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Abstract—Fuzzy paradigm was considered from several aspects
in image segmentation. For the first time, we derive a signal
processing model out of an image which contains a fuzzy
contour. We propose to adapt subspace-based methods of array
processing which are originally dedicated to multiple incoher-
ently distributed sources, to retrieve the orientation and spread
parameters of fuzzy contours. A set of experiments performed
on hand-made and real-world images shows that the proposed
methods estimate accurately the expected orientation and spread
parameters of fuzzy contours, and exhibit a small computational
load.

I. INTRODUCTION

Fuzzy contours occur very often in images, owing to ob-

ject movements, light transmission environment, etc. Several

methods have been proposed for solving this problem. One can

distinguish two categories of methods: those which perform

contour-based segmentation, and those which perform region-

based segmentation. Firstly, contour-based segmentation meth-

ods consider fuzzy contours as textured regions in the image,

that is, a set of pixels which has a transverse width of more

than one pixel. These methods aim at determining a mean

position of the pixels of the textured region. In particular a

new model for active contours based on techniques of curve

evolution, which was adapted from the level set paradigm, was

proposed to segment contours ”without edges” [1].

Secondly, region-based segmentation methods rely on the

theory of fuzzy sets, to define membership functions and

classify the pixels. In particular, a fuzzy paradigm was adopted

in the frame of mathematical morphology to characterize the

repartition of objects in an image by ”fuzzy” relationships

[2]. In this fuzzy paradigm, one could localize an object at

left or at the right-hand side of another object. This led in

particular to applications for medical 3D image segmentation.

Also, unsupervised segmentation was adapted to classification

by a fuzzy version of hidden Markov chains [3]. This work

considers that a fuzzy membership function is added to a crisp

membership to characterize the values taken by the Markov

process and thereby classify pixels in an image.

Array processing methods were adapted to contour char-

acterization [4], [5]: it was shown that a specific signal

generation scheme yields an array processing signal model out

of an image which contains contours with a width of one pixel.

High resolution methods could then be applied to distinguish

close contours by considering them as punctual sources. In

this paper, we propose a novel approach to characterize fuzzy

contours, that is, contours which are no longer one pixel wide

but characterized by a spread parameter. For this, we derive

a novel signal model. One of the attraction is that it permits

to characterize entirely a ”triangular-like” fuzzy contour with

three parameters of orientation, spread, and offset. We adapt

a subspace-based method of array processing to provide an

estimate of the orientation and spred parameters.

Section II states the fuzzy contour retrieval problem, section

III derives an array processing model out of signals generated

from the image. Section IV adapts subspace-based methods of

array processing to estimate orientation and spread parameters

of the fuzzy contours. Section V presents experimental results

which validate the proposed models and methods.

II. PROBLEM STATEMENT

In this section, we provide the models that we adopt for

the processed image, for the gray level distribution of the

contours which are present in the image, and for the technique

which permits to generate a signal out of the image content.

Let I(i, l) be an N × L recorded image (see Fig. 1(a)).

For example, a camera records a scene where a phenomenon

generates a light beam. We consider that I(i, l) is compound
of a fuzzy contour and an additive uniformly distributed noise.

The fuzzy contour is supposed to have main orientation θ and
center offset x0. The pixel values are supposed to be small

enough to be neglected at a distance θf on each side of the

main orientation of the contour. The gray level evolution of

the fuzzy contour around its main orientation in every row can

(a) (b)

Fig. 1. (a) linear antenna model in an image containing a fuzzy contour; (b) hand-
made fuzzy triangle contour characterized by the main orientations θ and offsets x0 in
the image
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be, in a general manner, described by a Gaussian evolution

depending on a spread parameter σ. If we define the gaussian
attenuation threshold of the pixel as δT , the relationship among
θf , σ, and δT is:

δT = 1√
2πσ

e−
θ2
f

2σ2 .

Below this threshold value, the pixel values are supposed to

be negligible.

If there are multiple fuzzy contours in the image, every

contour is characterized by the main orientation θk and the

angle spread θf (see Fig. 1(b)). Every fuzzy contour obeys

Gaussian distribution with variance σk
2. We expect that such

a contour model facilitates the transfer of array processing

methods to the considered parameter estimation issue. In order

to set the link between image data representation and sensor

array processing methods [4], array sensors are supposed to be

placed in front of each row of the image. Each sensor receives

the signal only from its corresponding row in the matrix. All

the pixels in the image are assumed to propagate narrow-band

electromagnetic waves with zero initial phases. Furthermore,

we assume that the waves emanating from pixels in a given

row of the image matrix are confined to travel only along that

row towards the corresponding sensor.

We adopt the signal generation scheme proposed in [4]:

z(i) =

L
∑

l=1

I(i, l) e−jµl, i = 1, . . . , N (1)

where µ is an a priori set propagation parameter. In the next

section, we show that the adopted contour model and signal

generation process yield an array processing signal model,

handled by subspace-based methods.

III. ARRAY PROCESSING SIGNAL MODEL

Firstly, we assume that the image contains only one fuzzy

contour of main orientation θ, angle spread 2θf , offset x0, and

standard variance σ for the Gaussian distribution of the pixel

values. On the ith sensor we get:

z(i) =

θf
∑

θ̆=−θf

e−jµ(x0−(i−1)tan(θ+θ̆)) · 1√
2πσ

e−
θ̆2

2σ2 (2)

For small values of θ̆, we get the following approximation

with a Taylor series expansion:

tan(θ + θ̆) ≃ tan θ +
1

cos2 θ
θ̆ (3)

Combining Eqs. (2) and (3) yields:

z(i) =
1√
2πσ

e−jµx0ejµ(i−1) tan θ

θf
∑

θ̆=−θf

e
jµ(i−1)θ̆

cos2 θ ·e− θ̆2

2σ2 (4)

When σ is small enough (note that it is coherent with the

fact that θf is small enough), we can turn the considered

discrete calculation into a continuous case calculation:

z(i) ≃ 1√
2πσ

e−jµx0ejµ(i−1) tan θ

∫ θ̆=+∞

θ̆=−∞
e−

θ̆2

2σ2 + jµ(i−1)θ̆

cos2 θ dθ̆

(5)

A general formula provides the equality:

∫ y=+∞

y=−∞
e−ay2+jbydy =

√

π

a
e−

b2

4a (6)

It is easy to express Eq. (5) by:

z(i) = e−jµx0 · ejµ(i−1)tan(θ) · e−
µ2σ2(i−1)2

2 cos4 θ (7)

Equation (7) is the signal generated on the ith sensor in the

case where there exists only one fuzzy contour in the image.

Secondly, we consider the case where the image contains:

• d fuzzy contours, with orientations θk, offsets x0k , and

standard variance σk (k = 1, . . . , d);
• identically distributed noise pixels.

The expression of the received signal by ith sensor becomes:

z(i) =
∑d

k=1 e
−jµx0k · ejµ(i−1)tanθk · e−

µ2σ2
k
(i−1)2

2 cos4 θk + n(i)
(8)

where n(i) is a noise term originated by the noise pixels during

the signal generation process. The expression of the signal

components in Eq. (8) permits to adopt the notations coming

from array processing. We define:

1) When the continuous approximation holds, the source

amplitude components are expressed as:

s(k) = e−jµx0k , k = 1, · · · , d (9)

2) the steering vector associated with the k-th contour

as: c(ηk) = [c1(ηk), c2(ηk), · · · , ci(ηk), · · · , cN (ηk)]
T
,

where ηk = [θk, σk]
T , with ci(ηk) = ejµ(i−1) tan θk ·

e
−

µ2σ2
k
(i−1)2

2 cos4 θk .

3) the noise vector n = [n(1), n(2), . . . , n(N)]T .

These notations permit to express the signal generated out of

the image in a matrix form:

z = C(η)s + n (10)

where z = [z(1), z(2), . . . , z(N)]
T
,

s = [s(1), s(2), · · · , s(d)]T , C(η) = [c(η1), c(η2), · · · , c(ηd)].
Equation (10) shows that, by adopting the signal generation

scheme of Eq. (1) and the proposed model for fuzzy triangle

contours, we can make an analogy between the signals gener-

ated out of the image and an array processing signal model.

Therefore, we predict that array processing methods can yield

the parameters of the expected contours.

IV. SUBSPACE BASED METHODS OF ARRAY PROCESSING

FOR ORIENTATION AND SPREAD PARAMETER ESTIMATION

A. Main orientation and spread estimation: DSPE

In this subsection, we propose to adapt a method coming

from array processing and originally dedicated to distributed

source characterization [6], [7]. An array processing method

can be applied to the generated signal provided in Eq. (10), to

characterize the contours in the image by retrieving their pa-

rameters. Subspace-based parameter estimation methods such

as MUSIC [8] assume that several realizations of a signal are

available. However, the processed image is a deterministic
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data and provides only one signal of length N through the

signal generation process of Eq. (1). To adapt a subspace-

based method such as MUSIC, we have to simulate artificially

multiple signal measurements out of a single signal by splitting

the array (of length N ) into smaller overlaying sub-arrays

(of length M ). Each sub-array provides a signal realization.

Therefore, out of one snapshot, we get several signal realiza-

tions. This is called spatial smoothing technique [4]. There

exist a constraint on M , and a relationship between N , M
and the number of snapshot T : d < M ≤ N − d + 1; and
M = N − T + 1. For details, refer to [4]. At the same time,

Eq. (10) is rewritten as zt = C(η)st+Nt, where each steering

vector c(ηk) of length M is defined as:

c(ηk) = [c1(ηk), c2(ηk), · · · , ci(ηk), · · · , cM (ηk)]
T
, with

ci(ηk) = ejµ(i−1) tan θk · e−
µ2σ2

k
(i−1)2

2 cos4 θk , and

st = [s1(t), s2(t), · · · , sd(t)]T where

sk(t) =
√
2πGσke

−jµx0ke
−µ2σ2

k
2 ej(t−1)µtanθk ,

t = 1, 2, · · · , T .
The covariance matrix of z(t) is defined by:

Rzz =
1

T

T
∑

t=1

ztzt
H (11)

where (.)H denotes Hermitian transpose. We perform eigen-

value decomposition of Rzz .

Rzz = [U1 U2] Λ U (12)

In the literature, we can find two types of distributed sources,

namely, decorrelated, also called incoherently distributed (ID),

and coherently distributed (CD) sources [9]. An interesting

property of the spatial smoothing technique is that it decorre-

lates the sources [4]. Therefore, in this study, we can consider

that all sources are decorrelated. As we are ensured to have

decorrelated sources thanks to the spatial smoothing process,

the columns of matrix U1 (M× d) span the signal subspace,

the columns of matrix U2 (M× (M− d)) span the noise

subspace, and Λ = diag (λ1, λ2, · · ·λd) where λi is the

eigenvalue associated with the ith eigenvector. Hence, U2

is orthogonal to the steering vectors c (θk) , k = 1, . . . , d.
We estimate the ηk parameters (k = 1, . . . , d) through the

bidimensional search procedure of the maxima of the pseudo

spectrum given by the DSPE (Distributed Signal Parameter

Estimator) method [6], [9]:

DSPE (ηk) =
‖ c (η) ‖2

‖ cH (η) · U2 ‖2 (13)

where c (η) is a model for the signal subspace vectors. Thus,
DSPE method provides the orientation and spread values,

through the relationship: ηk = [θk, σk]
T , ∀ k = 1, . . . , d.

In the next section, we illustrate the performance of the

proposed method for the estimation of the orientation and

spread parameter values in several application cases.

B. Offset estimation: variable speed generation scheme

To estimate all offset values, we adopt a variable speed

generation scheme [4], and a specific ”dechirping” procedure:

we set the propagation parameter as a value which depends

on the row index. Parameter µ becomes α(i − 1). Then, for
each ηk estimated at subsection IV-A, we apply a specific

signal transformation with the knowledge of θk and σk . For

all k = 1, . . . , d successively, we get:

w(i) = z(i)/(ejα(i−1)2tanθk · e−
α2σ2

k
(i−1)4

2 cos4 θk ) (14)

For instance, when k = 1, we aim at estimating the first offset

value x01:

w(i) = e−jα(i−1)x01 + n′(i) (15)

where n′(i) is a noise term resulting from the transformation

of the original noise term by the dechirping procedure.

Equation (15) shows that any subspace-based method such as

TLS-ESPRIT [4], [5] can be applied to retrieve the offset value

x01. The same process is applied for all k = 1, . . . , d. At this
point, we estimated all offset values x0k, k = 1, . . . , d.

V. RESULTS

In this section, we illustrate the propose method on hand-

made and real-world images. All experiments are performed

on a computer equipped by 2.83GHz 2 Quad CPU and

4G memory. Images have size 200 × 200 pixels. Adequate

parameter values found experimentally, which are used for

signal generation, are µ = 2.3 10−2 and α = 2.5 10−3, the

size of the sub-arrays used for the spatial smoothing procedure

is M = 4.

A. Hand-made images

We propose a statistical study which characterizes the

performance of the proposed method. The proposed method is

run for several triplets of values (θ; σ; x0). The results obtained

are provided in Table I, which provides the estimated values (θ̂;
σ̂; x̂0), and the bias (Eθ; Eσ; Ex0k

) defined by: Eθ = |θ̂− θ|,
Eσ = |σ̂−σ|, and Ex0 = |x̂0−x0|. These results show that the

proposed method always provides a very accurate estimation

of the orientation θ, and that the best estimation results for σ
are obtained for values between 1.5 and 2.4. The bias on the

estimated offset values x0 is always equal to or less than 1

pixel. Note that the case σ = 0 was considered, and leads to an
estimate σ̂ = 0.36. The result contour appears then as a 1-pixel
wide contour. As an illustration of the proposed algorithm,

TABLE I
ESTIMATED VALUES θ̂; σ̂; x̂0 AND MEAN ERROR VALUES Eθ ; Eσ ; Ex0 IN

(◦ ;PIXELS;PIXELS) OBTAINED WITH THE PROPOSED METHOD, VERSUS
CONTOUR CHARACTERISTICS (θ; σ; x0).

(θ; σ; x0) (θ̂; σ̂; x̂0) (Eθ ; Eσ; Ex0 )

(10; 0; 50) (11.7; 0.36; 49) (1.7; 0.36; 1)
(9; 0.5; 48) (8.6; 0.74; 49) (0.4; 0.24; 1)
(11; 1; 51) (10.9; 1.47; 50.5) (0.1; 0.47; 0.5)
(10; 1.2; 80) (10.9; 1.3; 80) (0.0; 0.1; 0)
(10; 1.5; 50) (9.9; 1.76; 49.5) (0.1; 0.26; 0.5)
(12; 1.7; 45) (11.9; 1.87; 45) (0.1; 0.17; 0)
(5; 1.9; 60) (4.9; 1.92; 60) (0.1; 0.02; 0)
(13; 2; 39) (13.0; 1.94; 39) (0.0; 0.06; 0)
(-12; 2.2; 53) (-12.0; 2.10; 53) (0.0; 0.10; 0)
(-10; 2.4; 36) (-9.9; 2.41; 36) (0.1; 0.01; 0)
(10; 3; 50) (9.9; 2.19; 50) (0.1; 0.81; 0)
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Figs. 2(a,d) provide the processed image, containing one or

two fuzzy contour(s) whose characteristics are to be estimated.
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Fig. 2. Estimation of (θ; σ; x0): (a) processed (20◦; 1.2; 80); (b) result
(10◦; 1.01; 80); (c) difference processed - result; (d) processed (10◦; 5.1;
80) and (−10

◦; 5.1; 20); (e) result (10◦; 5.01; 80) and (−10
◦; 5.01; 20); (f)

difference processed - result

Figs. 2(b,e) provide the result image, containing the contour

drawn from the estimated contour parameters. Figs. 2(c,f)

provide the difference image. The difference images are not

entirely white, which is due to the slight bias on the estimation

of σ. This bias may be due to approximations of Eqs. (3)

and (5): the adequation between signal model and generated

signal cannot be strictly fulfilled. The whole computational

time need to estimate the orientation and spread values is 2.30
sec. In comparison, the computational load which is needed

to generate the signal is negligible, and the time needed for

the offset estimation step is 0.9 sec.

B. Real-world images

Figs. 3 and 4 illustrate the proposed algorithm on a real-

world image. Our goal is to study the beam which is produced

by a space instrument.

Fig. 3. Light beam characterization: original real-world image

We seek for the main orientation and spreading of the light

beam. Fig. 4 focuses on the part of interest of the image (see

Fig. 4(a)), and provides the image simulated with the estimated

parameters (see Fig. 4(b)). The estimated parameters are θ̂ =
−19◦; σ̂ = 6.01 pixels; x̂0 = 112 pixels.

We notice that the visual aspect of Fig. 4(b) is very close

to the aspect of Fig. 4(a), which means that the contour

characteristics were accurately estimated.
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Fig. 4. Light beam characterization: (a) processed; (b) result (−19
◦; 6.01;

112)

These experiments show that there exists an interval σ =
[1.5, . . . , 3] where the approximations of Eqs. (3) and (5) are

both valid: the expected parameters are retrieved with a small

bias. Moreover, the proposed method handles the case of 1-

pixel wide contours.

VI. CONCLUSION

We show in this paper that an array processing signal

model can be adequately adapted to the content of an image

containing a fuzzy contour when a signal generation scheme

is applied to this image. We show that if a spatial smoothing

technique is applied to the signal generated out of the image,

the sources in the signal model are decorrelated. Therefore,

this allows us to adapt the DSPE (Distributed Signal Parameter

Estimator) method to retrieve the characteristics of the fuzzy

contours present in an image: the main orientation and the

spread parameter. Experimental results obtained on hand-made

images and real-world photographs proved the efficacy and the

interest of the proposed method.
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