ≤ N .

This des
ription inherits s
ale and translation invarian
e from normalized 
entral

moments. The invarian
e to rotation may be proved but it is not the purpose of

this work. For the 
omplexity of 
omputation (order to ensure s
ale, translation and

rotation invarian
e), this method 
an be 
onsidered more CPU 
onsuming 
ompared

to other des
riptors of global approa
hes like fourier des
riptors.

1.3.2 Semi-lo
al Approa
h

• Histogram of Oriented Gradient (HOG) des
riptors are features widely used

by the obje
t dete
tion and obje
t re
ognition 
ommunity. They have been shown to

be distin
tive and robust under small a�ne transformations and illumination 
hanges.

They are 
onstru
ted by dividing the image into a dense grid of uniformly spa
ed 
ells

and then 
omputing the orientation histograms of the image gradient values on ea
h


ell. The illumination and 
ontrast 
hanges are taken into a

ount by lo
al normal-

ization of the gradient strengths whi
h requires grouping the 
ells together into larger,

spatially-
onne
ted blo
ks.

The HOG des
riptor is then the ve
tor of the 
omponents of the normalized 
ell his-

tograms for all the blo
k regions. Dalal et al. [82℄ have proposed Histogram of Oriented
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Gradients in the 
ase of human dete
tion. They have also been used for hand posture

re
ognition [38℄ and gesture re
ognition [64℄.

1.3.3 Lo
al Approa
h

• The S
ale Invariant Feature Transform (SIFT) is a well known lo
al de-

s
riptor 
reated in 1999 by Lowe [72℄, allowing to dete
t and extra
t features whi
h

are invariant to rotation and s
ale and robust to some variations of illuminations,

viewpoints and noise. The SIFT des
riptor is 
omputed in four steps. The two �rst

stages 
orrespond to the 
hoi
e of keypoints, �rst identifying potential interest points

that are s
ale and rotation invariant and then reje
ting the ones that have low 
ontrast

and stability. The two last stages 
orrespond to the des
riptor ve
tor 
omputation,

assigning one or more orientations to ea
h sele
ted keypoint based on lo
al image

gradient dire
tions and using a 4*4 lo
ation Cartesian grid to 
ompute the gradient

on ea
h lo
ation bin on the pat
h around the keypoint.

The SIFT des
riptor gives good results in the 
ase of obje
t re
ognition when it 
an

�nd relevant keypoints. It has been used by Wang et al. [107℄ for hand posture

re
ognition with the obje
tive of human-robot intera
tion.

• Speeded Up Robust Feature (SURF) was �rst presented by Bay et al in 2006

[10℄. Partly inspired by the SIFT des
riptor, SURF also 
onsists in interesting points

lo
alization followed by feature des
riptors 
omputation. In both 
ases, the output is

a representation of the neighborhood around an interest point as a des
riptor ve
tor.

SURF is based on the distribution of �rst order Haar wavelet responses [49℄. One of

the prin
ipal advantages of SURF is to be several times faster than SIFT while having

more dis
riminative power. It uses the integral images to simplify and to a

elerate

the 
omputations. Yielding a lower dimensional feature des
riptor, it redu
es the time

for feature 
omputation and mat
hing. In [39℄, a fast multi-s
ale feature dete
tion,

SURF-inspired, and a des
ription method for hand gesture re
ognition is proposed.

1.3.4 Geometri
al Approa
h

• Varied Form Des
riptor (Var). Full re
onstru
tion of the hand is not essential

for gesture re
ognition. Many approa
hes have instead used the extra
tion of low-

level image measurements for that purpose [83℄. Being fairly robust to noise, these


hara
teristi
s 
an be extra
ted qui
kly. In this approa
h we 
reated a geometry-based

feature ve
tor by gathering simple geometri
al 
hara
teristi
s des
ribed hereunder:

Isometric rate =
hand′s perimeter2

hand′s area × 4× π
(1.26)

Lengthening =
radius of the biggest hand inscribed circle

radius of the smallest hand circumscribed circle
(1.27)
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Concavity =
perimeter of the hand′s convex hull

hand′s perimeter
(1.28)

Elongation =
major axis of the hand′s smallest elliptical hull

minor axis of the hand′s smallest elliptical hull
(1.29)

1.3.5 Comparative Study

Collumeau et al. [33℄ assess that the geometri
al approa
h Var and the geometry-based

global approa
h Hu moments perform best (see table 1.1) but require a segmentation

step prior to their 
omputation. They are followed by keypoint-based lo
al methods

(SIFT, SURF) whose performan
e is slightly enhan
ed by the segmentation step. HOG

proved to be espe
ially dependant on the 
orre
t framing of the hand, performing poorly

when fa
ing a large ba
kground-en
losed hand but a
hieving se
ond best re
ognition

rate when the hand is well-framed. Although less improved than Hu moments by

the segmentation step, HOG's performan
e nevertheless su�ers from its la
k. Zernike

moments 
ome last with the smallest re
ognition rate.

These results outline the worthiness of simple, geometri
al des
riptors for de-

s
ribing a single obje
t, namely the user's hand, displayed in various 
on�gurations.

Predominan
e of su
h des
riptors 
onveying the hands shape will therefore fo
us

future resear
h on des
riptors whose relevan
e have been established when dealing

with shapes.

`Gray-level hand `Gray-level hand `Binary

and ba
kground' on bla
k ba
kground' obje
t'

ZER 21.1 24.9 25.6

HU 19.7 52.5 68.1

HOG 33.2 44.3 38.2

SIFT 58.1 60.3 63.5

SURF 51.5 60.1 66.8

VAR - - 76.4

Table 1.1 � Mean re
ognition rates obtained over the 4 speakers with images presenting palmar

aspe
t [33℄

Bourennane et al. [19℄ have shown that Fourier des
riptors (FD1) outperforms Hu

moments for all deformations (see table 1.2), they noti
e that Hu moment invariants

and Zernike's moment invariants are 
al
ulated on the global image spa
e. It has been

shown that the values of Hu's moment invariants and Zernike's moment invariants are

sensitive to noise [19℄.
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The FD1 outperforms the other shape des
riptors in terms of dis
rimination

between visually 
lose gestures. Either moment invariants or Fourier 
oe�
ients are


omputed from the segmented hand posture. When the postures lead to similar

segmentation results, some details of the hand 
ontour are smoothed, and both

moment invariants and Fourier 
oe�
ients are a�e
ted.

`HU' `Zerni
ke' `FD1' `FD2'

Learning set : 38.9 81.5 81.5 80.3

Test set : 37.1 74.9 77.8 77.0

Cross-validation : 30.5 76.7 77.0 76.2

Table 1.2 � Re
ognition rates (%) with Tries
h database and Eu
lidean distan
e For FD1, 6

invariant features are used, and 4 for FD2 [19℄.

1.4 Hand posture 
lassi�
ation

The 
lassi�
ation represents the task of assigning a feature ve
tor or a set of features

to some prede�ned 
lasses in order to re
ognize the hand gesture. In previous years

several 
lassi�
ation methods have been proposed and su

essfully tested in di�erent

re
ognition systems. In general, a 
lass is de�ned as a set of referen
e features that

were obtained during the training phase of the system or by manual feature extra
tion,

using a set of training images. Therefore, the 
lassi�
ation mainly 
onsists of �nding

the best mat
hing referen
e features for the features extra
ted in the previous phase.

The 
lassi�
ation 
onsists in maximizing or minimizing a dis
riminant fun
tion di(x)
between a ve
tor of measurements x and the N 
lasses of gestures. For example, in

the 
ase of a fun
tion to be minimized, su
h as a distan
e, we look for the 
lass C

su
h that: C = argmin
i∈[1,N ]

(di(x)).

The 
lassi�
ation is usually performed with a distan
e, or methods su
h as

nearest neighbors. The number of images used for learning is an important fa
tor for


lassi�
ation.

Chen et al. [31℄ use the FD and motion analysis to re
ognize dynami
 gesture with

Hidden Markov Models (HMM).

Wah Ng and Ranganath [84℄ use the FD and Radial-Basis Fun
tion (RBF) as


lassi�er-type to re
ognize �ve postures. They then propose to re
ognize fourteen

dynami
 gestures, some of whi
h are made with both hands, with HMM or neural

networks.

The Adaboost 
lassi�er, short for Adaptive Boosting, is a ma
hine learning

algorithm, formulated by [41℄. It is a meta-algorithm, and 
an be used in 
onjun
tion
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with many other learning algorithms to improve their performan
e. AdaBoost is

adaptive in the sense that subsequent 
lassi�ers built are tweaked in favor of those

instan
es mis
lassi�ed by previous 
lassi�ers. AdaBoost is sensitive to noisy data

and outliers. In some problems, however, it 
an be less sus
eptible to the over�tting

problem than most learning algorithms.

Caplier et al. [27℄ use of Hu moments and a neural network "Multi-layer per
ep-

tron" to 
lassify eight gestures made by three people.

The Eu
lidean distan
e is the "ordinary" distan
e between two points that one

would measure with a ruler, and is given by the Pythagorean formula. By using this

formula as distan
e, Eu
lidean spa
e (or even any inner produ
t spa
e) be
omes a

metri
 spa
e. The Eu
lidean distan
e between the measurement ve
tor x and the 
lass

i is de�ned by:

dE,i(x) =
√

(x− µi)T (x− µi) (1.30)

with µ the mean ve
tor of 
lass i. This is the usual metri
 for 
al
ulating a distan
e

between the invariants ve
tors Ik of 
ontours γ1 and γ2.

dE(γ1, γ2) =

√

∑

k

|Ik(γ1)− Ik(γ2)|2 (1.31)

Bayesian 
lassi�
ation is based on Bayes' theorem:

p(Ci|x) =
p(x|Ci)p(Ci)

p(x)
(1.32)

with:

p(Ci|x) the posterior probability of the 
lass Ci knowing that the measurement ve
tor is x,
p(x|Ci) the 
onditional probability of x, knowing that the 
lass Ci,

p(Ci) the prior probability of the 
lass Ci

p(x) the 
onditional probability of measurement ve
tor x

p(x) =
N
∑

i=1

p(x|Ci)p(Ci) (1.33)

In this 
ase, the dis
riminator fun
tion is given by the maximum a posteriori :

di(x) = p(Ci|x) (1.34)

the Bayes Theorem (Eq. 1.32) 
an be rewritten as follows [78℄:

di(x) = dM,i(x) + log(Λi) (1.35)
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with dM(x) the Mahalanobis distan
e:

dM,i(x) = (x− µi)
TΛ−1

i (x− µi) (1.36)

the Mahalanobis distan
e appears as an Eu
lidean distan
e weighted by the inverse

of the 
ovarian
e matri
es for ea
h 
lass.

The K-nearest neighbors 
lassi�
ation method uses the feature-ve
tors gathered in

the training to �nd the K nearest neighbors in a n-dimensional spa
e. The training

mainly 
onsists of the extra
tion of (possible well dis
riminable) features from training

images, whi
h are then stored for later 
lassi�
ation. Due to the use of distan
e

measuring su
h as the eu
lidian or manhattan distan
e, the algorithm performs

relatively slowly in higher dimensional spa
es or if there are many referen
e features.

In [114℄, an approximate nearest neighbors 
lassi�
ation was proposed, whi
h provides

a better performan
e.

Support ve
tor ma
hines (SVM) are supervised learning models with asso
iated

learning algorithms that analyze data and re
ognize patterns, used for 
lassi�
ation

and regression analysis. The basi
 SVM takes a set of input data and predi
ts, for

ea
h given input, whi
h of two possible 
lasses forms the output, making it a non-

probabilisti
 binary linear 
lassi�er. Given a set of training examples, ea
h marked as

belonging to one of two 
ategories, an SVM training algorithm builds a model that

assigns new examples into one 
ategory or the other.

An SVM model is a representation of the examples as points in spa
e, mapped so

that the examples of the separate 
ategories are divided by a 
lear gap that is as wide

as possible. New examples are then mapped into that same spa
e and predi
ted to

belong to a 
ategory based on whi
h side of the gap they fall on.

The SVM is based on kernels that allow optimal separation of points into sets. The

solution is optimal in the sense that the margin between the hyperplane and ve
tors

of ea
h 
lass of the learning data is maximum. Also, SVM solve the problem of non-

linearly separable data by proje
ting the data into a spa
e of higher dimension. This

proje
tion is done with a polynomial kernel, Gaussian or hyperboli
.

Bourennane et al. [19℄ prove that the results are signi�
antly better when using

the Bayesian 
lassi�er on the Tries
h database (100% see Table 1.3). For their internal

database, with Fourier des
riptors (6 invariants), the re
ognition rates also in
rease,

in 
omparison with Eu
lidean distan
e, and results are similar for the three 
lassi�ers

with a small advantage for k-NN.

The Hidden Markov Model (HMM) 
lassi�ers belong to the 
lass of trainable 
las-

si�ers. An HMM represents a statisti
al model, in whi
h the most probable mat
hing

gesture-
lass is determined for a given feature ve
tor, based on the training data. In

order to train the HMM, a Baum-Wel
h re-estimation algorithm, whi
h adapts the

internal states of the HMM a

ording to some feedba
k 
on
erning the a

ura
y, was
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`BAYES' `SVM' `K-NN' 'EUCL'

Tries
h, test set : 100 89.1 93.3 77.8

Internal database, learning set : 99.9 99.9 100 96.8

Internal database, test set : 84.7 84.2 87.9 83.9

Table 1.3 � Re
ognition rates (%) with Tries
h database and FD1, 6 invariant features are

used, and di�erent 
lassi�ers: Bayesian 
lassi�er (BAYES), support ve
tor ma
hine (SVM), k-nearest

neighbors (k-NN) and Eu
lidean distan
e (EUCL) [19℄.

used.

The Multi Layer Per
eptron (MLP) 
lassi�er is based on a neural network. There-

fore, MLPs represent a trainable 
lassi�er (similar to Hidden Markov Models). They

use three or more layers of neurons that are all 
onne
ted. During the training phase,

the weights of the 
onne
tions between the neurons are adapted, based on the feedba
k

that des
ribes the di�eren
e between the output and the expe
ted result.

1.5 Con
lusion of the 
hapter

In this 
hapter, we reviewed several existing methods for supporting vision-based

human-
omputer intera
tion based on the re
ognition of hand gestures. The provided

review 
overs resear
h work related to all three individual subproblems of the full

problem, namely dete
tion, 
hara
terization and re
ognition or 
lassi�
ation.

In the dete
tion step we mentioned two types of dete
tion: dete
tion for stati


gestures and dete
tion for dynami
 gesture:

• The dete
tion of postures (stati
 gestures) is usually based on the 
olor of the

hand. This dete
tion is very limited in the 
ase where there is a ba
kground of

the same 
olor as the hand or if there are other obje
ts in the s
ene whi
h also

have the same 
olor. As it is known, to make a dete
tion based on the 
olor of

the hand, we must have prior knowledge and it will be limited if we try to extend

it to all users.

• Con
erning dynami
 gestures we have mentioned several methods as HMM, DTW

or a method based on the skeleton. These methods give satisfa
tory results but

sometimes have a large 
omputational time or are limited to a small and although

a

urate di
tionary of gestures.

For these reasons, a new method of dete
tion must be found, or we have to


ombine existing methods to over
ome these limitations and make the dete
tion,

whi
h is the major step in our pro
ess, very reliable.
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The purpose of 
hara
terization, or features extra
tion, is to transform an image

into a signature whi
h 
hara
terizes a 
learly de�ned a 
ontour of posture and

whi
h permits to 
ompare, in the next step of pro
ess, test postures with referen
es

postures stored and 
hara
terized in learning step. However, we have seen that the


hara
terization needs to validate properties of invarian
e (rotation, translation, s
ale

fa
tor), and we must be able bije
tively re
onstru
t the image from these signals. We

mention many methods su
h as des
riptors or geometri
 methods but also lo
al or

semi-lo
al methods. As fast as possible, the main obje
tive is to �nd and 
ombine the

methods that give the best results and faster and whi
h also dis
riminates very 
lose

postures, thinking in this sense is highly essential.

Classi�
ation is an important step in our pro
ess, it is often based on the 
riterion

of distan
e (Eu
lidian, Bayesian, KNN) or on geometri
 
riteria (SVM), but it will

be very di�
ult to implement if the feature ve
tor or the 
hara
teristi
 matrix has

many parameters, or if there's multiple 
lasses. So our 
hoi
e will be set a

ording

to the number of parameters that 
hara
terizes our gesture but also by the 
ompli
ity

of 
lassifying and 
omputational time. That's why we will perform the dimension

redu
tion and de
rease the number of 
lasses. This seems to be a good strategy to use

the easiest and fastest 
lassi�er.



CHAPTER

2 Hand database

2.1 Introdu
tion of the 
hapter

G
ESTURES are an important modality for human-ma
hine 
ommuni
ation, and

robust gesture re
ognition 
an be an important 
omponent of assistive environ-

ments and human-
omputer interfa
es in general. A key problem in re
ognizing ges-

tures is that the appearan
e of a gesture 
an vary widely depending on variables su
h

as the person performing the gesture, or the position and orientation of the 
amera.

For example, the same handshape 
an look very di�erent in di�erent images, depending

on the 3D orientation of the hand and the viewpoint of the 
amera. Similarly, in the

domain of sign language re
ognition, the appearan
e of a sign 
an vary depending on

the person performing the sign and the distan
e from the 
amera. This database-based

framework is applied to two di�erent gesture re
ognition domains.

The �rst domain is handshape 
ategorization. Handshapes 
an hold important in-

formation about the meaning of the gesture, for example in sign languages, or about

the intent of an a
tion, for example in manipulative gestures or in virtual reality in-

terfa
es. A large database of tens of thousands of images is used to represent the

wide variability of handshape appearan
e. A key advantage of the database is that it

provides a very natural way to 
hara
terize the appearan
e of ea
h handshape 
lass.

Furthermore, databases 
ontaining tens or hundreds of thousands of images represent-

ing several people 
an ensure a learning more 
onsistent to the reality.

The se
ond gesture re
ognition domain where we apply the proposed approa
h is

re
ognition of signs in Ameri
an Sign Language (ASL).

2.2 Various hand databases

A

ording to the literature, and best of our knowledge, there are a few publi
ly available

gesture image databases. Athitsos and S
laro� [7℄ published a database for hands posed

in di�erent gestures. The database 
ontains more than 107000 images. Despite the

fa
t that the database 
overs 26 gestures and has ground truth tables, the images

a
tually present only the edges of the hands. Tests for algorithms that are not based

on edges are not feasible. Athitsos also 
ontributed to the 
reation of an Ameri
an
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Sign Language (ASL) video sequen
e database. These videos present the upper body

part of a person signaling short texts in ASL. The videos were re
orded at a rate of

60 frames per se
ond. Some frames present the hands in a small s
ale and they are

sometimes blurred. It is also di�
ult to 
luster sets of hands where the gesture is of

a 
ertain type. There are images from 4 di�erent 
ameras. This database would be

suitable for testing dete
tion algorithms, but it would be di�
ult to use those images

for training.

Figure 2.1 � Exemple of ASL postures

In handshape re
ognition for ASL database, there are 20 postures to re
ognize as

shown on Fig. 2.1. For the evaluation of hand tra
king methods in sign language re
og-

nition systems a database has been prepared. The RWTH-BOSTON-Hands database is

a subset of the RWTH-BOSTON-104 videos with additional annotation of the signer's

hand positions. The positions of both hands have been annotated manually in 15

videos. 1119 frames in total are annotated.

Figure 2.2 � The gestures base of Tries
h and von der Malsburg [103℄

There are also some other databases that are not spe
i�
ally related to gesture but

are parti
ularly related to the subje
t.
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The gestures base of Tries
h and von der Malsburg [103℄ is a base of referen
e used

in several studies, and made available on Internet. It 
ontains 10 hand postures (Fig.

2.2), realized by 24 people and in front of di�erent ba
kgrounds (white, bla
k and


omplex). Pi
tures are in gray level, PGM format, and in 128 × 128 size.

Figure 2.3 � Exemple of image with gestures "
" in Tries
h base[103℄

We 
an use sets of pi
tures with bla
k and white ba
kgrounds, but it's always a

white hand. The variation of the form of the gestures in terms of size, translation and

rotation is very limited. However, the form of the hand of di�erent users 
an be very

variable (see �gure 2.3).

Figure 2.4 � Some images of the samples from the Massey Hand Gesture Database

The Massey Hand Gesture Database is an image database 
ontaining a number

of hand gesture and hand posture images. The database has been developed by the

authors to evaluate their methods and algorithms for real-time gesture and posture

re
ognition. It is posted on the web with the hope of assisting other resear
hers in-

vestigating in the related domains. At this stage, the Database in
ludes about 1500

images of di�erent hand postures, in di�erent lighting 
onditions. The data was 
ol-

le
ted by a digital 
amera mounted on a tripod from a hand gesture in front of a dark

ba
kground, and in di�erent lighting environments, in
luding normal light and dark

room with arti�
ial light. Together with the original images there is a 
lipped version

of ea
h set of images that 
ontains only the hand image. The maximum resolution of

the images is 640 x 480 with 24 bit RGB 
olor. So far, the database 
ontains material

gathered from 5 di�erent individuals.
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2.3 Proposed hand database

As new hand dete
tion and gesture re
ognition algorithms are being developed, the

use of features su
h as 
olor, size, and shape of the favorite obje
t are more likely to

be used. Currently available databases are either for spe
ial purposes, or su�er from

the la
k of the desired features (e.g. not being in 
olor or exhibiting a very small size

of the samples). Previous works show that 
olor is one of the important features in

body tra
king [31, 33, 34, 39, 113℄. Color 
an be found to be invariant to 
hanges in

size, orientation and sometimes o

lusion. In addition, a

ording to Moore's law, every

18 month the pro
essing speed and available memory size of pro
essors double. So,

possibly in the near future, using samples with higher details would be preferred by

resear
hers.

Di�erent gesture bases have several limitations: the number of images is small, the

angle of view, the size and orientation of the hand is always the same, the images are

grays
ale and 
ontain solely a hand without any other obje
t in the ba
kground. Or

even the database is not a

essible. The 
ommon point of these bases is the use of white

hands only. Our goal was to 
reate a man-ma
hine interfa
e that applies everywhere

(non-uniform ba
kground), for any kind of hand (adult or 
hild, male or female, white

or 
olor).

This requires a mu
h better developed database, but also a database where you 
an


ombine stati
 and dynami
 re
ognition, with simple but various postures, whi
h are

easily a
hievable by any user. Thus, to a
hieve a more realisti
 test base whi
h 
ould

be the 
losest to our HMI 
on�guration, we established our own database.

Figure 2.5 � Examples of images in Simon Conseil's database

At �rst it was de
ided to use the database from Simon Conseil [34℄, although it

is limited to white hands (see �gure 2.5), but it allows, �rst, to test the e�e
tiveness

of our 
hara
terization method before expanding them to other types of hands. Also,

with this database we 
an 
ompare the di�erent methods of shape des
ription with

our method of 
hara
terization and dedu
e the 
ontribution and performan
e as well
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as the limitations of our signature. the most important in the 
hoi
e of database is to


hoose postures that are adapted to industrial appli
ations, but also simple, pra
ti
al

and realizable by any user.

This base is inspired by the 8 postures of Cued Spee
h presented by Caplier et al

[27℄. The Cued Spee
h is a language whi
h di�ers from the language of signs, and

whi
h aims at fa
ilitating lip reading for deaf and hard of hearing (see �gure 2.6).

However, postures "5" and "8" have been added to Cued Spee
h database to assess

the performan
e of the methods we propose.

Figure 2.6 � The 11 postures of our database

This database is available within GSM group,where is performed by this thesis,

and was built with a monos
opi
 video a
quisition system. The video sequen
es were

then split into images, to be pro
essed separately. This database is 
omposed of 11

postures performed by 18 persons (1000images/personne/posture) whi
h represents

roughly 200,000 images.

On
e of the relevan
e of this database is validated, it 
an be extended to 
olored

hands just by introdu
ing new image in the learning base. The hand 
ontours 
hara
-

terization is performed out of a binary image whi
h in
ludes only the 
ontours. So the

generalization and extension of the algorithm to a database in
luding 
olored hands

will mainly the �rst images prepro
essing steps.

2.4 Con
lusion of the 
hapter

One of the typi
al appli
ations for an image database is to use it as a training set

for learning algorithms. The same database 
ould also be used for the testing phase,

but it is more 
onvenient to perform tests with real images a
quired separately from a

di�erent person.

In this 
hapter we are interested in various existing databases, that are either in-

tended for re
ognition of hands or for the language of signs where di�erent gestures

are used. it appears that these databases are limited by their format, the 
olor of the
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hand, or even the number of stored images. So we de
ided to 
reate our own database

with postures whi
h are easy to produ
e by all users, whi
h will be for us a universal

database without forgeting to 
ompare our method with referen
es databases as the

Trie
h database.



Part II

Re
ognition pro
ess and results





CHAPTER

3 Array pro
essing models

and methods adapted to


ontour dete
tion

3.1 Introdu
tion of the 
hapter

C
ONTOUR dete
tion is an important step in image pro
essing. After a low-level

pro
essing su
h as denoising, it permits to enhan
e �tting lines, and the interest

is to delimitate stru
tures of interest su
h as roads, buildings, vehi
les, et
. A

large amount of methods have been proposed to 
hara
terize either parametrized or

free-form 
ontours. The most 
ommon method is still the derivative approa
h with

linear �ltering. Many derivative �lters have been studied and used to 
ompute the

intensity gradient of gray-level images: Roberts, Sobel, Prewitt or Canny operators

[26℄. Other approa
hes have followed, su
h as mathemati
al morphology, Markov

random �elds, surfa
e models, histogram automati
 threshold [86℄.

General 
ontours are 
alled free-form. Dete
ting them is the purpose for instan
e of

snakes [65℄ whi
h have been improved in various ways su
h as Gradient Ve
tor Flow

[110, 111℄. This type of method makes a single 
ontour evolve while ensuring an

atta
h to the image gradient, but also a 
ontrol of the properties of the snake su
h

as elasti
ity. Free-form 
ontour dete
tion is also the purpose of levelset [8, 29, 58℄.

Levelsets exhibit the advantage of retrieving multiple 
ontours, in parti
ular blurred


ontours for some spe
i�
 version [29℄. It is however well-known that an elevated

number of parameters must be tuned and that they rely on an optimization strategy

whi
h is sensitive to initialization.

Very simple 
ontours whi
h are therefore en
ountered in many appli
ations 
an be


hara
terized by a few parameters: straight lines with orientation and o�set, or 
ir
les

with 
enter 
oordinates and radius. The Hough transform for instan
e [37, 51, 67℄ was

proposed under di�erent versions, to retrieve straight lines. The generalized Hough

transform (GHT) provides an estimation of the 
ir
le 
enter 
oordinates when their

radius is known [9, 57℄. But in this 
hapter we 
on
entrate on original methods for

the dete
tion of linear-like or 
ir
ular-like 
ontours. These methods rely on the array
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pro
essing paradigm. This 
hapter is logi
ally divided into four parts, starting from

the �rst issue of this framework, the estimation of straight lines with a linear antenna,

proposed in [6℄ in the early nineties, and 
on
luding with the estimation of highly

distorted star-shaped 
ontours [61℄, whi
h inspired the method for the 
hara
terization

of hand 
ontours exposed further in this manus
ript. In between, we also present the

estimation of 
ir
ular 
ontours and blurred 
ontours.

3.2 Straight 
ontour retrieval

3.2.1 Data model, generation of the signals out of the image

data

To adapt array pro
essing te
hniques to distorted 
urve retrieval, the image 
ontent

must be trans
ripted into a signal. This trans
ription is enabled by adequate 
on-

ventions for the representation of the image, and by a signal generation s
heme[2, 5℄.

On
e a signal has been 
reated, array pro
essing methods 
an be used to retrieve the


hara
teristi
s of any straight line. Let I be the re
orded image (see Fig. 3.1(a)).

                                        a)                                                                                                  b)

Figure 3.1 � The image model (see [5℄): (a) The image-matrix provided with the 
oordinate

system and the re
tilinear array of N equidistant sensors, (b) A straight line 
hara
terized by its

angle θ and its o�set x0.

We 
onsider that I 
ontains d straight lines and an additive uniformly distributed

noise. The image-matrix is the dis
rete version of the re
orded image, 
ompound of a

set of N ∗ C pixel values. A formalism adopted in [6℄ allows signal generation, by the

following 
omputation:

z(i) =

C
∑

k=1

I(i, k)exp(−jµk), i = 1, . . . , N (3.1)
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where {I(i, k); i ∈ {1, . . . , N}; k ∈ {1, . . . , C}} denote the image pixels. Eq. (3.1)

simulates a linear antenna: ea
h row of the image yields one signal 
omponent as if it

were asso
iated with a sensor. The set of sensors 
orresponding to all rows forms a linear

antenna. We fo
us in the following on the 
ase where a binary image is 
onsidered. The


ontours are 
omposed of 1-valued pixels also 
alled "edge pixels", whereas 0-valued
pixels 
ompose the ba
kground. When d straight lines, with parameters angle {θk}
and o�set x0k (k = 1, . . . , d), are 
rossing the image, and if the image 
ontains noisy

outlier pixels, the signal generated on the ith sensor, in front of the ith row, is [6℄:

z(i) =

d
∑

k=1

exp(jµ(i− 1)tan(θk))exp(−jµx0k) + n(i) (3.2)

where µ is a propagation parameter [3℄ and n(i) is due to noisy pixels on the ith row.

De�ning: ai(θk) = exp(jµ(i− 1)tan(θk)), sk = exp(−jµx0k), Eq. (3.2) be
omes:

z(i) =
d

∑

k=1

ai(θk)sk + n(i), i = 1, · · · , N (3.3)

Grouping all terms in a single ve
tor, Eq. (3.3) be
omes: z = A(θ)s+ n, with A(θ) =
[a(θ1), · · · , a(θd)] where a(θk) = [a1(θk), a2(θk), · · · , aN(θk)]T , with ai(θk) = exp(jµ(i−
1)tan(θk)), i = 1, . . . , N , supers
ript

T
denoting transpose. SLIDE (Subspa
e-based

LIne DEte
tion) algorithm [6℄ uses TLS-ESPRIT (Total-Least-Squares Estimation of

Signal Parameters via Rotational Invarian
e Te
hniques) method to estimate the angle

values. To estimate the o�set values, the "extension of the Hough transform" [67℄ 
an

be used. It is limited by its high 
omputational 
ost and the large required size for the

memory bin. [20, 22℄ developed another method. This method remains in the frame of

array pro
essing and redu
es the 
omputational 
ost: A high-resolution method 
alled

MFBLP (Modi�ed Forward Ba
kward Linear Predi
tion) [20℄ is asso
iated with a spe-


i�
 signal generation method, namely the variable parameter propagation s
heme [3℄.

The formalism introdu
ed in that se
tion 
an also handle the 
ase of straight edge

dete
tion in gray-s
ale images [4℄.

3.2.2 Angle estimation, overview of the SLIDE method

The method for angles estimation falls into two parts: the estimation of a 
ovarian
e

matrix and the appli
ation of a total least squares 
riterion.

Numerous works have been developed in the frame of the resear
h of a reliable estimator

of the 
ovarian
e matrix when the duration of the signal is very short or the number

of realizations is small. This situation is often en
ountered, for instan
e, with seismi


signals. To 
ope with it, numerous frequen
y and/or spatial means are 
omputed

to repla
e the temporal mean. In this study the 
ovarian
e matrix is estimated by

using the spatial mean [46℄. From the observation ve
tor we build K ve
tors of length

M with d < M ≤ N − d + 1. In order to maximize the number of sub-ve
tors

we 
hoose K = N + 1 − M . By grouping the whole sub-ve
tors obtained in matrix
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form, we obtain: ZK = [z1, · · · , zK ], where zl = AM(θ)sl +nl, l = 1, · · · , K. Matrix

AM(θ) = [aM(θ1), · · · , aM (θd)] is a Vandermonde type one of size M×d. Signal part of
the data is supposed to be independent from the noise; the 
omponents of noise ve
tor

nl are supposed to be un
orrelated, and to have identi
al varian
e. The 
ovarian
e

matrix 
an be estimated from the observation sub-ve
tors as it is performed in [5℄. The

eigen-de
omposition of the 
ovarian
e matrix is, in general, used to 
hara
terize the

sour
es by subspa
e te
hniques in array pro
essing. In the frame of image pro
essing

the aim is to estimate the angle θ of the d straight lines. Several high-resolution

methods that solve this problem have been proposed [92℄. SLIDE algorithm is applied

to a parti
ular 
ase of an array 
onsisting of two identi
al sub-arrays [4℄. It leads to

the following estimated angles [4℄:

θ̂k = tan−1[
1

(µ ∗∆)
Im(ln(

λk

|λk|
))], (3.4)

where {λk, k = 1, . . . , d} are the eigenvalues of a diagonal unitary matrix that relates

the measurements from the �rst sub-array to the measurements resulting from the

se
ond sub-array. Parameter µ is the propagation 
onstant, and ∆ is the distan
e

between two sensors. TLS-ESPRIT method used by SLIDE provides the estimated

parameters in 
losed-form, in opposite to the Hough transform whi
h relies on maxima

resear
h [67℄. O�set estimation exploits the estimated straight lines angles.

3.2.3 O�set estimation

The most well-known o�set estimation method is the "Extension of the Hough Trans-

form" [96℄. Its prin
iple is to 
ount all pixel aligned on several orientations. The

expe
ted o�set values 
orrespond to the maximum pixel number, for ea
h orienta-

tion value. The se
ond proposed method remains in the frame of array pro
essing:

it employs a variable parameter propagation s
heme [2, 3, 4℄ and uses a high resolu-

tion method. This high resolution "MFBLP" method relies on the 
on
ept of forward

and ba
kward organization of the data [46, 90, 104℄. A variable speed propagation

s
heme [3, 4℄, asso
iated with "MFBLP" (Modi�ed Forward Ba
kward Linear Predi
-

tion) yields o�set values with a lower 
omputational load than the Extension of the

Hough Transform. The basi
 idea in this method is to asso
iate a propagation speed

whi
h is di�erent for ea
h line in the image [4℄. By setting arti�
ially a propagation

speed that linearly depends on row indi
es, we get a linear phase signal. When the

�rst orientation value is 
onsidered, the signal re
eived on sensor i (i = 1, · · · , N) is
then:

z(i) =

d1
∑

k=1

exp(−jτx0k)exp(jτ(i− 1)tan(θ1)) + n(i) (3.5)

d1 is the number of lines with angle θ1. When τ varies linearly as a fun
tion of the

line index the signal ve
tor z 
ontains a modulated frequen
y term. Indeed we set

τ = α(i− 1).
z(i) =
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d1
∑

k=1

exp(−jα(i− 1)x0k)exp(jα(i− 1)2tan(θ1)) + n(i) (3.6)

This is a sum of d1 signals that have a 
ommon quadrati
 phase term but di�erent

linear phase terms. The �rst pro
essing 
onsists in obtaining an expression 
ontaining

only linear terms. This goal is rea
hed by dividing z(i) by the non zero term ai(θ1) =
exp(jα(i− 1)2tan(θ1)). We obtain then:

w(i) =

d1
∑

k=1

exp(−jα(i− 1)x0k) + n
′

(i), (3.7)

The resulting signal appears as a 
ombination of d1 sinusoids with frequen
ies :

fk =
αx0k

2π
, k = 1, · · · , d1. (3.8)

Consequently, the estimation of the o�sets 
an be transposed to a frequen
y estima-

tion problem. Estimation of frequen
ies from sour
es having the same amplitude was


onsidered in [104℄. In the following a high resolution algorithm, initially introdu
ed

in spe
tral analysis, is proposed for the estimation the o�sets.

After adopting our signal model we adapt to it the spe
tral analysis method 
alled

modi�ed forward ba
kward linear predi
tion (MFBLP) [104℄ for estimating the o�sets:

We 
onsider dk straight lines with given angle θk, and apply the MFBLP method. We


onsider dk straight lines with given angle θk, and apply the MFBLP method, to the

ve
tor w.

An outline of the method is as follows: 1) For a N-data ve
tor w, form matrix Q of

size 2 ∗ (N − L)× L, where 1 ≤ L ≤ N − 1. The jth 
olumn qj of Q is de�ned by:

qj = [w(L− j + 1), ..., w(N − j), w∗(j + 1), ..., w∗(N − L+ j)]T .
Then build a length 2 ∗ (N − L) ve
tor:
h = [w(L+ 1), ..., w(N), w∗(1), ..., w∗(N − L)]T . Cal
ulate the singular value de
om-

position of Q: Q = UΛVH
.

2) Form a matrix Σ, setting to 0 the L− 1 smallest singular values 
ontained in Λ.

3) Form ve
tor g from the following matrix 
omputation: g = [g1, g2, ..., gL]
T =

−V ∗Σ♯ ∗UH ∗ h where Σ♯
is the pseudo-inverse of Σ.

4) Determine the roots of polynomial fun
tion H , where H(γ) = 1 + g1γ
−1 + g2γ

−2 +
...+ gLγ

−L
.

5) One zero of H is lo
ated on the unit 
ir
le. The 
omplex argument of this zero is

the frequen
y value; a

ording to Eq. (3.5) this frequen
y value is proportional to the

radius, the proportionality 
oe�
ient being −α.
More details about MFBLP method applied to o�set estimation are available in [22℄.

MFBLP estimates the values of fk, k = 1, · · · , dk. A

ording to Eq. (3.8) these fre-

quen
y values are proportional to the o�set values, the proportionality 
oe�
ient being

−α. The main advantage of this method 
omes from its low 
omputational load. In-

deed the 
omplexity of the variable parameter propagation s
heme asso
iated with

MFBLP is mu
h less than the 
omplexity of the Extension of the Hough Transform as

soon as the number of non zero pixels in the image in
reases. This algorithm enables

the 
hara
terization of straight lines with same angle and di�erent o�set.
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3.2.4 Exempli�
ation of the straight line retrieval methods

We propose an appli
ation of our method in the 
ase of roboti
 vision. Fig. 3.2 is a

photography taken by a 
amera and transmitted to the automati
 
ommand of a vehi
le

moving on the railway. This vehi
le is used in parti
ular for servi
ing of railways, i.e.

for the repla
ement of the parallel 
rosspie
es. The vehi
le, when moving along the

railway, determines �rst the position of the rails from the obtained pi
ture. Then, the

position of the nearest 
rosspie
e is dete
ted.
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Figure 3.2 � (a) - Image transmitted to the automati
 
ommand of a vehi
le that is moving on

a railway for the servi
ing of the railways. (b) Dete
tion of the rails for the progress of the vehi
le. (
)

Lo
alization of the �rst 
rosspie
e that the vehi
le has to repla
e. The pro
ess is iterated 
rosspie
e

after 
rosspie
e: photography, dete
tion of the rails and dete
tion of the next 
rosspie
e.

3.3 Retrieval of 
ir
ular 
ontours

Signal generation upon a linear antenna yields a linear phase signal when a straight

line is present in the image. While expe
ting 
ir
ular 
ontours, we asso
iate a 
ir
ular

antenna with the pro
essed image. By adapting the antenna shape to the shape of the

expe
ted 
ontour, we aim at generating linear phase signals.
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3.3.1 Problem setting and virtual signal generation

Our purpose is to estimate the radius of a 
ir
le, and the distortions between a 
losed


ontour and a 
ir
le that �ts this 
ontour. We propose to employ a 
ir
ular antenna

that permits a parti
ular signal generation and yields a linear phase signal out of an

image 
ontaining a quarter of 
ir
le. In this se
tion, 
enter 
oordinates are supposed

to be known, we fo
us on radius estimation, 
enter 
oordinate estimation is explained

further. Fig. 3.3(a) presents a binary digital image I. The obje
t is 
lose to a 
ir
le

with radius value r and 
enter 
oordinates (lc, mc). Fig. 3.3(b) shows a sub-image

extra
ted from the original image, su
h that its top left 
orner is the 
enter of the


ir
le. We asso
iate this sub-image with a set of polar 
oordinates (ρ, θ), su
h that

ea
h pixel of the expe
ted 
ontour in the sub-image is 
hara
terized by the 
oordinates

(r+∆ρ, θ), where ∆ρ is the shift between the pixel of the 
ontour and the pixel of the


ir
le that roughly approximates the 
ontour and whi
h has same 
oordinate θ. We

seek for star-shaped 
ontours, that is, 
ontours that 
an be des
ribed by the relation:

ρ = f(θ) where f is any fun
tion that maps [0, 2π] to R+. The point with 
oordinate

ρ = 0 
orresponds then to the 
enter of gravity of the 
ontour.

Generalized Hough transform estimates the radius of 
on
entri
 
ir
les when their


enter is known. Its basi
 prin
iple is to 
ount the number of pixels that are lo
ated

on a 
ir
le for all possible radius values. The estimated radius values 
orresponds to

the maximum number of pixels.

Figure 3.3 � (a) Cir
ular-like 
ontour, (b) Bottom right quarter of the 
ontour and pixel


oordinates in the polar system (ρ, θ) having its origin on the 
enter of the 
ir
le. r is the radius

of the 
ir
le. ∆ρ is the value of the shift between a pixel of the 
ontour and the pixel of the 
ir
le

having same 
oordinate θ.

Contours whi
h are approximately 
ir
ular are supposed to be made of more than

one pixel per row for some of the rows and more than one pixel per 
olumn for some


olumns (see Fig. 3.3a)). Therefore, we propose to asso
iate a 
ir
ular antenna with
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the image whi
h leads to linear phase signals, when a 
ir
le is expe
ted. The basi


idea is to obtain a linear phase signal from an image 
ontaining a quarter of 
ir
le

(su
h as in Fig. 3.3b)). To a
hieve this, we use a 
ir
ular antenna. The phase of the

signals whi
h are virtually generated on the antenna is 
onstant or varies linearly as a

fun
tion of the sensor index. A quarter of 
ir
le with radius r and a 
ir
ular antenna

are represented on Fig. 3.4.

The antenna is a quarter of 
ir
le 
entered on the top left 
orner, and 
rossing the

bottom right 
orner of the sub-image. Su
h an antenna is adapted to the sub-images


ontaining ea
h quarter of the expe
ted 
ontour (see Fig. 3.4). In pra
ti
e, the extra
ted

sub-image is possibly rotated so that its top left 
orner is the estimated 
enter. The

antenna has radius Ra so that Ra =
√
2Ns where Ns is the number of rows or 
olumns

in the sub-image. When we 
onsider the sub-image whi
h in
ludes the right bottom

part of the expe
ted 
ontour, the following relation holds: Ns = max(N − lc, N −mc)
where lc andmc are the verti
al and horizontal 
oordinates of the 
enter of the expe
ted


ontour in a 
artesian set 
entered on the top left 
orner of the whole pro
essed image

(see Fig. 3.3). Coordinates lc and mc are estimated by the method proposed in [2℄, or

the one that is detailed later in this 
hapter.

Signal generation s
heme upon a 
ir
ular antenna is the following: the dire
tions

adopted for signal generation are from the top left 
orner of the sub-image to the


orresponding sensor. The antenna is 
omposed of S sensors, so there are S signal


omponents.

Figure 3.4 � Sub-image, asso
iated with a 
ir
ular array 
omposed of S sensors

Let us 
onsider Di , the line that makes an angle θi with the verti
al axis and 
rosses
the top left 
orner of the sub-image. The ith 
omponent (i = 1, . . . , S) of the signal z
generated out of the image reads:

z(i) =
∑l,m=Ns

l,m=1
(l,m)∈Di

I(l, m)exp(−jµ
√
l2 +m2), (3.9)

The integer l (resp. m) indexes the lines (resp. the 
olumns) of the image. j stands

for

√
−1. µ is the propagation parameter [4℄. Ea
h sensor indexed by i is asso
iated

with a line Di having an orientation θi =
(i−1)·π/2

S
.
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In Eq. (3.9), the term (l, m) ∈ Di means that only the image pixels that belong to Di

are 
onsidered for the generation of the ith signal 
omponent. Satisfying the 
onstraint

(l, m) ∈ Di , that is, 
hoosing the pixels that belong to the line with orientation θi, is
done in two steps: let setl be the set of indexes along the verti
al axis, and setm the

set of indexes along the horizontal axis.

If θi ≤ π/4, setl = [1 : Ns] and setm = ⌊[1 : Ns] · tan(θi)⌋.
If θi ≥ π/4, setm = [1 : Ns] and setl = ⌊[1 : Ns] · tan(π/2− θi)⌋.
Symbol ⌊·⌋ means integer part.

The minimum number of sensors that permits a perfe
t 
hara
terization of any

possibly distorted 
ontour is the number of pixels that would be virtually aligned on

a 
ir
le quarter having radius

√
2Ns. Therefore, the minimum number S of sensors is√

2Ns.

3.3.2 Proposed method for radius estimation

In the most general 
ase there exists more than one 
ir
le for one 
enter. We show how

several possibly 
lose radius values 
an be estimated with a high-resolution method.

For this, we use a variable speed propagation s
heme towards the 
ir
ular antenna.

We propose a method for the estimation of the number d of 
on
entri
 
ir
les, and

the determination of ea
h radius value. For this purpose we employ a variable speed

propagation s
heme [4℄. We set µ = α(i− 1), for ea
h sensor indexed by i = 1, . . . , S.
From Eq. (3.9), the signal re
eived on ea
h sensor is:

z(i) =

d
∑

k=1

exp(−jα(i− 1)rk) + n(i), i = 1, . . . , S (3.10)

where rk, k = 1, . . . , d are the values of the radius of ea
h 
ir
le, and n(i) is a noise

term that 
an appear be
ause of the presen
e of outliers. All 
omponents z(i) 
ompose

the observation ve
tor z. TLS-ESPRIT method is applied to estimate rk, k = 1, . . . , d,
the number of 
on
entri
 
ir
les d is estimated by MDL 
riterion. The estimated

radius values are obtained with TLS-ESPRIT method, whi
h also estimated straight

line orientations (see se
tion 3.2.2). A further se
tion is dedi
ated to the estimation of

one-pixel wide nearly 
ir
ular distorted 
ontours. Let us now 
on
entrate on 'blurred'


ontours, that is, 
ontours whi
h are 
omposed of more than one pixel.

3.3.3 Linear antenna for the estimation of 
ir
le 
enter param-

eters

Usually, an image 
ontains several 
ir
les whi
h are possibly not 
on
entri
 and have

di�erent radii (see Fig. 3.5). To apply the proposed method, the 
enter 
oordinates

for ea
h feature are required. To estimate these 
oordinates, we generate a signal with


onstant propagation parameter upon the image left and top sides. The lth signal
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omponent, generated from the lth row, reads: zlin(l) =
∑N

m=1 I(l, m)exp(−jµm),
where µ is the propagation parameter. The non-zero se
tions of the signals, as seen at

the left and top sides of the image, indi
ate the presen
e of features. Ea
h non-zero

se
tion width in the left (respe
tively the top) side signal gives the height (respe
tively

the width) of the 
orresponding expe
ted feature. The middle of ea
h non-zero se
tion

in the left (respe
tively the top) side signal yields the value of the 
enter lc (respe
tively
mc) 
oordinate of ea
h feature.

Figure 3.5 � Nearly 
ir
ular or ellipti
 features. r is the 
ir
le radius, a and b are the axial

parameters of the ellipse.

3.3.4 Exempli�
ation of the 
ir
le 
hara
terization method

In Fig. 3.6, we exemplify the proposed method and the Hough tranform [67℄ on the

same type of hand-made image 
ontaining a single 
ir
le. In both 
ases, the image

is impaired with an additive Gaussian noise, with mean 0.02 and standard deviation

0.009, on 20% of the pixels.

The error on the radius value is 0.1 for the proposed method and 0.05 on the Hough

transform. In both 
ases, this error is less than 1 pixel.

3.4 Blurred 
ontour retrieval

3.4.1 Problem statement

In this subse
tion, we provide the models that we adopt for the image and the blurred


ontours therein. We remind a spe
i�
 te
hnique to generate a signal out of the image.

Let I(l, m) be an N × N re
orded image (see Fig. 3.7(a) or Fig. 3.7(b)). We assume
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Figure 3.6 � One 
ir
le: radius estimation by the proposed method and GHT: (a) Pro
essed

image and result with our method, (b) Pro
essed image and result with GHT.

that I(l, m) is 
ompound of either several blurred linear 
ontours or one blurred 
ir
u-

lar 
ontour, and an additive uniformly distributed noise, whose gray level values follow

a Gaussian distribution. A linear-like 
ontour is supposed to have main orientation θ.
We de�ne its 
enter o�set x0 as the distan
e between the top left 
orner of the image

and the pixel with maximum gray level value Imax in the �rst row (see Fig. 3.7(a)). The

spread of the 
ontour is 
hara
terized by the parameter σ, and we de�ne the parameter

G su
h that Imax = G√
2πσ

. The value of G depends on the number of bits whi
h are

used to en
ode the image. When d blurred linear 
ontours are present, they are de�ned
by the set of parameters

{θk, x0k, σk, k = 1, . . . , d}. A 
ir
ular-like 
ontour is supposed to have 
enter 
oordi-

nates {lc;mc}. The pixels with value

G√
2πσ


ompound a 
ir
le with 
enter 
oordinates

{lc;mc} and radius r0. In both 
ases the gray level values of the pixels de
rease grad-

ually aside the set of pixels with value

G√
2πσ

. Blurred linear 
ontours have width 2Xf .

A 
ir
ular-like 
ontour has width 2rf .

To set the link between image data representation and sensor array pro
essing

methods, an array of sensors is asso
iated with the image [6, 76℄, as previously explained

in this manus
ript. Fig. 3.8 represents the linear and 
ir
ular arrays asso
iated with

an image 
ontaining a blurred 
ontour. The shape of the array is adequately 
hosen,


onsidering the shape of the expe
ted 
ontour. To retrieve linear-like 
ontours, the

array sensors are supposed to be pla
ed in front of ea
h row (or ea
h 
olumn) of the

image [6℄ (see Fig. 3.8(a)). To retrieve 
ir
ular-like 
ontours, the array sensors are

supposed to be pla
ed along a quarter of 
ir
le 
entered on the 
enter point of the
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Figure 3.7 � Contour models: (a) blurred 
ontours 
hara
terized by main orientations θ1, θ2,

o�sets x01 and x02, and width 2Xf ; (b) blurred 
ir
ular 
ontour 
hara
terized by 
enter 
oordinates

{lc;mc}, radius r0, and width 2rf .

Figure 3.8 � Signal generation: (a) linear antenna for the generation of signal 
omponents

z(1), z(2), . . . , z(N) on left and bottom sides, blurred linear-like 
ontour with orientation θ and

o�set x0; (b) sub-image of size NS×NS 
ir
ular antenna [76℄ for the generation of signal 
omponents

z(1), z(2), . . . , z(S) with ith sensor at angular position θi and asso
iated dire
tion of generation Di ,

blurred quarter of 
ir
le

expe
ted 
ir
le [76℄. The intuition behind this 
hoi
e is to adapt the antenna shape

to the expe
ted 
ontour shape and get similar signal models. How to 
hoose between

linear or 
ir
ular antenna is explained in subse
tion 3.4.2. Fig. 3.8(b) shows part of

Fig. 3.7(b), whi
h is sele
ted to perform 
ir
le 
hara
terization. The top left 
orner of

Fig. 3.8(b) 
oin
ides with the 
enter of the blurred 
ir
ular 
ontour. The antenna is


ompound of S sensors, ea
h one related to the angular position θi =
(i−1)·π/2

S
, and to

the dire
tion of generation Di .

In the 
ase where linear-like 
ontours are expe
ted, we adopt the signal generation

s
heme proposed in [6℄ and exposed previously in the manus
ript (see Eq. (3.1)).

Pixels along one row yield one signal 
omponent. Let i be any of the row indi
es

(i = 1, . . . , N). The ith row yields the signal 
omponent z(i) as in Eq. (3.1). The

signal 
omponents form the following signal ve
tor: z = [z(1), z(2), . . . , z(N)]T . In the


ase where 
ir
ular-like 
ontours are expe
ted, an adequate signal generation pro
ess

adapted to a quarter of the image also yields signal 
omponents. Pixels along the

dire
tion of generation Di (i = 1, . . . , S) yield the ith signal 
omponent z(i) (see Fig.
3.8(b)) whi
h reads as in Eq. (3.9).

The signal 
omponents form the following signal ve
tor: z = [z(1), z(2), . . . , z(S)]T .
The propagation parameter is further adapted so that the signal ve
tor �ts an array
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pro
essing model.

3.4.2 Signal models

In this se
tion, we derive exponential signal models for both linear blurred 
ontours

and 
ir
ular blurred 
ontours, and show that both 
ontour types share the same signal

model. To get a model for the signals generated, we �rst need a model for the 
ontours,

that is, or equivalently for their grey level values. We assume the gray level values

I(l, m) evolve aside a 
entral position of the 
ontour as an exponential fun
tion of the

pixel position (see Fig. 3.7(a) and Fig. 3.7(b)). For linear-like 
ontours:

I(l, m) =
G√
2πσ

e−
x2

2σ2 , (3.11)

where x = m− (x0 − (l − 1)tan(θ)). For 
ir
ular-like 
ontours, we get:

I(l, m) =
G√
2πσ

e−
(
√

(l−lc)2+(m−mc)2−r0)
2

2σ2
(3.12)

Referring to Eqs. (3.11) and (3.12),

G√
2πσ

is the maximum gray level value. We expe
t

that the exponential distribution, for instan
e a Gaussian distribution, of the gray

level values in both 
ases fa
ilitates the transfer of array pro
essing methods to the


onsidered parameter estimation issue.

Linear blurred 
ontour

Firstly, we assume that the image 
ontains only one blurred 
ontour of width 2Xf ,

main orientation θ, o�set x0, and spread parameter σ. Referring to Eqs. (3.1) and

(3.11), the signal generated on the ith sensor is expressed as:

z(i) = G√
2πσ

∑Xf

x=1 e
−jµ(x0+x−(i−1)tan(θ))e−

x2

2σ2

+ G√
2πσ

∑Xf

x=1 e
−jµ(x0−x−(i−1)tan(θ))e−

x2

2σ2

+ G√
2πσ

e−jµ(x0−(i−1)tan(θ))

(3.13)

That is:

z(i) = G√
2πσ

∑Xf

x=−Xf
e−jµ(x0+x−(i−1)tan(θ))e−

x2

2σ2

= G√
2πσ

e−jµx0ejµ(i−1)tan(θ)
∑Xf

x=−Xf
e−jµxe−

x2

2σ2

(3.14)

If σ is small enough 
ompared to the number of 
olumns in the image, we 
an turn

the 
onsidered dis
rete 
al
ulation into a 
ontinuous 
ase 
al
ulation. The intuition

behind this approximation is that the values of the term e−
x2

2σ2
de
rease rapidly when

x in
reases, that is, when we get far from the pixels with gray level value

G√
2πσ

.

Therefore a summation between −Xf and Xf 
an be approximated as a summation

between −∞ and +∞. A deeper study of this approximation is proposed in [60℄ for

blurred 
ir
ular 
ontours. Eq. (3.14) be
omes:
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z(i) ≈

G√
2πσ

e−jµx0ejµ(i−1)tan(θ)
∫ +∞
x=−∞ e−jµxe−

x2

2σ2 dx (3.15)

A general formula provides the equality:

∫ +∞

x=−∞
e−ax2+jbxdx =

√

π

a
e−

b2

4a
(3.16)

Referring to Eq. (3.16), it is easy to express Eq. (3.15) by

z(i) = G e−jµx0ejµ(i−1)tan(θ)e−
µ2σ2

2
(3.17)

Eq. (3.17) is the signal re
eived on the i-th sensor if one blurred 
ontour is present.

Se
ondly, we 
onsider the 
ase where the image 
ontains:

• d blurred 
ontours, with orientations θk, o�sets x0k, and spread parameters σk (k =
1, . . . , d);

• uniformly distributed noise pixels, whose gray level values follow a Gaussian dis-

tribution.

The expression of the signal re
eived by ith sensor be
omes:

z(i) = G
∑d

k=1 e
−jµx0kejµ(i−1)tan(θk)e−

µ2σk
2

2 + n(i) (3.18)

where n(i) is a noise term originated by the noise pixels during the signal generation

pro
ess. It has been shown that this noise follows a Gaussian distribution [6℄. We

noti
e that, when σ tends to 0, Eq. (3.18) is equal to the equation obtained in the 
ase

of a one-pixel wide 
ontour (refer to [6℄). The signal 
omponents in Eq. (3.18) follow

an array pro
essing signal model, involving sour
e amplitudes and steering ve
tors.

Equation (3.18) 
an be expressed as:

z(i) =

d
∑

k=1

s(k)ci(θk) + n(i) (3.19)

For this we de�ne:

1. the sour
e amplitude asso
iated with the k-th 
ontour as:

s(k) = G√
2πσ

e−jµx0k
∑Xf

x=−Xf
e−jµxe

− x2

2σk
2
, k = 1, · · · , d. When the 
ontinuous

approximation holds, the sour
e amplitude 
omponents are expressed as:

s(k) = Ge−jµx0ke−
µ2σk

2

2
(3.20)
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2. the steering ve
tor asso
iated with the k-th 
ontour as:


(θk) = [c1(θk), c2(θk), · · · , cN(θk)]T , with ci(θk) = ejµ(i−1) tan(θk)
.

In a matrix form, we get:

z = C(θ)s + n (3.21)

where C(θ) = [
(θ1), 
(θ2), . . . , 
(θd)]
T
, s = [s(1), s(2), . . . , s(d)]T , and n =

[n(1), n(2), . . . , n(S)]T .

Extension to a 
ir
ular blurred 
ontour

In the 
ase of blurred 
ir
ular 
ontours, it was shown in [60℄ that we get an array

pro
essing signal model if, instead of the �xed parameter µ, we 
hoose a parameter

whi
h depends on the sensor index µ = α(i− 1), where α is a 
onstant. As shown in

[60℄, a 
ir
ular blurred 
ontour with spread parameter σ whi
h is small enough yields

the following signal 
omponents:

z(i) = exp(−jα(i− 1)r0)exp(−
σ2α2(i− 1)2

2
). (3.22)

We noti
e that, 
ontrary to Eq. (3.17), Eq. (3.22) 
ontains a quadrati
 term, whi
h is

the modulus of ea
h signal term. If we a

ount for noise and 
onsider the signal terms

z
′
(i) su
h that:

z
′

(i) =
z(i)

|z(i)| = exp(−jα(i− 1)r0) + n(i) (3.23)

we get the following expression:

z

′

= 
(r0) + n (3.24)

with z

′
=

[

z
′
(1), . . . , z

′
(S − 1)

]T
, 
(r0) = [1, exp(−jαr0), . . . , exp(−jα(S − 1)r0)]

T
,

and n = [n(1), . . . , n(S − 1)]T being the noise ve
tor. In the next subse
tion, we set

the link between linear-like 
ontours and 
ir
ular-like 
ontours: we propose a 
ommon

signal model for both types of 
ontours.

Common signal model

The notations above permit to express the signal generated out of the image in a matrix

form:

z = C(ι)s + n (3.25)

where:

z = [z(1), z(2), . . . , z(NS)]
T
,

and C(ι) = [
(ι1), 
(ι2), · · · , 
(ιd)]. In the 
ase of linear-like 
ontours, NS=N , and in

the 
ase of 
ir
ular-like 
ontours, NS=S. Ve
tor n = [n(1), n(2), . . . , n(NS)]
T
repre-

sents noise resulting from possibly present outlier pixels. For linear blurred 
ontours,

s = [s(1), s(2), · · · , s(d)]T , and C(ι) = C(θ). For 
ir
ular blurred 
ontours, s is a

s
alar: s = 1, and C(ι) = 
(r0).
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Estimation of prior information needed for 
ontour 
hara
terization

The proposed method is entirely blind. We propose to distinguish between line and


ir
le with two linear antennas, pla
ed aside the image on the left or the bottom side.

A threshold value is applied to the generated signals to get rid of noise. When the

signals re
eived on both antennas exhibit �rst and last 
omponents whi
h are zero-

valued, one or several 
ir
les are present. Their 
enter 
oordinate lc (resp. mc) are

the middle of the non-zero se
tions of the signal generated on the left (resp. bottom)

array. If only the left (resp. bottom) array signal 
ontains zero se
tions, at least

one nearly horizontal (resp. verti
al) line is present. If no array signal 
ontain zero

se
tions, a diagonal line is present. If a horizontal line is present, the signal generated

on the bottom array is further used instead of the signal generated on the left array.

The number of lines is estimated by MDL (minimum des
ription length) 
riterion, as

explained in the following.

3.4.3 Subspa
e-based methods for the estimation of 
ontour

parameters

In this se
tion, we adapt subspa
e-based methods 
oming from array pro
essing to

estimate some of the parameters of blurred 
ontours. Firstly, we seek for linear blurred


ontours: a subspa
e-based method and Fourier pro
essing provide orientations and

o�sets {θk, x0k, k = 1, . . . , d}. Se
ondly, we seek for a 
ir
ular blurred 
ontour, and a

subspa
e-based method provides the radius r0.

Linear blurred 
ontours

We adapt a subspa
e-based method 
oming from array pro
essing to retrieve the main

orientation of the 
ontour, and apply Fourier pro
essing to retrieve its 
enter o�set.

• Estimation of the blurred 
ontour orientation Equation (3.25) is exa
tly anal-

ogous to an array pro
essing equation [94℄. Therefore, an array pro
essing method


an be applied to the signals generated from the image. However, we do not a�ord

several signal snapshots, and an array pro
essing method su
h as MUSIC [94℄ 
annot

be dire
tly applied. We have to simulate arti�
ially multiple signal snapshots out of

a single sample array data by splitting the array (of length N) into smaller overlay-

ing sub-arrays (of length M). This is 
alled spatial smoothing te
hnique. For more

information about spatial smoothing, refer to [6, 76℄. We get P snapshots, where P is

su
h that: M = N − P + 1. From the observation ve
tor z we obtain P overlapping

sub-ve
tors. By grouping all sub-ve
tors obtained in matrix form, we obtain:

ZP = [z1, · · · , zP ] (3.26)

The 
ovarian
e matrix of all sub-ve
tors of Eq. (3.26) is de�ned by:

Rzz = ZPZP
H

(3.27)
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MDL 
riterion, when applied to Rzz, provides the number of dominant eigenvalues of

Rzz, whi
h is equal to the number of 
ontours d [6℄. We estimate the parameters θk,
k = 1, . . . , d through the maxima of the pseudo spe
trum F (θ) [94℄:

F (θ) =
1

‖ 
H (θ) ·U2 ‖2
(3.28)

where θ is the parameter upon whi
h the optimization is done, and 
 (θ) is a model for

the signal subspa
e ve
tors: 
(θ) = [c1(θ), c2(θ), · · · , cM(θ)]T , with ci(θ) = ejµ(i−1) tan(θ)
.

Matrix U2 
olumns span the noise subspa
e of the data: it is 
omposed of the M − d

olumns of the 
ovarian
e matrix Rzz asso
iated with its M − d smallest eigenvalues.

We noti
e that a 
onstraint on M and P with respe
t to the number of expe
ted

sour
es is the following: M > d and P ≥ d (to get a full rank 
ovarian
e matri
e).

From M = N − P + 1 we also get: M ≤ N − d+ 1.
• Estimation of the blurred 
ontour o�set The estimation of the o�set parameters

of linear 
ontours falls into two steps: �rst, an approximation is made to get a rough

value of the o�sets, whi
h is needed to estimate the spread parameters. Supposing we

have at disposal the spread parameters (whose estimation is presented further in this


hapter), it is possible to get a more a

urate estimate of the 
ontour o�sets. They are

�rst grossly estimated, and then the a

urate estimate is retrieved with the knowledge

of the spread parameters.

On
e the orientation values are known, the o�set values 
an be estimated by variable

speed generation s
heme [21℄ and TLS-ESPRIT algorithm [6℄. We set µ = α(i − 1).
Eq. (3.18) be
omes:

z(i) = G Σ + n(i)
(3.29)

with Σ =
d

∑

k=1

e−jα(i−1)x0kejα(i−1)2tan(θk)e−
(α(i−1))2σk

2

2

Then, ea
h 
ontour is 
onsidered su

essively. We 
an 
onsider for instan
e the �rst

orientation θ1. As θ1 value has been estimated, we 
an divide z(i) by the term

ejα(i−1)2tan(θ1)
. We obtain:

w(i) = z(i)/ejα(i−1)2tan(θ1) =

G e−jα(i−1)x01e−
(α(i−1))2σ1

2

2 + n′(i) (3.30)

where n′(i) is a noise term resulting from the in�uen
e of noisy pixels and all but

the �rst 
ontour. At this point, the value of σ1 is not known and we propose an

approximation whi
h permits to get a gross estimate of x01 without the prior knowledge

of σ1. If the propagation parameter α is 
hosen su
h that α(i−1) << 1, ∀ i = 1, . . . , N ,

we 
an adopt the following approximation:

w(i) ≈ w̃(i) = G e−jα(i−1)x01 + n(i) (3.31)
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The signal w̃ = [w̃(1), w̃(2), . . . , w̃(N)]T 
an be analysed by Fourier transform, whi
h

provides the estimated o�set value x̂01:

x̂01 = argmax
x01

(|FT(w̃)|) (3.32)

where FT denotes Fourier transform. The term argmax
x01

means that we seek for the

value of x01 whi
h maximizes |FT(w̃)|. The division pro
ess of Eq. (3.30) and the

Fourier analysis of Eq. (3.32) are repeated for ea
h value k = 1, . . . , d. Fourier analysis
is fast and easy to implement. At this point a gross estimate of the o�set values is

available, whi
h will be used to estimate the spread parameter values σk, k = 1, . . . , d.
The estimation of the spread parameters out of the grossly estimated o�set values is

explained further in this 
hapter. Let's assume that all spread values are available,

and avoid the approximation of Eq. (3.31).

Starting from the expression of w(i) in Eq. (3.30), we derive the signal ω(i), i = 1, . . . , d:

ω(i) = w(i)/(e−
(α(i−1))2σ1

2

2 )

= G e−jα(i−1)x01 + n′(i) (3.33)

where n′(i) is a noise term resulting from the in�uen
e of all but the �rst 
ontour. The

signal 
omponents ω(i) form the signal ve
tor

ω = [ω(1), ω(2), . . . , ω(N)]T whi
h 
an be analysed by Fourier transform to provide

the estimate x̂01 of the o�set value:

x̂01 = argmax
x01

(|FT(ω)|) (3.34)

The division pro
esses performed in Eqs. (3.30) and (3.33) are applied d times, that

is, for ea
h 
ontour, to retrieve the re�ned estimates x̂0k, k = 1, . . . , d.

Cir
ular blurred 
ontours: estimation of the radius

At this point the 
enter 
oordinates {lc;mc} are known (see subse
tion 3.4.2). From

Eq. (3.24), we noti
e that the problem of radius estimation is similar to the retrieval of

harmoni
s in several signal pro
essing �elds su
h as radar, sonar, 
ommuni
ation. The

resulting signal appears as a single sinusoid with unitary amplitude and frequen
y:

f = −αr0/2π (3.35)

MFBLP method (Modi�ed Forward-Ba
kward Linear Predi
tion), whi
h was previ-

ously presented in the manus
ript, in subse
tion (3.2.3), is adequate for frequen
y

retrieval from 
oherent signals, in parti
ular signals with unitary amplitude. We adapt

it to the signal ve
tor z

′
(see Eq. (3.24)) to estimate the radius of a single 
ir
le. To

redu
e the 
omputational load of radius estimation, and on 
ondition that still one


ir
le is solely expe
ted, the Fourier transform with adequate frequen
y 
an yield the

radius value.
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3.4.4 Optimization strategy for spread parameter estimation of

the blurred 
ontours

In this subse
tion we propose least-square 
riteria whi
h involve the generated signals

and either the signal model of Eq. (3.25) for linear 
ontours, or the signal model of

Eq. (3.22) for 
ir
ular 
ontours. The proposed optimization strategy should provide

the spread parameter σ for either ea
h of the blurred linear 
ontours or for the blurred


ir
ular 
ontour.

Linear blurred 
ontours

The 
ontour orientations estimated by MUSIC algorithm are used to 
ompute the

steering matrix C(θ) (see Eq. (3.25)). The sour
e ve
tor s depends not only on

the o�set parameters x0k (k = 1, . . . , d), but also on the spread parameters σk (k =
1, . . . , d). Therefore we propose to retrieve the 
omponents of the sour
e ve
tor s,

through the following 
riterion minimization:

ŝ = argmin
s

(||z−Cs||2) (3.36)

where ||.|| represents the norm indu
ed by the usual s
alar produ
t of CN
. It is easy

to show that the density fun
tion of the measurement noise is Gaussian if the noise

pixels are identi
ally distributed over the image [6℄. Therefore, the above least-squares

problem provides the maximum likelihood estimate for the sour
e ve
tor. We remind

that the relationship between the sour
e ve
tor 
omponents and the spread parameter

values is given by (see Eq. (3.20)):

s(k) = f(σk) = G e−jµx0ke−
µ2σk

2

2
(3.37)

We denote by σ = [σ1, . . . , σd]
T
the ve
tor 
ontaining all spread parameter values,

and by f(σ) = [f(σ1), . . . , f(σd)]
T = [s(1), . . . , s(d)]T the sour
e ve
tor. We denote by

σ̂ = [σ̂1, . . . , σ̂d]
T
the ve
tor 
ontaining the estimates of all spread parameter values.

From Eqs. (3.36) and (3.37), we get:

σ̂ = argmin
σ

(||z−Cf(σ)||2) (3.38)

whi
h 
an be expressed as:

σ̂ = argmin
σ

(Jline(σ)) (3.39)

where Jline denotes the 
riterion to be minimized. To solve Eq. (3.38) and minimize


riterion Jline, we adopt a re
urren
e loop to modify re
ursively the ve
tor σ̂. The

series ve
tors are obtained from the relation

σ̂q → f(σ̂q) → Jline(σ̂
q), ∀ q ∈ N (3.40)
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When q tends to in�nity, the 
riterion Jline tends to zero and σ̂q
k = σk, ∀ k = 1, . . . , d.

The 
riterion Jline presented in Eq. (3.39) is a Lips
hitz 
ontinuous fun
tion of the

ve
tor of variables σ and therefore ful�ls the requirements of the DIRECT (DIviding

RECTangles) method [62℄. Therefore, to 
arry out this re
urren
e loop, we 
an adopt

the robust DIRECT optimization method [62℄. DIRECT method is initialized by σ̂0
,

and a resear
h spa
e whi
h is an a

eptable interval for ea
h value. Ve
tor σ̂0
and

the resear
h spa
e are a priori �xed by the user. The main property of DIRECT is

that it is able to obtain the global minimum of a fun
tion. DIRECT normalizes the

resear
h spa
e in a hyper
ube and evaluates the solution whi
h is lo
ated at the 
enter

of this hyper
ube. Then, some solutions are evaluated and the hyper
ube is divided

into smaller 
ubes, supporting the zones where the evaluations are small. When the

required number of iterations q = It is rea
hed, DIRECT provides the estimated ve
tor

of spread parameters σ̂It = [σ1, σ2, . . . , σd].

Extension to a blurred 
ir
ular 
ontour

In the 
ase of a blurred 
ir
ular 
ir
le, we propose the following algorithm: we start

from the signal z = [z(1), z(2), . . . , z(S)]T whose 
omponents z(i) are de�ned in Eq.

(3.22). The value of r0 is known at this point, and 
an be used to obtain the signal


omponents z
′′
(i) de�ned as follows: z

′′
(i) = z(i)/exp(−jα(i−1)r0). Let's then denote

by z

′′

model the signal whose 
omponents are de�ned by z
′′

model(i) = exp(−σ2α2(i−1)2

2
),

and let's denote by z

′′

image the signal whose 
omponents are de�ned by: z
′′

image(i) =
z(i)/exp(−jα(i− 1)r0) and obtained from the signal 
omponents z(i) generated out of

the image. With these notations, the spread parameter σ 
an be estimated as follows:

σ̂ = argmin
σ

(||z′′

image − z

′′

model||2) (3.41)

whi
h 
an be expressed as:

σ̂ = argmin
σ

(Jcircle(σ)) (3.42)

where Jcircle denotes the 
riterion to be minimized. Contrary to the 
ase of linear

blurred 
ontours des
ribed in subse
tion 3.4.4, the global optimization method DI-

RECT [62℄ is not adequate to minimize the 
riterion Jcircle presented in Eq. (3.42).

An advan
ed well-known lo
al minimizer is adapted: the Nelder-Mead Simplex Method

[70℄. It is meant to minimize a s
alar-valued nonlinear fun
tion of n real variables. It is

then adequate to minimize the 
riterion Jcircle(σ), whi
h 
onstitutes a nonlinear fun
-

tion of the parameter σ. Nelder-Mead method involves four s
alar parameters: the


oe�
ients of re�e
tion (ρNM), expansion (χNM ), 
ontra
tion (γNM), and shrinkage

(σNM).

3.4.5 Exempli�
ation of the blurred 
ontour retrieval methods

In the following experiment, we analyse an image in
luding two linear blurred 
on-

tours, with di�erent spread values (see Fig. 3.9). The image has size 400 × 400. The
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enter o�sets of the two blurred 
ontours are x01 = 200 and x02 = 170, and the main

orientation of two 
ontours are θ1 = −18◦ and θ2 = 18◦. The spread values are σ1 = 8
and σ2 = 1.
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Figure 3.9 � Blurred linear 
ontours: (a) pro
essed image with a blurred 
ontour and a one-

pixel wide 
ontour; (b) pseudo spe
trum when MUSIC algorithm is exploited; (
) 
enter 
ontours;

(d) �nal result

The estimated orientations of the blurred 
ontours are θ̂1 = −18◦ and θ̂2 = 18◦.
The o�sets are estimated as x̂01 = 200.5 and x̂02 = 211 pixels. The estimated spread

parameters are σ̂1 = 10.9 and σ̂2 = 2.4. Fig 3.9(b) shows that the 
ontour with low

spread value is hardly dete
ted by MUSIC algorithm. The dominating in�uen
e of the

most blurred 
ontour in the generate signals of Eq. (3.26) also explains the slight bias

(41 pixels) obtained on the o�set of the least blurred 
ontour.

We present a result obtained from an image of size 200 × 200 pixels (see Fig. 3.10),


ontaining a blurred 
ir
le. The experimental 
onditions and expe
ted values for the

blurred 
ir
ular 
ontour are as follows: the 
enter 
oordinates are {lc, mc} = {70, 60};
the radius is r0 = 45 pixels; the spread value is σ = 5. The proposed methods yield

the following estimated parameters out of the generated signals: the estimated 
enter


oordinates are

{

l̂c, {lc, mc}mc

}

= {70, 60}, the estimated radius value is r̂0 = 45.4

pixels, and the estimated spread value is σ̂ = 5.6. As a 
omparative method we 
hose

Chan and Vese levelset algorithm. As expe
ted, this method manages to fo
us on

the blurred 
ontour boundaries, but it does not 
hara
terize the blur, 
ontrary to the

proposed method.
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Figure 3.10 � Blurred 
ir
ular 
ontours: (a) initial image; (b) initialisation 
ir
le; (
) �nal

result; (d) results by Chan and vese method

3.5 Retrieval of distorted 
ontours

3.5.1 Nearly re
tilinear 
ontour retrieval

We keep the same signal generation formalism as for straight line retrieval. The more

general 
ase of distorted 
ontour estimation is proposed. The reviewed method relies

on 
onstant speed signal generation s
heme, and on a re
ursive optimization method.

Initialization of the proposed algorithm

To initialize our re
ursive algorithm, we apply SLIDE algorithm, whi
h provides the

parameters of the straight line that �ts the best the expe
ted distorted 
ontour. In

this se
tion, we 
onsider only the 
ase where the number d of 
ontours is equal to one.

The parameters angle and o�set re
overed by the straight line retrieval method are

employed to build an initialization ve
tor x0, 
ontaining the initialization straight line

pixel positions:

x0 = [x0, x0 − tan(θ), . . . , x0 − (N − 1) tan(θ)]T

Fig. 3.11 presents a distorted 
urve, and an initialization straight line that �ts this

distorted 
urve.
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Figure 3.11 � A model for an image 
ontaining a distorted 
urve

Distorted 
urve: proposed algorithm

We aim at determining the N unknowns x(i), i = 1, . . . , N of the image, forming a

ve
tor xinput, ea
h of them taken into a

ount respe
tively at the ith sensor:

z(i) = exp(−jµx(i)), ∀ i = 1, . . . , N (3.43)

The observation ve
tor is

zinput = [exp(−jµx(1)), . . . , exp(−jµx(N))]T (3.44)

We start from the initialization ve
tor x0, 
hara
terizing a straight line that �ts a

lo
ally re
tilinear portion of the expe
ted 
ontour. The values x(i), i = 1, . . . , N 
an

be expressed as: x(i) = x0 − (i − 1) tan(θ) + ∆ x(i), i = 1, . . . , N where ∆ x(i) is

the pixel shift for row i between a straight line with parameters θ and x0 and the

expe
ted 
ontour. Then, with k indexing the steps of this re
ursive algorithm, we aim

at minimizing

J(xk) = ||zinput − zestimated for xk
||2 (3.45)

where ||.|| represents the CN
norm. For this purpose we use �xed step gradient

method: ∀k ∈ N : xk+1 = xk − λ∇(J(xk)), λ is the step for the des
ent. At

this point, by minimizing 
riterion J (see Eq. (3.45)), we �nd the 
omponents of ve
-

tor x leading to the signal z whi
h is the 
losest to the input signal in the sense of


riterion J . Choosing a value of µ whi
h is small enough (see Eq. (3.1)) avoids any

phase indetermination. A variant of the �xed step gradient method is the variable step

gradient method. It 
onsists in adopting a des
ent step whi
h depends on the iteration

index. Its purpose is to a

elerate the 
onvergen
e of gradient. A more elaborated

optimization method based on DIRECT algorithm [62℄ and spline interpolation [75℄


an be adopted to rea
h the global minimum of 
riterion J of Eq. (3.45). This method

is applied to modify re
ursively signal zestimated for xk
: at ea
h step of the re
ursive

pro
edure ve
tor xk is 
omputed by making an interpolation between some "node"

values that are retrieved by DIRECT. The interest of the 
ombination of DIRECT

with spline interpolation 
omes from the elevated 
omputational load of DIRECT. De-

tails about DIRECT algorithm are available in [62℄. Redu
ing the number of unknown

values retrieved by DIRECT redu
es drasti
ally its 
omputational load. Moreover, in
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the 
onsidered appli
ation, spline interpolation between these node values provides a


ontinuous 
ontour. This prevents the pixels of the result 
ontour from 
onverging

towards noisy pixels. The more interpolation nodes, the more pre
ise the estimation,

but the slower the algorithm.

After nearly linear 
ontours, we fo
us on nearly 
ir
ular 
ontours.

3.5.2 Nearly 
ir
ular 
ontour retrieval

To retrieve the distortions between an expe
ted star-shaped 
ontour and a �tting quar-

ter of 
ir
le, we work su

essively on ea
h quarter of 
ir
le, and retrieve the distortions

between one quarter of the initialization 
ir
le and the part of the expe
ted 
ontour

that is lo
ated in the same quarter of the image. As an example, in Fig. 3.3, The right

bottom quarter of the 
onsidered image is represented in Fig. 3.3(b).

The optimization method that retrieves the shift values between the �tting 
ir
le

and the expe
ted 
ontour is the following:

A 
ontour in the 
onsidered sub-image 
an be des
ribed in a set of polar 
oordinates

by: {ρ(i), θ(i), i = 1, . . . , S}. We aim at estimating the S unknowns ρ(i), i = 1, . . . , S
that 
hara
terize the 
ontour, forming a ve
tor:

ρ = [ρ(1), ρ(2), . . . , ρ(S)]T , (3.46)

The basi
 idea is to 
onsider that ρ 
an be expressed as: ρ = [r + ∆ρ(1), r +
∆ρ(2), . . . , r + ∆ρ(S)]T (see Fig. 3.3), where r is the radius of a 
ir
le that approxi-

mates the expe
ted 
ontour. The parameters ∆ρ(1), . . . ,∆ρ(S) 
an be estimated by a

gradient-type algorithm or DIRECT 
ombined with spline interpolation, as was per-

formed in [77℄. However, these two methods exhibit limitations when the 
onsidered


ontour is highly distorted. The 
omputational load required by gradient is elevated,

and the regularity 
onstraints on spline interpolation prevent from providing to the dis-

tortions their a
tual shape. Hen
e the method proposed in [61℄, whi
h is summarized

in the next subse
tion.

3.5.3 Highly distorted star-shaped 
ontour retrieval

In this subse
tion, we 
onsider star-shaped 
ontours. On the one hand, this is a limiting

model be
ause for one angle value in a polar set of parameters, there must be only one

pixel of the 
ontour. On the other hand, this allows the distortion amplitudes to be as

elevated as possible, as soon as the 
ontour remains in the pro
essed image. The signal

generation method is still based on virtual sensors pla
ed along a 
ir
ular antenna, but

the formula providing the signal 
omponents is slightly di�erent.

Problem formulation

Assume that a 
losed 
ir
ular 
ontour is in an N×N re
orded image Il,m (see Fig. 3.12).

The most simple star-shaped 
ontour is the 
ir
le. A 
ir
le is supposed to have 
enter
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oordinates (lc, mc) and radius r. Note that, for a binary image, Il,m = 1 on the 
ontour
and Il,m = 0 otherwise. The signal 
omponent for a given sensor i is generated by the

pixels in every Di dire
tion as follows:

zi =
∑Ns

l=1

∑Ns

m=1
(l,m)∈Di

Il,m
√
l2 +m2, i = 1, · · · , S

(3.47)

where Ns is the maximum number of rows and 
olumns in the sub-image. The

signal 
omponents form the signal ve
tor z = [z1, z2, . . . , zS]
T
.

Figure 3.12 � A model for an image 
ontaining a highly distorted 
ir
le

The 
onsidered signal generation pro
ess requires the knowledge of the 
enter 
o-

ordinates (lc, mc). We explain in subse
tion 3.3.3 how to estimate these 
enter 
oor-

dinates. When a single one-pixel wide 
ir
ular 
ontour with radius r is present, the

signal 
omponents read:

zi = r, i = 1, . . . , S (3.48)
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When a distorted nearly 
ir
ular 
ontour is 
onsidered, the signal 
omponents read:

zi = r +∆ρ(i), i = 1, . . . , S (3.49)

In the rest of the subse
tion, we denote ∆ρ(i) as xi, i = 1, . . . , Q.

From the signals z = [z1, z2, · · · , zQ]T of Eq. (3.49), we wish to retrieve the radius

value r, and the os
illations xi, i = 1, · · · , Q, in parti
ular from 
ontours presenting

a strong 
on
avity. Without loss of generality, we de�ne r as the mean value of the


omponents zi i = 1, . . . , Q. r is estimated as:

r = z̄ (3.50)

where z̄ is de�ned as: z̄ = 1
S

∑S
i=1 zi. Then, we 
an 
ompute:

xi = zi − r, i = 1, . . . , Q (3.51)

The values xi, i = 1, · · · , Q are exa
tly the edge os
illation values in the 
ase where the

image is not impaired with noise. If the image is impaired with uniformly distributed

noise, the 
omputation of Eq. (3.51) provides signal 
omponents xi, i = 1, . . . , Q whi
h

are impaired by random noise, due to the in�uen
e of random noise pixels on the signal

generation pro
ess. Therefore, we seek for a method whi
h retrieves the os
illations of

possibly strongly 
on
ave 
ontours, and whi
h is robust to noise. For this, we propose

in the following a model for edge os
illations xi, i = 1, · · · , Q. We will further adapt

an advan
ed damped frequen
y retrieval method to 
hara
terize the edge os
illations,

in a

ordan
e with the proposed model.

Edge os
illations modelled as damped sinusoids

For the edge os
illations of a star-shaped 
ontour, the pixel 
oordinates in a polar

representation are supposed to follow a generalized version of the sinusoidal model,

that is, K damped sinusoidal 
omponents, ea
h of whi
h has respe
tive amplitude,

frequen
y and damping fa
tor. So we model the edge os
illations as follows:

xi =
2K
∑

k=1

ake
jφke(−dk+jωk)(i−1) =

2K
∑

k=1

ckw
(i−1)
k , i = 1, . . . , Q (3.52)

where j =
√
−1. In Eq. (3.52), xi represents the os
illation magnitude for

i = 1, . . . , Q, ak is amplitude of the k-th sinusoidal 
omponent, dk its damping fa
tor,

ωk its angular frequen
y, and φk its initial phase. Note that damping fa
tor dk
may be negative. In this 
ase, the amplitude of k-th 
omponent grows with index

i. ck = ake
jφk

is the 
omplex-valued amplitude of k-th 
omponent, and wk = e(−dk+jωk)
.

The observed signal segment x = [x1, x2, . . . , xQ]
T
is entirely 
hara
terized by the

parameters ak, dk, ωk, φk, k = 1, . . . , 2K. The number K of sinusoidal 
omponents
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an be estimated by MDL 
riterion [108℄.

We then have to determine the parameters 
ited above by applying a variant of the

parameter estimatorFirstly, we rearrange the signal segment x in a Hankel matrix with

L×M as follows:

X =











x1 x2 . . . xM

x2 x3 . . . xM+1
.

.

.

.

.

.

.

.

.

xL xL+1 . . . xQ











(3.53)

where L, K, and Q are related by: L ≥ 2K, M ≥ 2K and Q = L+ 2K − 1.

Then, by implementing the Vandermonde De
omposition (VD) for Hankel data

matrix of Eq. (3.53) with rank of 2K, X 
an be written as:

X

VD

= SCT

T ,
where (·)T denotes matrix transposition, C = diag(c1, c2, . . . , c2K),

S =











1 1 . . . 1
w1

1 w1
2 . . . w1

2K
.

.

.

.

.

.

.

.

.

wL−1
1 wL−1

2 . . . wL−1
2K











,

T =











1 1 . . . 1
w1

1 w1
2 . . . w1

2K
.

.

.

.

.

.

.

.

.

wM−1
1 wM−1

2 . . . wM−1
2K











.

A

ording to the shift-invariant property in 
olumn spa
e,

S

L = S

F
Z, (3.54)

where S

L
is a matrix 
ontaining all but the �rst row of S, and S

F
is a matrix 
ontaining

all but the last row of S. Z is a diagonal matrix whose nonzero terms depend on the

expe
ted parameters. By performing SVD, X 
an be de
omposed as:

X

SVD

=
[

U1 U2

]

[

Σ1 0

0 Σ2

] [

V

H
1

V

H
2

]

(3.55)

where (·)H is the Hermitian transposition, Σ1 
ontains the largest 2K singular values

of X and Σ2 the L − 2K singular values of X. The matri
es U1 and V
H
1 
ontain the

�rst 2K left and right singular ve
tors, and their dimension is L × 2K and M × 2K,

respe
tively. Be
ause the rank of X is 2K, all values of Σ2 are null. Therefore, we 
an

express X as:

X = U1Σ1V
H
1 , (3.56)
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and we get the following equation from Eq. (3.54) by orthogonal basis transforma-

tion.

U

F
1 Z

u = U

L
1 (3.57)

where U

F
1 
ontains all but the last row of matrix U1, U

L
1 
ontains all but the �rst

row of matrix U1, and Z
u
is a similarity transform of Z. The damping fa
tors dk and

frequen
ies ωk (k = 1, . . . , 2K) of the exponential sinusoidal model (see Eq. (3.52))

are estimated from the eigenvalues of Z

u
. Then we substitute these estimated dk and

ωk in Eq. (3.52) and 
ompute the least-squares solution of the N linear equations.

Finally, the amplitude ak and phase φk of ea
h 
omponent are determined from the

magnitude and angle of ck in Eq. (3.52). A

ording to these estimated parameters, we


an re
onstru
t the 
ontour with os
illations. The pixel 
oordinates in the 
ontour are

given as:

ρi = r + x̂i, i = 1, · · · , Q
where x̂i is initial estimation of xi, i = 1, · · · , Q. We now a�ord the values of the


ontour distortions, for any angle 
oordinate θi. We also a�ord, r, the radius of the

�tting 
ir
le. With the knowledge of the 
enter, whose estimation is the purpose of

subse
tion 3.3.3, we re
onstru
t perfe
tly the expe
ted 
ontour.

3.5.4 Exempli�
ation of the distorted 
ontour retrieval meth-

ods

We 
onsider two approximately linear distorted 
ontours, with di�erent distortion am-

plitude. These 
ontours are the ones of Figs. 3.13(a) and (b). The pixel of the least and

most distorted 
ontours, and their estimation by the proposed method and by GVF

[111℄ are drawn on Figs. 3.13(a) and (b).

We now 
onsider highly distorted approximately 
ir
ular 
ontours. We denote by

ME
x

the mean error between a
tual and estimated radial 
oordinate os
illations. In

some 
ases, due to the a
quisition 
onditions or the image quantization, the 
ontin-

uous form of 
ontour edge is not perfe
t. It is therefore very interesting to evaluate

the robustness of the proposed method to pixel lo
ation errors. We produ
e test im-

ages by initially 
reating a star-shaped 
ontour (see Fig. 3.14 (a)); and then adding

pixel displa
ement by modifying the a
tual pixel radial 
oordinates with a Gaussian

random variable with mean value 0 and standard deviation 1 (see Fig. 3.14(b)). We

assume there exists equally distributed random noise in the image, with mean value

0 and standard deviation 10−2
. Referring to Figs. 3.14 (d)-(i), when the proposed

method is applied, the mean error is ME
x

= 1.61 when small random displa
e-

ments are added; and ME
x

= 1.86 when larger random displa
ements are added.

When Gradient method is applied, the mean error value is in
reased dramati
ally from

ME
x

= 1.78 to ME
x

= 2.25. When GVF is applied, the mean error value is in
reased

fromME
x

= 1.90 toME
x

= 2.42. So, Figs. 3.14 (d)-(i) show that the proposed method
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Figure 3.13 � (a) Least distorted 
ontour: initialization, results obtained (b) Most distorted


ontour: initialization, results obtained by the proposed method and GVF respe
tively.

is not sensitive to the random pixel displa
ements, 
ontrary to Gradient method and

GVF method. This is due to the fa
t that the proposed method pro
esses the sig-

nal generated from the image as a whole, providing parameters of interest, whereas

Gradient method and GVF are lo
al methods, whi
h may fo
us on random pixels.

This type of 
ontour, though being rigourously star-shaped, makes us think about

the outside borders of hands, 
aptured on video frames. In the next se
tions of this

manus
ript, we will show how this intuition yields a spe
i�
 signature inspired by the

signal generation methods presented above.

3.6 Con
lusion of the 
hapter

This 
hapter presents an overview of an original approa
h of 
ontour dete
tion whi
h

has been proposed during the past years. Array pro
essing signal models and methods

have been adapted to various aspe
ts of 
ontour dete
tion. Originally, this approa
h


onsisted in 
onsidering a 
ontour as a wavefront and the image ba
kground as a

propagation medium [6℄. In this framework, a signal generation s
heme along the rows

of the image yields signal 
omponents. Ea
h row is asso
iated with a virtual sensor, and

the whole set of sensors forms a uniform linear antenna. This approa
h was extended

to 
ir
les, by adapting the shape of the antenna [76℄, and 
hoosing radial dire
tions for

the generation of signal 
omponents.

An extension of these methods, inspired from real-world issues, was proposed there-

after: it 
onsists in 
hara
terizing blurred 
ontours. Blur 
an indeed o

ur be
ause of

de-fo
us, transmission media inhomogeneities, et
. We reminded what are the prin
i-

ples of 
hara
terization of either linear of 
ir
ular blurred 
ontours. An outline of the
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Figure 3.14 � (a) pro
essed image: κ = 2.7 10−3
, with small edge perturbation and noise

(0, 10−2); (b) pro
essed image, with large edge perturbation and noise (0, 10−2); (
) initialization of

the methods for both pro
essed images; (d-f) superposition pro
essed and result obtained on 'a' by the

proposed method (ME
x

= 1.58), Gradient method (ME
x

= 1.78), and GVF method (ME
x

= 1.90);
(g-i) result obtained on 'b' by the proposed method (ME

x

= 1.86), Gradient method (ME
x

= 2.25),
and GVF method (ME

x

= 2.42).

proposed blurred 
ontour estimation methods is as follows:

• �nd out the mean position of the pixels of the 
ontour:

For blurred linear 
ontours:

� 
hoose µ as a 
onstant value, and estimate the orientations θk (k = 1, . . . , d)
through Eq. (3.28);

� 
hoose µ as a variable value µ = α(i− 1), and estimate the o�sets x0k (k =
1, . . . , d) through Eq. (3.32), for ea
h orientation value.

For blurred 
ir
ular 
ontours: 
hoose µ as a variable value µ = α(i − 1), and
estimate the radius r0 by determining the roots of the polynomial fun
tion H ;
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• estimate the spread parameters σk (k = 1, . . . , d) by DIRECT optimizationmethod

(see Eq. (3.39) for linear 
ontours) or Nelder-Mead method (see Eq. (3.42) for


ir
ular 
ontour);

• obtain a re�ned estimation of x0k (k = 1, . . . , d), knowing σk values (linear 
on-

tours, see Eq. (3.34)).

The methods dedi
ated to straight line estimation and 
ir
le retrieval were extended

to distorted linear 
ontours and distorted 
ir
ular 
ontours. For this, a pixel shift

term was introdu
ed in the model whi
h is followed by the signal generated on the

uniform linear antenna or the 
ir
ular antenna. In the 
ase of linear 
ontours, an

optimization method, based either on gradient [21℄ or on the 
ombination of DIRECT

and spline interpolation [76℄. Table 3.1 provides the dire
tions for signal generation,

the parameters whi
h 
hara
terize the initialization 
ontour and the distortions when

either linear or 
ir
ular 
ontours are expe
ted.

Straight Cir
ular

Dire
tion for signal generation row i Di

Initialization parameters θ, x0 r, 
enter

Pixel shift ∆x(i) ∆ρ(i)

Table 3.1 � Similarities between nearly straight and nearly 
ir
ular distorted 
ontour estimation

A summary of the estimation nearly re
tilinear distorted 
ontour is given as follows:

• Signal generation with 
onstant parameter on linear antenna, using Eq. (3.1);

• Estimation of the parameters of the straight lines that �t ea
h distorted 
ontour

(see subse
tion 3.5.1);

• Distortion estimation for a given 
urve, estimation of x, applying gradient algo-

rithm to minimize a least squares 
riterion (see Eq. 3.45).

The optimization method based on gradient or DIRECT 
ombined with spline in-

terpolation yield satisfa
tory results when the distortions are of low amplitude. In the


ase of any star-shape 
ontour, with either low amplitude or high amplitude distortions,

a method proposed in [61℄ is preferable. It models the pixel radial shifts as damped

sinusoids. A method dedi
ated to the estimation of the damp fa
tor, the frequen
y

and the phase shift of multiple sinusoids was adapted in [61℄. It permits to retrieve the


ontour distortions with a 
omputational load whi
h is independent from the distortion

amplitude, 
ontrary to the optimization methods whi
h were proposed previously. The

proposed method for star-shaped 
ontour estimation is summarized as follows:

• Variable speed propagation s
heme upon the proposed 
ir
ular antenna : Esti-

mation of the number of 
ir
les by MDL 
riterion, estimation of the radius of

ea
h 
ir
le �tting any expe
ted 
ontour (see Eqs. (3.9) and (3.10)) or the axial

parameters of the ellipse;
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• Estimation of the radial distortions, in polar 
oordinate system, between any ex-

pe
ted 
ontour and the 
ir
le or ellipse that �ts this 
ontour. In the 
ase of low

amplitude distortions, either the gradient method or the 
ombination of DIRECT

and spline interpolation may be used to minimize a least-squares 
riterion. In

the 
ase of star-shape 
ontours with possibly large distortions, a damped sinu-

soid 
hara
terization method is adapted to the signals generated on the 
ir
ular

antenna.

Now, the methods presented in this 
hapter 
ope with either linear, or star-shape


ontours. The results presented above while exemplifying the methods for strongly dis-

torted star-shape 
ontours lead to an intuition: this kind of methods 
ould be adapted

to hand 
ontour 
hara
terization. However, we will show further in this manus
ript

that, although this intuition is justi�ed, a 
ompletely new signal generation method is

ne
essary to 
hara
terize hand 
ontours, whi
h are most often non star-shape. This is

the purpose of a next 
hapter of this manus
ript.



CHAPTER

4 Novel signature for hand


hara
terization

4.1 Introdu
tion of the 
hapter

H
AND 
hara
terization appears to be a ne
essary and important step in the hand

re
ognition pro
edure. Several methods have proven su

essful and have given

promising results but they are applied on a redu
ed base of postures. Thinking in this

dire
tion is more essential than ever be
ause existing des
riptors based for instan
e on

moments exhibit drawba
ks.

From the 
omments provided in se
tion 1.3, it appears that a new 
hara
terization

method is now required. It must ensure maximum dis
rimination between the postures

that are very 
lose, it must also ensure the properties of invarian
e su
h as rotation,

translation and the s
ale fa
tor. Finally it must guarantee the 
onsisten
y between the

re
onstru
ted image (with the ve
tor or matrix 
hara
terization) and the initial image.

With the experien
e of the GSM team in the �eld of antenna treatment and the

transfer of array pro
essing to image pro
essing using the tools of signal pro
essing (see

se
tion 3), we managed to �nd a new method of 
hara
terization, but the questions

that arise are as follows:

how 
ould antenna tools pro
essing be adapted to the generation of a dis
riminative

hand signature? how does this method guaranteed the invarian
e properties? And

�nally, what are the required prepro
essings whi
h permit to respe
t the 
onditions of

use of this novel signature?

4.2 Signature generation

A planar obje
t shape 
an be 
hara
terized through two-dimensional moment invari-

ants, obtained for instan
e with Hu [53℄, Zernike [28, 66℄, or Legendre [40℄ moments.

One-dimensional moment invariants 
an also be used as signatures to 
hara
terize


ontours, for instan
e Fourier des
riptors [30, 88℄, whi
h are obtained by Fourier

transform of the ar
length parametrization, in 
omplex 
oordinates, of a 
losed
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ontour. The image s
an in [98℄ provides a 
ontour signature as a matrix involving

the 
ontour polar 
oordinates.

An equivalent des
riptor 
alled shape 
ontext des
riptor is presented in [44℄ as a


ompa
t human pose representation. The pro
essed image is divided into di�erent

ranges of radius and angle values. Ea
h range 
ouple 
ompounds a bin. Counting

the number of pixels in ea
h bin yields a 2-D histogram. The main drawba
k of

su
h a des
riptor is that it does not provide a 1-pixel pre
ision: it is impossible to

distinguish between the pixels of a given bin, so details whi
h are smaller than the

bins are skipped. And, the more a

urate the des
ription, the smaller the regions, but

the higher the 
omputational load and the storage pla
e. On the 
ontrary, we propose

a 
ontour signature whi
h o�ers a resolution of one pixel.

The proposed novel s
an is inspired from [98℄ but also from [61, 77℄. In [77℄ and

[61℄, an image s
an is proposed to 
hara
terize star-shaped 
ontours. In a system of

polar 
oordinates with adequately 
hosen pole, a 
ontour is star-shaped if the radial


oordinates (ρ) of its pixels are fun
tion of their angular 
oordinates (θ): ρ = f(θ). In
the general 
ase, hand 
ontours are not star-shaped: it is impossible to �nd a pole for

whi
h the relation ρ = f(θ) holds for all 
ontour pixels. That is why we seek for a


hara
terization method whi
h handles non-star-shaped 
ontours.

The proposed method for 
ontour 
hara
terization splits the image into several

rings 
entered on a referen
e point. The requirements on the lo
ation of this referen
e

point are low, 
ontrary to the 
ondition imposed by the method in [61℄. With

this 
hara
terization method, we aim at distinguishing very similar postures with a


omputational load whi
h is lower than what the generally used Fourier des
riptors

would require.

The image Ic, denoted by I in the following for 
onvenien
e, is supposed to have size

N ×N , and its pixels are referred to, starting from the top left 
orner of the image, as

Il,m (see Fig. 4.1.a). The 1-valued pixels 
ompound the expe
ted 
ontour. The 
ontour

pixels are lo
ated in a system of polar 
oordinates with pole {lc, mc} (see Fig. 4.1.a).

Contrary to the methods proposed in [61℄, where the 
enter must be 
hosen in su
h

a way that the 
ontour is star-shaped, the 
omputation of the 
enter 
oordinates is not

essential. For instan
e, this pole 
an be the 
enter of mass obtained in the previous

se
tion. What we 
all signature in this thesis is a set of data whi
h 
hara
terizes the


orresponding 
ontour. The novel signature that we propose in this thesis is based

on the generation of signals out of an image. As in [61℄, a 
ir
ular array of sensors is

asso
iated with the image. The sensor array is supposed to be pla
ed along a 
ir
le


entered on the pole {lc, mc}. The number of sensors is denoted by Q and one sensor


orresponds to one dire
tion for signal generation Di , whi
h makes an angle θi with
the verti
al axis. See for instan
e the ith and the Qth

sensors in Fig. 4.1.b. The other

sensors are not represented for sake of 
larity.
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(a) (b)

Figure 4.1 � Image and edge model (a); signal generation pro
ess (b).

The method proposed in [61℄ is valid only for 
ontours exhibiting at most one

pixel for one dire
tion Di . We wish to over
ome this limitation and 
hara
terize

non star-shaped 
ontours, be
ause the hand 
ontours 
onsidered in this thesis are

mostly non star-shaped. To separate the in�uen
e of ea
h pixel lo
ated along a

given dire
tion Di , we no longer generate one 1-D signal, but a number P of 1-D

signals on the antenna. Ea
h signal 
orresponds to one 'ring' represented on Fig. 4.1.b.

We assume that, for ea
h dire
tion Di , there is only one pixel in ea
h of the P
intervals. P di�ers from one dire
tion Di to another. Its maximum theoreti
al value

is, for instan
e,

N√
2
, if lc = N/2 and mc = N/2. In these 
onditions also, the value

of Q should not ex
eed

√
2πN : it is su�
ient to take into a

ount all pixels of a

given interval p. So, we generate P signal ve
tors for ea
h dire
tion Di . For the pth

interval (p = 1, . . . , P ) and the dire
tion Di (i = 1, . . . , Q), the signal 
omponent zp,i
is 
omputed as follows:

zp,i = Ilp,i,mp,i

√

(lp,i − lc)
2 + (mp,i −mc)

2
(4.1)

The 
omponents zp,i (p = 1, . . . , P , i = 1, . . . , Q) 
an be grouped into a matrix Z

of size P ×Q:

Z =









z1,1 z1,2 · · z1,Q
z2,1 · · · ·
· · · · ·

zP,1 · · · zP,Q









(4.2)
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where several zp,i = 0

Z =













0 z1,2 · 0 z1,Q
z2,1 · · 0 0
· · · · ·
0 0 · · 0

zP,1 0 · · zP,Q













(4.3)

All 
olumns of Z should have the same number of rows, so for the dire
tions Di

whi
h 
ross less than P intervals, 0-valued 
omponents are set in Z for the 
orrespond-

ing indi
es i. If the width of the intervals is 
hosen su
h that there is at most one

pixel per dire
tion Di and per interval, this matrix permits to re
onstru
t exa
tly the


ontour: it 
ontains the radial 
oordinates of the 
ontour in the system of pole {lc, mc}.

However the purpose of the signature is not obligatorily to re
onstru
t exa
tly the


ontour: it should 
hara
terize a 
ontour so that all postures 
an be distinguished.

Also, the signature should be invariant to rotation. To ensure this, the 
omponents zp,i
of a given interval p are sorted. As a 
onsequen
e, all non-zero values of the pth row

of Z, issued by 
ontour points, are turned as the last 
omponents of the pth row. This

method di�ers from the method proposed in [15℄, where the images were straightened

up through several rotations and the maximization of the hand Feret's diameter in

the horizontal dire
tion. This pro
ess was mu
h more time 
onsuming.

Before getting the image I whi
h is fed to the method of 
hara
terization, we apply

some adequate prepro
essings.

From the initial pro
essed image, we sele
t the smallest subimage 
ontaining the

expe
ted 
ontour. This subimage is 
alled "en
losing box". The en
losing box is

obtained in the following way: the image 
ontent is proje
ted onto the left and the

bottom sides (it 
ould be also the right and the top sides). We get two signals,

zleft and zbottom, from this proje
tion: Their 
omponents are obtained as follows:

zleftl =
∑N

m=1Il,m l = 1, · · · , N and zbottomm =
∑N

l=1Il,m m = 1, · · · , N . For ea
h

signal, a non-zero se
tion indi
ates the presen
e of the expe
ted feature. The l and
m indi
es of the non-zeros se
tions yield a box en
losing the 
ontour. Extra
ting this

box redu
es the 
omputational load of the signature generation.

Eventually, through the following remarks (•) we 
an assess that the rows of matrix

Z 
ompose a 
omplete set of invariant features:

• They des
ribe entirely the hand 
ontour: the rows of matrix Z 
ompose a


omplete set of invariant features when only 
ouple (p, i) 
orrespond to only one

pixel.

Fig. 4.2 illustrates this by showing a segmented hand posture (see Fig. 4.2(a)),
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(a) (b)

Figure 4.2 � Segmented 
ontour (a); 
ontour re
onstru
ted from the signature Z (b).

and the 
ontour whi
h is re
onstru
ted out of its signature Z (see Fig. 4.2(b)).

• They are invariant to translation: the box whi
h en
loses the 
ontour is blindly

estimated, whatever the hand position in the initial image.

• They are invariant to s
aling: whatever the size of the subimage (small number

of pixels if the 
amera is far from the hand, large number of pixels if the 
amera

is near to the hand), the number of intervals for the radial 
oordinate values P is

always the same. Also, the number of dire
tions for signal generation is always

the same. As a 
onsequen
e, the size of matrix Z will be 
onstant, whether the

user's hand is near to or far from the 
amera. This makes the method invariant

to s
aling. Hen
e, the signature depends on the shape of the hand, not on its size.

• They are invariant to rotation: whatever the initial orientation of the hand,

straightening up the hand 
ontour makes the proposed method invariant to

rotation.

These invarian
e properties permit to use the proposed 
ontour signature (matrix

Z) as for hand posture 
lassi�
ation purpose.

4.2.1 Dimensionality redu
tion and Bayesian distan
e 
ompu-

tation

Let's 
onsider H 
lasses of hand postures. For the purpose of hand posture 
lassi-

�
ation, Eu
lidean and Bayesian distan
es are used in [15℄. We will 
ompare the
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results obtained with Eu
lidean and Bayesian distan
es. We ve
torize any matrix

Z 
hara
terizing a posture into a P.Q ve
tor x. For ea
h 
lass h, a subset of hand

photographs is available. The H subsets 
ompose the learning set. This set was


reated by an expert who knows exa
tly what position his �ngers should have to

�t ea
h posture in Fig. 2.6. Let Xh be the matrix whose 
olumns are the ve
tors

xnh
, nh = 1, . . . ,Mh obtained from the images belonging to 
lass h. It is obvious from

Fig. 4.1.b that, the higher P and Q, the more details we keep in the signature Z, and

the more a

urate the hand posture 
lassi�
ation method involving this signature.

However, for large values of P and Q, Xh exhibits a large number of rows, and it

is a sparse matrix. The prin
iples of posture 
lassi�
ation are as follows: a test set is


reated from persons who are not the expert. We aim at asso
iating a label with any

image 
hosen from the test set. This label is one of the 11 postures presented in se
tion

2.3. To improve the re
ognition rate with respe
t to the work presented in [15℄, we

propose in the following to redu
e the number of 
andidates for a posture and, in sub-

se
tion 4.2.1, to redu
e the dimensionality of matrixXh obtained from the learning set.

For a 
lassi�
ation purpose, two main distan
es may be 
hosen: the Eu
lidean

distan
e and the Bayesian (Mahalanobis) distan
e. Let xc
nh
, nh = 1, . . . ,Mh denote

the 
olumns ofXc
h. The mean invariant ve
tor is 
omputed as µh = 1

Mh

∑Mh

nh=1 x
c
nh
, and

the 
ovarian
e matrix is 
omputed as Λh = 1
Mh

∑Mh

nh=1(x
c
nh

−µh)(x
c
nh

−µh)
T
, for ea
h


lass h = 1, . . . , H . Even if there are small variations from one posture provided by the

expert to another, these variations are smoothed through the 
omputation of the mean

invariant ve
tor µh. Any image 
oming from the test set and 
hara
terized by ve
tor x

is 
lassi�ed by minimizing the Mahalanobis distan
e applied to the 
ompressed ve
tor

UT
hx:

Dm = (UT
hx− µh)

TΛ−1
h (UT

hx− µh) (4.4)

Computing the Bayesian distan
e involves, as shown in Eq. (4.4), the inversion of the


ovarian
e matrix Λh. This is not the 
ase for the Eu
lidean distan
e whi
h is then

easier to implement than the Bayesian distan
e, but the Bayesian distan
e usually

provides better 
lassi�
ation results, whi
h has been veri�ed in the frame of hand

posture re
ognition in [34℄.

Consequently, we propose to use the Bayesian distan
e. To enable the inversion of

matrix Λh, and thereby the 
omputation of this distan
e, Λh should not exhibit a too

large dimension. That is why we perform dimensionality redu
tion of the data, with

prin
ipal 
omponent analysis (PCA).

Let K (K < P.Q) be the number of dominant singular values in Xh. Let Uh be

the matrix whose 
olumns are the K singular ve
tors asso
iated with the K largest

singular values of Xh. Ea
h singular ve
tor 
orresponds to a mode of variation of the


onsidered hand posture of 
lass h, and its 
orresponding eigenvalue is related to the

varian
e spe
i�ed by the eigenve
tor.
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In [81℄, su
h a data 
ompression is also performed on human motion des
riptors.

In [81℄, ea
h singular ve
tor re�e
ts a natural mode of variation of human gait. In our


ase ea
h singular ve
tor re�e
ts a natural mode of variation of presenting the hand

in the desired posture in front of the 
amera. The 
ompressed version of the data is

obtained by: Xc
h = UT

hXh, where
T
denotes transpose. With this 
ompressed version

of the data, we obtain a lower-dimensional representation of referen
e hand postures

whi
h is more suitable to des
ribe any test posture: in [81℄, ea
h dimension on the

PCA spa
e des
ribes a natural mode of variation of human motion, in the 
ase of

hand posture, ea
h dimension des
ribes a natural mode of variation of how the user

presents its hand in front of the 
amera.

Dimensionality redu
tion permits to redu
e the 
omputational load dedi
ated to

matrix inversion in Eq. (4.4): matrix Λh was 
omputed from the 
ompressed data and

has low K × K dimensionality. This also prevents from inverting an ill-
onditioned

matrix. For sake of 
omparaison, the proposed signature 
an be also exploited with

Eu
lidian distan
e, 
omputed as follows: ||UT
hx − µh||, where ||.|| denotes Frobenius

norm.

4.3 Pre-sele
tion of best posture 
andidates

Through a 
areful look at the di
tionary of posture (see Fig. 2.6), we 
an distinguish

two large 
ategories of postures. To 
hara
terize these 
ategories, we introdu
e a

isometri
 rate, denoted by S, whi
h involves the geometri
 hand 
riterion 
omputed

from If and the length of the hand 
ontour, 
omputed from Ic. S is the hand 
ontour

length divided by the hand surfa
e. In pra
ti
e, we 
ompute the isometri
 rate as

S = hand′s perimeter2

hand′s area ×4×π
. Postures 2, 3, 7, 8, 9 and 11 exhibit a high spheri
ity 
riterion,

and postures 1, 4, 5, 6, and 10 a low isometri
 rate.

Our purpose is then to pre-sele
t one of these two large 
ategories of postures, and

to look for the referen
e posture whi
h is the 
losest to the test image posture inside

of this 
ategory. For this, we 
ompute the distan
e Dm of Eq. (4.4) with respe
t to

a low number of referen
e postures, whi
h are pre-sele
ted from the di
tionary by


onsidering the isometri
 rate.

The 
riterion S is 
omputed for all images of ea
h 
lass in the learning set. Then

we 
hoose the following 
riterion: |St − Sh| where St is the isometri
 rate for the test

image and Sh the mean isometri
 rate for all images of 
lass h in the learning set. We

sele
t the 6 
lasses (about half of the total number of referen
e postures) whi
h yield

the minimum 
riterion value. They 
ompose a new di
tionary with a redu
ed number

of 
andidates, and distan
e Dm of Eq. (4.4) is 
omputed only six times to perform


lassi�
ation.



72 CHAPTER 4. NOVEL SIGNATURE FOR HAND CHARACTERIZATION

4.4 Con
lusion of the 
hapter

We propose a novel signature for the 
hara
terization of hand postures. This signature

is made of several 1-D signals. Ea
h signal 
ontains radial 
oordinates of the pixels in

an image region whi
h has the shape of a ring. This signature permits to re
onstru
t

the 
orresponding 
ontour with a pre
ision of one pixel.

By applying some prepro
essing, we ensure that this signature forms a 
omplete set

of features whi
h are invariant to translation, s
aling and rotation. This makes this

signature �t for hand posture re
ognition, we fa
ilitate the 
lassi�
ation step with

dimensionality redu
tion by PCA be
ause we redu
e the size of 
hara
teristi
 matrix

to K x K.

The new matrix 
an be used to improve 
lassi�
ation and learning steps. In the learning

step we should represent all user(adult, 
hild,male, female, left hand, right hand and


olor hand) to 
al
ulate the referent matrix whi
h 
an be used in 
lassi�
ation.



CHAPTER

5 Opti
al Flow

5.1 Introdu
tion of the 
hapter

W
HILE dete
ting hand 
ontours, the diversity of users is one of the 
onstraints to

solve. Indeed, the dete
tion and re
ognition must be 
arried out for all hands

(white or 
olored, with or without gloves), and we found that most of the methods

used for the dete
tion step are based on the skin 
olor. In [91℄ for instan
e, the authors

use green-
olored gloves to dete
t easily a moving hand. In [99℄, Soriano et al. propose

a dynami
 skin 
olor model, for a segmentation purpose. Their method 
opes with


hanges in illumination. However, their method still relies on relevant 
olor properties

of the skin. No result is presented 
on
erning dark skins or hands wearing gloves. In

[80℄, the authors modelled their obje
t 
olors as a Gaussian mixture and re
ursively

adapted the mean, 
ovarian
e and prior probabilities of ea
h Gaussian 
luster. In [112℄,

a set of relevant grey level values are sele
ted from 
hromati
 histograms to segment

fa
es. To summarize these approa
hes, either the user a�ords a prior knowledge of the

s
ene and the target or he assumes that the hand is white.

On the 
ontrary, we aim at dete
ting the 
ontour of a hand, whatever its 
olor.

Thinking in this dire
tion leads us to look for other methods that allow us to solve

this problem. A promising method for the dete
tion of hands, whatever their 
olor,


onsists in adapting opti
al �ow (as used in Fig. 5.1). It appears to us as a reliable

te
hnique espe
ially be
ause we 
ombine stati
 and dynami
 hand re
ognition.

Therefore, questions arise while implementing and using this method. They are 
on-

sidered su

essively in se
tions 5.2, 5.4, 5.3 of this 
hapter: what are the 
onditions

and assumptions required to use the opti
al �ow algorithm? How to adapt the opti
al

�ow for the re
ognition of hand postures ? What is the e�
a
y of this te
hnique for

the determination of hand movements in any s
ene ?

5.2 De�nition and 
onditions of use

Opti
al �ow is the pattern of motion, as it appears to a 
amera, of obje
ts, surfa
es,

and edges in a visual s
ene 
aused by the relative motion between an observer (an

eye or a 
amera) and the s
ene. The 
on
ept of opti
al �ow was introdu
ed by the
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Figure 5.1 � Example of motion dete
tion with opti
al �ow.

Ameri
an psy
hologist James J. Gibson in the 1940s to des
ribe the visual stimulus

provided to animals moving through the world. As already mentioned, opti
al �ow

may often want to assess motion between two frames (or a sequen
e of frames) without

any other prior knowledge about the 
ontent of those frames. Typi
ally, the motion

itself is what indi
ates that something interesting is going on.

Figure 5.2 � Opti
al Flow

Movement, 
hara
terized by opti
al �ow, has been exploited by roboti
ists, who use

opti
al �ow te
hniques (in
luding motion dete
tion, luminan
e, motion en
oding, and

stereo disparity measurement) for image pro
essing and 
ontrol of navigation.

As already mentioned, opti
al �ow may often want to assess motion between two frames

(or a sequen
e of frames) without any other prior knowledge about the 
ontent of those

frames. A result that 
an be obtained by opti
al �ow is illustrated in Figure 5.2.

The prin
iples of opti
al �ow are as follows: if 
olor images are 
onsidered, a


onversion to one 
hannel is done. For instan
e, we 
an sele
t the Cr 
omponent of the

Y CbCr representation, but this is valid only when white hand are 
onsidred. We also


an retain only the luminan
e 
omponent from the HSL (Hue, Saturation, Lightness)

representation of the RGB image. We 
an asso
iate some kind of velo
ity with ea
h

pixel in the frame or, equivalently, some displa
ement that represents the distan
e a

pixel has moved between the previous frame and the 
urrent frame. It asso
iates a

velo
ity with every pixel in an image. There exist two approa
hes to 
al
ulate the
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opti
al �ow.

The �rst approa
h is the dense te
hnique whi
h tries to mat
h large windows around

ea
h pixel of an image to another, as the algorithm of Horn and S
hunk [50℄. This al-

gorithm was developed in 1981; it puts aside the hypothesis of 
onstan
y of brightness

by minimizing the regularized Lapla
ian of opti
al �ow velo
ity 
omponents. This

turns as a valid one the hypothesis of smoothness 
onstraint on the velo
ities. Also,

there exists a whole 
lass of similar algorithms in whi
h the image is divided into

small regions 
alled blo
ks [11, 55℄.

These blo
ks are generally square and may overlap. These algorithms attempt to

divide the two previous and 
urrent images in blo
ks and then 
al
ulate the movement

of these blo
ks. Su
h algorithms are of great interest in many video 
ompression

te
hniques and in 
omputer vision. Bla
k and Anadan have 
reated dense opti
al

�ow te
hniques [12, 13℄ that are often used in movie produ
tion, where, for the sake

of visual quality, the movie studio is willing to study in detail the �ow information,

in pra
ti
e the movement of the a
tors or obje
ts. The blo
k-mat
hing algorithms

operate on aggregates of pixels, not on individual pixels.

If the overlap between blo
ks is very important, the returned images of "�ow" are

usually of a lower resolution than the input images. Algorithms of this approa
h have

superior quality but are slow and 
annot be applied in real time and 
annot resolve

the 
ase of large displa
ements. In pra
ti
e, 
al
ulating dense opti
al �ow is not easy.

Let's 
onsider the motion of a white sheet of paper. Many of the white pixels in the

previous frame will simply remain white in the next. Only the edges may 
hange, and

even then only those orthogonal to the dire
tion of motion. Hen
e the idea of 
reating

a sparse opti
al �ow, developed originally in [73℄.

The se
ond approa
h is a popular sparse tra
king te
hnique, Lu
as-Kanade (LK)

opti
al �ow. This version of opti
al �ow relies on some means of spe
ifying beforehand

the subset of points that are to be tra
ked. If these points have 
ertain desirable

properties, su
h as the "
orners", then the tra
king will be relatively robust and

reliable. The LK algorithm [73℄, as originally proposed in 1981, was an attempt to

produ
e dense results. However, be
ause the method is easily applied to a subset of

the points in the input image, it has be
ome an important sparse te
hnique. The LK

algorithm 
an be applied in a sparse 
ontext be
ause it relies only on lo
al information

that is derived from some small windows surrounding ea
h of the points of interest.

This 
ontrasts with the intrinsi
ally global nature of the Horn and S
hun
k algorithm.

The basi
 idea of the Lu
as-Kanade algorithm is based on three assumptions (see

Fig. 5.3):

• Brightness 
onstan
y : A pixel from the image of an obje
t in the s
ene does not


hange in appearan
e as it (possibly) moves from frame to frame. For grays
ale images

(LK 
an also be done in 
olor), this means we assume that the grey level of a pixel

does not 
hange as it is tra
ked from frame to frame.
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• Temporal persisten
e or �small movements�: The image motion of a surfa
e pat
h


hanges slowly in time. In pra
ti
e, this means the temporal in
rements are fast enough,

relative to the s
ale of motion in the video sequen
e, to prevent the obje
t from moving

mu
h from frame to frame.

• Spatial 
oheren
e: Neighboring points in a s
ene belong to the same surfa
e, have

similar motion, and proje
t to nearby points on the image plane.

Figure 5.3 � Assumptions behind Lu
as-Kanade opti
al �ow

As mentioned above, the disadvantage of using small lo
al windows in Lu
as-Kanade

appro
h is that large motions 
an move points outside of the lo
al window and thus

be
ome impossible for the algorithm to �nd. Indeed large and non-
oherent motions

are often observed in pra
ti
e. The key idea in the Lu
as-Kanade approa
h is to avoid

this problem, by tra
king �rst over larger spatial s
ales, by using an image pyramid

and then by re�ning the initial motion velo
ity assumptions by working its way down

the levels of the image pyramid until it arrives at the raw image pixels.

Hen
e, this problem led to the development of the "pyramidal" LK algorithm, whi
h

tra
ks an obje
t starting from the highest level of an image pyramid (lower detail

resolution) and working down to lower levels (�ner detail resolution). Thus we minimize

the violations of our motion assumptions and we 
an tra
k faster and longer motions.

This more elaborated fun
tion is known as "pyramidal Lu
as-Kanade" opti
al �ow

and is illustrated in Figure 5.4. Hen
e, tra
king along the resolution levels as downhill

along pyramids allows large motions to be 
hara
terized by lo
al windows.

In the following se
tion, we detail the initial purpose of opti
al �ow, whi
h is orig-

inally meant to 
hara
terize movements.

5.3 Opti
al Flow: an algorithm originally dedi
ate to

traje
tory dete
tion

The �rst and most 
ommon appli
ation of opti
al �ow is to tra
k a target between

two frames. Motion estimation and video 
ompression have been the most 
ommon
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Figure 5.4 � Pyramid Lu
as-Kanade opti
al �ow

appli
ation �elds of opti
al �ow. A dire
t appli
ation of opti
al �ow 
onsists in tra
king

a hand in a video sequen
e. Starting from the moving points, as represented in Fig.

5.1, whi
h are essentially part of the hand 
ontours, but may also be outliers, we aim

at �nding some representative points of the hand. For this, we �rst remove outliers:

we suppress the points whi
h 
ontain at least one extreme 
oordinate: these outliers

are the nearest to the image 
orners. The 
enter of mass of the remaining points is


onsidered as the most representative to lo
ate the hand.

Therefore, studying the overall traje
tory of the hand is equivalent to studying the

traje
tory of this representative point. However, we noti
e that this method is not

su�
ient to 
hara
terize the hand shape, and thereby the hand posture itself. The

moving points provided by opti
al �ow 
ompose part of the hand 
ontour points. A

method must be found to get a 
ontinuous hand 
ontour. We address this issue in

se
tion 5.4.

5.4 Opti
al �ow adapted as a 
ontour dete
tion

method

A promising method for the dete
tion of hands, whatever their 
olor, 
onsists in adapt-

ing opti
al �ow. Indeed, as it is based on movement properties and not on intrinsi
 grey

level values, opti
al �ow may 
hara
terize indistin
tly white-skin hands and 
olored-

skin hands. Moreover, opti
al �ow attra
ts the interest of the image pro
essing 
om-

munity, showing its adaptability. It has been re
ently improved to 
ope with dense

opti
al �ow �elds by integrating ri
h des
riptors [24℄, and to fa
e dis
ontinuities on

motion boundaries [47℄. We wish to adapt this method to segmentation purposes. Our

idea is to take pro�t from the information provided by opti
al �ow to isolate a target

whi
h is moving in the s
ene, namely the hand.

There are many kinds of lo
al features that one 
an tra
k. If we pi
k a point on a

large blank wall then it won't be easy to �nd that same point in the next frame of a
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Figure 5.5 � Sele
tion of good features without prior knowledge: 'Lena' image under study

video. If all points on the wall are identi
al or even very similar, then we won't have

mu
h lu
k tra
king that point in subsequent frames. On the other hand, if we 
hoose

a point that is unique then we have a good 
han
e of �nding that point again. In

pra
ti
e, the point or feature we sele
t should be unique, or nearly unique, and should

be parameterizable in su
h a way that it 
an be 
ompared to other points in another

image. Or if we 
onsider that the hand 
olor and the ba
kground 
olor are di�erent,

we are 
ertain that the hand 
ontour by itself represents good points to tra
k, and

this feature limits properly the region of the hand. This permits to highlight the main


onstraint on the appli
ability of opti
al �ow: it 
an be used as dete
tion method if

the ba
kground 
olor is di�erent from that of the hand.

In our a
quisition 
onditions, a hand may 
ross the whole a
quired s
ene rather

rapidly, hen
e, we adapt a pyramidal version [18℄ of Lu
as-Kanade opti
al �ow. This

pyramidal version in
ludes a multi-s
ale strategy, whi
h permits to handle larger

displa
ements, while keeping the redu
ed 
omputational load of Lu
as-Kanade sparse

method [73℄.

If strong derivatives are observed in two orthogonal dire
tions then we 
an hope

that this point is more likely to be unique. For this reason, many tra
kable features are


alled 
orners. Intuitively, 
orners are the points that 
ontain enough information to be

pi
ked out from one frame to the next. The most 
ommonly used de�nition of a 
orner

was provided by Harris [48℄. This de�nition relies on the matrix of the se
ond-order
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Figure 5.6 � Sele
tion of good features without prior knowledge: dete
ted 
orners

derivatives of the image intensities. Corners, a

ording to Harris de�nition, are pla
es

in the image where the auto
orrelation matrix of the se
ond derivatives has two large

eigenvalues. In essen
e this means that there are texture properties (or edges) going in

at least two separate dire
tions 
entered around su
h a point, just as real 
orners have

at least two edges meeting in a point.

It was later found by Shi and Tomasi [97℄ that good 
orners were sele
ted as long

as the smaller of the two eigenvalues was greater than a minimum threshold. See for

instan
e the 
orners that were obtained, in Fig. 5.6, from the 'Lena' pi
ture (Fig. 5.5).

If we have a prior knowledge on the lo
ation of the expe
ted 
orners, we 
an delim-

itate a sear
h box to an area de�ned beforehand, 
alled a mask, whi
h 
an limit the

region of good features to tra
k. This is illustrated in Fig. 5.8, whi
h was obtained

with the mask presented in Fig. 5.7.

In the 
ontext of hand posture 
hara
terization, the region of interest 
an be sele
ted

through least square ellipse �tting. The implementation of this algorithm will be

detailed further in the manus
ript.
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Figure 5.7 � Sele
tion of good features with prior knowledge: mask sele
ting the region of

interest

5.5 Con
lusion of the 
hapter

In this 
hapter we present a method used to tra
k movements in a video sequen
e or

between two su

essive frames, and we try to adapt it to hand dete
tion. Respe
ting

the various 
onstraints in this work, this adaptation exhibits huge advantages.

In se
tion 5.1, we remind the main goal of opti
al �ow, and the problemati
s that

arise while applying this method. In se
tion 5.2, we present opti
al �ow in a histori
al


ontext. We present the di�erent opti
al �ow te
hniques and their 
onditions of use,

insisting on the version from Lu
as-Kanade [73℄, whi
h is the one that we have 
hosen

for our hand dete
tion appli
ation. In Se
tion 5.3 we state the essential role of opti
al

�ow for tra
king a moving obje
t. We explain brie�y how it 
an be adapted to the

lo
alization of the hand. Opti
al �ow thereby 
hara
terizes dynami
 gestures in a video

sequen
e. In se
tion 5.4, we dis
uss a novel way to use opti
al �ow, as we adapt it to

the dete
tion of hand 
ontours. Opti
al �ow thereby 
hara
terizes stati
 gestures, also


alled postures, in a series of frames extra
ted from a video sequen
e.
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Figure 5.8 � Sele
tion of good features with mask: resulting dete
ted 
orners, appearing only

in the region sele
ted by the mask





CHAPTER

6 Overall algorithm, results

and dis
ussion

6.1 Introdu
tion of the 
hapter

I
N this 
hapter we propose the hole hand posture re
ognition method, whi
h over-


omes the main drawba
ks of existing methods [19, 53, 115℄: our method should

be valid whatever the hand 
olor; for this, we adapt opti
al �ow, whi
h is originally

meant to dete
t moving obje
ts, to improve hand dete
tion. Also, we wish to improve

re
ognition rate, espe
ially for very similar postures, while keeping the 
omputational

load and the memory requirements as low as possible; for this we have proposed a novel

approa
h for hand posture 
hara
terization in 4.

Our overall approa
h is based on the opti
al �ow as a dete
tor, and signature gen-

eration as 
hara
terization, 
ombined with the redu
tion of matrix 
hara
teristi
 by

PCA, but also to the redu
tion of di
tionary of gestures with the geometri
 
riterion

(isometri
 rate).

To validate this approa
h a 
omparison with other existing approa
hes in the litera-

ture is needed, but the questions that arise, what are the di�erent prepro
essing used

to improve our approa
h? how is it organized this algorithm? is that we have good

re
ognition rate 
ompared to other methods? and eventually the 
onstraints imposed

by the industrial 
ontext are resolved?

6.2 Prepro
essing and proposed algorithm

We pro
ess images of size 320×240 with a 2-
ore pro
essor �3.2 GHz, using Matlab

r
.

This result se
tion falls into two subse
tions: we �rst present the results of hand


ontour segmentation with opti
al �ow; and se
ondly we present the results of hand

posture re
ognition obtained with Bayesian distan
e from the images 
ontaining the

hand 
ontours.
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6.2.1 Hand image a
quisition setup

This setup 
ontains a CMOS 
amera (see Fig. 6.1). It has the size of a web
am, and


ould further be integrated in an embedded system. The 
amera is pla
ed over the

desk surfa
e, it axis is orthogonal to the desk surfa
e. Wide angle opti
s (90◦) are used
so that the �eld of vision is wide enough. The a
quisition format 
an be either CIF, or

VGA. The video stream is transmitted to the 
omputer by a USB 
onne
tion in RGB

format. The user 
an then intera
t with his 
omputer, and follow the evolution of his

experiment dire
tly on the s
reen.

Figure 6.1 � Camera

6.2.2 Prepro
essing and algorithm

As we will show in the result se
tion, only the hand 
ontour is retrieved by opti
al

�ow. Thus, this result is not used as �nal hand 
ontour. It is however essential for the

sele
tion of a region of interest, whi
h is the �rst prepro
essing applied to the pro
essed

image: Let NOF be the number of moving points of interest, retrieved by opti
al �ow,

from two frames: one obtained at time t, the other at time t
′
> t. The 
oordinates of

these points are denoted by {(xo, yo), o = 1, . . . , NOF}.
The sele
tion of a region of interest (ROI) is based on ellipse least-squares �tting

[42℄. Be
ause of the sensitivity of least-squares �tting methods, and to ensure the

robustness of the ROI sele
tion, the moving points of interest whi
h in
lude an ex-

treme (minimal or a maximal) 
oordinate value are removed. Let Ip denote the image


ontaining the remaining moving points.

Firstly, a rather large ROI is extra
ted. Indeed the ellipse might not in
lude

the whole hand, so we 
hoose as ROI a re
tangle whi
h is somehow larger than the

re
tangle whi
h stri
tly in
ludes the ellipse.

The se
ond prepro
essing is hand surfa
e segmentation: �rstly, we 
ompute the


enter of mass of the pixels of interest; se
ondly, we dedu
e the hand pixel grey level

distribution in ea
h RGB band from the region next to the 
enter of mass; thirdly,

a

ording to this distribution, we perform histogram threshold to ea
h RGB band

of the ROI. The 
ombination of ea
h threshold image provides a binary image. The
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binary image obtained at this point, denoted by ITh
, 
ontains the hand surfa
e �lled

with 1-valued pixels and noise, that is, 1-valued pixels randomly distributed in the

image.

Figure 6.2 � Improved algorithm for hand gesture re
ognition

The third prepro
essing 
onsists in removing isolated pixels and �lling out holes.

First, we sele
t the largest set of 
onnexe pixels, assuming that this obje
t is the hand.

Then, we remove the pixels whi
h are 
onne
ted to the hand but unexpe
ted with

morphologi
al �ltering operations -erosions and dilations [115℄. These mathemati
al

morphology operations remove the possibly remaining unexpe
ted pixels from the

ba
kground. This third prepro
essing turns the whole algorithm robust to variations

in illumination and in
lusion of unexpe
ted obje
ts in the ba
kground. We then sele
t

on
e again a region of interest: the smallest square subimage 
ontaining the whole

hand. The number of rows or 
olumns of this image is max(FDh,FDv) where FDh

and FDv are the horizontal and verti
al Feret diameters of the hand. Extra
ting

this ROI, independently of 
ourse from its lo
ation in the pro
essed image, ensures

the invarian
e to translation and s
aling. We get an image If whi
h is supposed to


ontain only a �lled hand.

The fourth prepro
essing 
onsists in retrieving the hand 
ontour, with a linear
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'roberts' �lter. This yields an image Ic where the hand 
ontour 
onsists in 1-valued

pixels, over a ba
kground of 0-valued pixels. This image will be used to 
ompute a


ontour signature.

The prepro
essing operations presented in this subse
tion permit to fo
us on a region

of interest and isolate the hand 
ontour, but also to ensure invarian
e proprieties of

the 
hara
terization method whi
h is presented in se
tion 4.2.

6.3 Results and Dis
ussion

Adapting opti
al �ow exhibits advantages but also requirements on the experimental


onditions and spe
i�
 prepro
essings. The required experimental 
onditions for whi
h

the opti
al �ow works properly are as follows: the hand whose posture must be re
-

ognized should be moving between two frames of the database, the ba
kground 
olor

must be di�erent from the hand 
olor, and the variations of luminosity should be as

low as possible. This may be the 
ase for instan
e if all images are subsequent frames

of a video sequen
e where the user's hand is moving. However, opti
al �ow may still

yield poor results if the luminosity varies too mu
h between frames.

A test permits to get rid of the images whi
h are not in 
omplian
e with these require-

ments: it involves the ellipse whi
h is supposed to �t the moving points of interest.

The image is skipped by the program and not 
onsidered for posture re
ognition in the

following 
ases: if one axis of the �tting ellipse is larger than the image size, or if the

large axis is larger than 3 times the small axis. The 
onsequen
e for the user of the

hand posture re
ognition method is that he may wait a bit longer for the re
ognition

result, until the luminosity does not vary too mu
h, or until his hand, while exhibiting

a novel posture, is moving fast enough for opti
al �ow to 
onsider it as a moving obje
t.

6.3.1 Performan
e assessment on 
olored hands

The main advantages of the proposed method, whi
h adapts opti
al �ow [17℄ instead

of the 
lassi
ally used Y CbCr mapping, are as follows: it handles the 
ase of 
olored

hands, su
h as those wearing gloves of any 
olor, or hands of 
oloured people. This is

a great advantage respe
t to the existing method whi
h are supposed to fail as soon as

the hand surfa
e 
annot be distinguished from the ba
kground in the Cb 
omponent.

Figures 6.3 and 6.4 show the results obtained by opti
al �ow on a white and a bla
k

hand. It 
onsists in pixels whi
h are about to move between the 
urrent and the next

frame. These pixels of interest mat
h part of the the hand 
ontour pixels.

As shown in Figs. 6.3 and 6.4, the opti
al �ow method provides a set of points,

among the moving points of the s
ene. As a sparse version of opti
al �ow was 
hosen,

these points are mainly fo
used on the hand 
ontour.

In Fig. 6.5 we exemplify the steps of the proposed method, on a hand posture of

type '3'. Fig. 6.5 shows how the moving points provided by opti
al �ow 
ontribute

to the image threshold: in Fig. 6.5(b) we show the moving points dete
ted by opti
al
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Figure 6.3 � Motion dete
tion with opti
al �ow: white hand.

Figure 6.4 � Motion dete
tion with opti
al �ow: 
olored hand.

�ow, their 
enter of mass, and the �tting ellipse. The hand grey level distribution is


omputed around the 
enter of mass, and its knowledge permits to apply a threshold

and obtain the image ITh
of Fig. 6.5
).

In Fig. 6.6 we exemplify the method in the same way, with a hand wearing a bla
k

glove.

The results obtained on these two hands show the ability of the proposed method

to handle white, but also 
olored hands. The prepro
essings permit to remove the

undesired pixels whi
h are present in the threshold image ITh
(see Fig. 6.5
) and (Fig.

6.6
)).

To exemplify the proposed method for hand 
ontour segmentation on more examples,

in
luding all postures for both white and 
olored hands, a website presents the image

I 
ontaining the hand 
ontour obtained from eleven 
ases -one for ea
h posture type-,

for a white and a 
olored hand [1℄.
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Figure 6.5 � White hand, Steps of the proposed method. (Read from left to right. First row:

pro
essed image; moving points, �tting ellipse, and 
enter of mass. Se
ond row: threshold image ITh

in the ROI de�ned from the �tting ellipse; result obtained after mathemati
al morphology operations.

Third row: If -square ROI whose height is the maximum Ferret diameter of the hand; Ic, obtained
from Roberts linear �ltering, and 
ontaining the expe
ted hand 
ontour).

6.3.2 Statisti
al of posture re
ognition performan
e

In this subse
tion, we present a statisti
al study involving a database of hand posture

images. We study the performan
e of hand posture re
ognition of the proposed method.

We remind that it in
ludes opti
al �ow for hand 
ontour dete
tion. This turns the

method adequate for 
olored hands, but we 
hose a database of white hands to enable

the 
omparison with existing methods.

To generate the signature Z whose 
omponents are zp,i, with p = 1, . . . , P , and i =
1, . . . , Q (see Eq. (4.1)), a value P = 24 levels is large enough to get an ex
lusive

signature for ea
h posture and small enough to get a reasonable 
omputational load.

To ensure the invarian
e to s
aling, the number Q of dire
tions depends only on the

maximum size of the en
losing box. To perform dimensionality redu
tion we 
hose

K = 12, that is, the size of the posture di
tionary +1. This value yield the best

results, whi
h was observed empiri
ally.

We 
ompare the proposed method with two 
omparative methods: The �rst

method 
ombines Gabor �lter, PCA, and SVM (support ve
tor ma
hine) [54℄. The

se
ond 
omparative method relies on Fourier des
riptors [19, 34℄. The third 
ompar-

ative method relies on the same pro
ess for signature generation [15, 16℄, but di�ers

in the obtention of the binary image I whi
h is used as an input for the 
omputation

of the 
ontour signature: in [15, 16℄, this binary image is obtained mainly through a
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Figure 6.6 � Colored hand, steps of the proposed method. (Read from left to right. First row:

pro
essed image; moving points, �tting ellipse, and 
enter of mass. Se
ond row: threshold image ITh

in the ROI de�ned from the �tting ellipse; result obtained after mathemati
al morphology operations.

Third row: If -square ROI whose height is the maximum Ferret diameter of the hand; Ic, obtained
from Roberts linear �ltering, and 
ontaining the expe
ted hand 
ontour).

Y CbCr mapping and a threshold applied to the Cb 
omponent. In [16℄, PCA is already

used to redu
e the dimensionality of the data.

In Table 6.1, we present the results obtained with Y CbCr mapping and Fourier


oe�
ients as invariant 
hara
teristi
s. This table shows that Fourier des
riptors en-


ounter di�
ulties with postures 4 (60.8%), 8 (64.8%), and 10 (74.4%). This is due

to the unability of Fourier 
oe�
ients to preserve details: 
ontours are smoothed, and

subtle di�eren
es su
h as the presen
e of one supplementary �nger as o

urs between

posture 4 and posture 5, and between posture 8 and posture 9, are not dete
ted when

Fourier 
oe�
ients are used. On the 
ontrary, our method based on the proposed sig-

nature generation te
hnique o�ers a 1-pixel resolution, and does not en
ounter su
h

problems.

In Table 6.2, we present the 
onfusion matrix of the 
omparative method based on

Y CbCr mapping [16℄ and using the signature generation pro
ess presented in [17℄. It

shows that it exhibits good results, ex
ept that: posture 4 is re
ognized as 5 in 11.3 %
of the 
ases, posture 8 is re
ognized as posture 9 in 25.6 % of the 
ases; posture 5 as 4

in 5.5 % of the 
ases.

The 
onfusion matrix obtained with the proposed method [17℄ is presented in Table

6.3.
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`1' `2' `3' `4' `5' `6' `7' `8' `9' `10' `11'

1 86.6 0 0 0 0 0 0 0 0 0 0

2 0 90.8 0.4 0.4 0.2 0.2 0.1 0 1.7 0.1 0.1

3 0 0.7 96.4 0.5 0.4 1 0.4 0 0.7 0.1 3.3

4 5.5 0 0 60.8 0 0.1 0.4 0 0 0 0

5 2.9 1.8 0.5 35.9 97.8 0.9 7.8 3.2 4.9 20.2 0.1

6 4.6 0.1 0 0.1 0.3 94.3 0.8 0 0.2 2 0

7 0.2 0.4 0.1 0.7 0.5 1.1 80.6 8.3 0.3 2.8 0

8 0 0.2 0 0.3 0.3 0.1 1.9 64.8 2.8 0.5 0

9 0 5.9 1.7 0.9 0.3 0.4 6 23.2 88.6 0.9 0.4

10 0 0.1 0.1 0.3 0 0.2 0.8 0.4 0.2 73.4 0

11 0.2 0.2 0.8 0.1 0.1 1.6 1.1 0.1 0.7 0 96.2

Table 6.1 � Confusion matrix (in %, pre
ision 0.1). Obtained with: Fourier 
oe�
ients, and

Bayesian distan
e [34℄

`1' `2' `3' `4' `5' `6' `7' `8' `9' `10' `11'

'1' 97.7 0 0 0 0 0 0 0 0 0 0

'2' 0 100 0 0 0 0 0 0 0 0 0

'3' 0 0 90.8 0 0 0 2.3 4.7 2.4 0 0

'4' 0 0 0 86.4 5.5 0 0 0 0 0 0

'5' 2.3 0 2.3 11.3 91.7 0 0 0 0 0 0

'6' 0 0 0 0 0 95.5 0 0 0 0 0

'7' 0 0 0 0 0 0 93.1 2.3 0 0 0

'8' 0 0 0 0 0 0 2.3 67.4 2.4 0 0

'9' 0 0 4.5 2.3 2.8 0 2.3 25.6 92.8 2.1 0

'10' 0 0 0 0 0 4.5 0 0 2.4 97.9 0

'11' 0 0 2.4 0 0 0 0 0 0 0 100

Table 6.2 � Confusion matrix (in %, pre
ision 0.1). Obtained with: proposed signature, PCA,

and Bayesian distan
e.

This 
onfusion matrix obtained with the method proposed in this thesis, shows

that our method involving opti
al �ow exhibits better re
ognition results for postures

1, 3, 4, 5, 6, 7, 8, and 9. The obtained results are better in parti
ular for the similar

posture 
ouples {4, 5} and {8, 9}, and even mu
h better for posture 8, for whi
h

the rate of good re
ognition in
reases from 67.4% to 82.8%. In the 
ase where the


omparative method exhibits better re
ognition results, they were ex
ellent (100%,

97.9%, and 100% for postures 2, 10, and 11 respe
tively), and they are still very good

when the proposed method is applied (99.2%, 96.7%, and 99.3%).

In the following in Table 6.4, we 
onsider the performan
e of the proposed and


omparative methods in terms of speed, and overall re
ognition results.

The method 
ombining Gabor �lter, PCA, and SVM (support ve
tor ma
hine) [54℄

pro
esses 6 frames per se
ond as well (see Table 6.4a). Fourier des
riptors programmed
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`1' `2' `3' `4' `5' `6' `7' `8' `9' `10' `11'

'1' 98.2 0 0 1.0 0 0 0 0 0 0 0

'2' 0 99.2 0 0 0 0 0 0 0 0 0

'3' 0 0 93.1 0 0 0 0 0 0 0 0.7

'4' 0.6 0 0 87.7 7.6 0 0 0 0 0 0

'5' 0 0 0 9.3 92.4 0.8 0 0.8 0 0 0

'6' 0 0 0 0 0 95.8 0 0 0 2.5 0

'7' 0.6 0 0 0 0 0 94.3 3.1 0 0 0

'8' 0 0 0 1.0 0 0 2.5 82.8 5.6 0 0

'9' 0.6 0.8 4.9 1.0 0 0 3.2 13.3 93.6 0.8 0

'10' 0 0 2.0 0 0 3.4 0 0 0.8 96.7 0

'11' 0 0 0 0 0 0 0 0 0 0 99.3

Table 6.3 � Confusion matrix (in %, pre
ision 0.1). Obtained with: opti
al �ow, proposed

signature, PCA, and Bayesian distan
e
ite [17℄.

'Classif. method' 'Speed' 'System' 'Soft' '%' 'Database'

a) PCA+SVM 4 frames/se
 3.4 GHz C 93.7 11*120

b) Fourier + Bayesian 20 frames/se
 2 GHz C 84.6 11*1000


) PCA + Bayesian 6 frames/se
 3.1 GHz Matlab 91.8 11*45

d) OF + PCA + Bayesian 4 frames/se
 3.1 GHz Matlab + C 94.1 11*110

Table 6.4 � Proposed and 
omparative methods, 
omparison of performan
es. a) Gabor �ltered

+ PCA + SVM [54℄ ; b) Fourier des
riptors (FD1) + Bayesian; 
) Y CbCr mapping, PCA and

Bayesian distan
e [16℄; d) proposed method involving opti
al �ow (OF) [17℄.

in C++ [34℄ are faster, namely 20 frames per se
ond (see Table 6.4b). The method

involving Y CbCr, PCA and Bayesian distan
e [16℄ (see Table 6.4
) mapping is faster

(6 frames per se
ond) but it exhibits a major drawba
k as all methods using Y CbCr

mapping: it does not handle 
olored hands. Also, the overall re
ognition rate is lower

(91.8%). When we 
onsider the method that we propose [17℄ (see Table 6.4d), we

noti
e that the 
omputational load dedi
ated to the re
ognition of the 1210 images of

the database is 302 se
., that is, a mean rate of 4 frames per se
ond. Our method

exhibits the best overall re
ognition rate (94.1%) of all 
onsidered method. This good

performan
e relies on the quality of the binary images I whi
h are provided to the

signature generation method: whereas the Y CbCr mapping tended to blur the frontiers

and redu
e the 
ontrast between hand surfa
e and ba
kground on the Cr 
hannel,

opti
al �ow permits to apply a threshold to the R,G, and B 
hannels of the RGB 
olor

image, where the 
ontrast between hand surfa
e and ba
kground is elevated. Currently,

the programmes dedi
ated to opti
al �ow, that is, 15% of the programs, are written

in C++. we 
an expe
t that transferring all our programmes from Matlab

r
to C++

would de
rease the required 
omputational time.
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6.4 Con
lusion of the 
hapter

The issue of hand posture re
ognition is 
onsidered in this 
hapter. This work is based

on a signature generation whi
h divides the image into rings and signal generation

dire
tions, thereby getting a matrix. To generate this signature, a binary image 
on-

taining the 
ontour of the 
onsidered hand must be available. To get this binary image

from any input image, whi
h is any frame of a video sequen
e, we adapt, for the �rst

time, opti
al �ow as a 
ontour dete
tion method: we avoid the 
lassi
ally used Y CbCr

mapping, whi
h turns the proposed algorithm �t for 
olored hands.

Ellipse �tting of the moving points dete
ted by opti
al �ow permits to sele
t a region

of interest, thereby ensuring the invarian
e of the signature to s
aling and translation.

We assume the 
enter of gravity of the moving points is lo
ated in the hand, whi
h

provides the grey level distribution for ea
h RGB 
hannel and permits to apply the

adequate threshold whi
h segments the hand surfa
e. We then remove the unexpe
ted

pixels, whi
h are either isolated or 
onne
ted to the hand, by retaining the largest


onnexe region and applying mathemati
al morphology operations.

The proposed signature is a sparse matrix, hen
e our proposal to apply prin
ipal 
om-

ponent analysis to redu
e the data dimensionality. We also redu
e the dimension of

the test set through a �rst reje
tion test based on geometri
 
riterion (isometri
 rate).

Hand posture re
ognition is eventually performed by 
omputing a Bayesian distan
e

between test and pre-sele
ted referen
e signatures. The visual results show that, de-

spite a 
omplex ba
kground, a hand 
ontour is 
orre
tly retrieved.

Statisti
al results summarized as a 
onfusion matrix show that the di�
ult 
ases of


lose postures yield a 
orre
t re
ognition result in more than 82% of the 
ases. Overall,

the mean re
ognition rate rea
hes 94.1%, whi
h is more than the rate obtained with

the sele
ted 
omparative methods, in similar testing 
onditions involving white hands.

Our method o�ers a good 
ompromise between re
ognition rate and 
omputational

load. Our hand posture re
ognition method has been 
ombined with movement tra
k-

ing. This 
ould yield a 
omplex but e�e
tive set of instru
tions, in the frame of a

Human-ma
hine intera
tion system.



Con
lusion and

perspe
tives

I
N this thesis we are interested in a
hieving a gesture re
ognition system as part

of the design of a tou
hless Human-ma
hine interfa
e. We studied the various


omponents of su
h a system and we proposed solutions taking into a

ount important

appli
ative 
onstraints, in
luding the pro
essing of a video stream in real-time. The

addressed issues 
on
ern hand dete
tion in a video stream, extra
tion of features

representing the shape and position of the hand, re
ognition of postures from a

previously determined vo
abulary. This summary outlines the main results of this

study and the 
ontributions of our work to a
hieve a system of re
ognition. We then

give some tra
ks to further our work.

To evaluate and 
ompare the re
ognition results, we 
reated a database 
onsisting

of 11 postures performed by di�erent people. This database is representative of

gestures that 
an be used in our appli
ation, and easy to perform by all users.

We �rst presented the di�erent methods used for gesture re
ognition in the

literature, and we dis
ussed the 
onstraints in 
omputer vision in general and the

industrial 
ontext of this thesis in parti
ular. We then proposed a set of methods to

a
hieve these goals.

The �rst step 
on
erns the dete
tion of the hand in a video stream with a robust

method for hand movement and the presen
e of other obje
ts of same 
olor as the

hand in the s
ene. We found that the segmentation of the hand is a sensitive phase

of hand posture re
ognition. The obtained 
ontour is sometimes too vague, espe
ially

be
ause of brightness variations, whi
h a�e
t feature extra
tion and the re
ognition

of postures (based on the 
ontour). To solve this problem we used the te
hnique of

opti
al �ow that we adapted to 
ontour dete
tion. It has allowed us to dete
t the

hand espe
ially for 
olored people, assuming that the hand moves in the s
ene in the

video stream even if its slightly, but espe
ially more than the other obje
ts.

The extra
tion of moving points, 
ombined with a least-squares �tting method, allows

to determine the ROI of the hand. Then we 
ompute the histogram on the ROI, and

apply histogram threshold, with some prepro
essings to provide a perfe
t segmentation

of the hand.

For the �rst time to our knowledge, we handle, by adapting opti
al �ow, the 
ase of


olored hands, either wearing gloves or of 
olored people. Also, we get a dynami


gesture re
ognition system, whi
h 
ombines hand tra
king and hand posture 
hara
-
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terization.

The se
ond phase of our work relates to the 
hara
terization of postures and

feature extra
tion of the hand. We studied and 
ompared several shape des
riptors to


al
ulate a feature ve
tor representing the shape of the hand, taking into a

ount the

invarian
e to Eu
lidean transformations (translation, rotation and s
aling). We noti
e

that the hand 
ontour is generally approximately 
ir
ular and non star-shaped. Hen
e,

we apply spe
i�
 methods inspired from array pro
essing. We propose, for the �rst

time in this thesis, a review of all possible types of 
ontours and the 
orresponding


hara
terization methods inspired by array pro
essing models and methods. Su
h

methods have given, in the past, good results in the frame of possibly distorted linear

and 
ir
ular 
ontours. We insist on the 
ase of highly distorted star-shaped 
ontours,

and noti
e their shape is similar to a hand 
ontour's one. This yielded us to propose a

novel 2-D signature whi
h involves the generation of signals. The main di�eren
e with

respe
t to the previously existing methods whi
h are inspired from array pro
essing

method is that this signature handles the 
ase of non star-shaped 
ontours. We detail

how the signals are generated and we prove the di�erent properties of invarian
e of

this new 
hara
terization method.

In this step, reviewing all the variants of the methods of array pro
essing transferred

to image pro
essing is an important 
ontribution. However, the most novel aspe
t is

our 2D-signature. This signature ensures essentially the invarian
e to rotation, but

also the invarian
e to the axial asymmetry whi
h allows us re
ognize both left and

right hands, whatever the learning phase.

The proposed signature is a matrix with very large size, whi
h turns very di�
ult

the 
lassi�
ation with a geometri
 
lassi�er. To solve this problem, we have redu
ed

the size of the matrix using the prin
ipal 
omponent analysis. This dimensionality

redu
tion allowed us to 
lassify the postures with a Bayesian distan
e 
riterion, whi
h

involves a matrix inversion that s
ales the 
omponents of referen
e and test ve
tors.

This distan
e gave us the best results. Also to further improve our results and espe
ially

the 
omputational load (0.04 se
/frame), we make a �rst sele
tion of 
andidates among

the vo
abulary through a geometri
 
riterion, the isometri
 rate.

In this step it 
an be estimated that the 
ombination of signature generation method

and the method of geometri
 
riterion has yielded ex
ellent e�e
ts.

The results obtained show that we have rea
hed the best 
ompromise between


omputational load (4 frames/se
) and re
ognition rate (94.1%) and we prove that

the di�
ult 
ases of 
lose postures yield a 
orre
t re
ognition result in more than 82

% of the 
ases. This 
ompromise 
orresponds perfe
tly to the wishes of our interfa
e

utilization, in solving 
onstraints as the presen
e of another obje
t in the s
ene and

variations in a
quisition 
onditions. We 
an 
on
lude that our pro
ess perfe
tly meets

the requirement of our problem.

Among the various prospe
ts of our work an extension and enlargement of vo
ab-
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ulary of postures to re
ognize are desired. The PCA has allowed us to redu
e the

dimension of our matrix signature, but we 
ould also apply other methods of dimen-

sionality redu
tion su
h as linear dis
riminant analysis (LDA). Other methods 
ould be

applied. For instan
e adaptive dimension redu
tion 
ombines dimension redu
tion and

unsupervised learning (
lustering) together to improve the redu
ed data (subspa
e)

adaptively. To 
ontinue this work and improve it, we 
an also attempt to solve the

o

lusion problem or solve the 
ases of the presen
e of multi-target (two hands). For

this we 
ould turn our dete
tion method into a multi target one. We 
an also per-

form 
lassi�
ation by the 
ombination of di�erent 
lassi�ers or by SVM (in 
as
ade

or multi-
lass SVM). An optimization of the algorithm, using a single programming

language (C++ language), is always possible to a

elerate the pro
ess and fa
ilitate

the industrialization of our algorithm. In the long term, 
ooperating with institutions

and organizations whi
h take 
are of deaf and dumb persons 
ould help building an

adequate vo
abulary of postures and gestures whi
h is suitable to de�ne a di
tionary

of sign language.
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