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ABSTRACT 2. PROBLEM STATEMENT

(e )=_1_ [1 -jqJj -2jqJj -(N-I)jqJj] T
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Consider an array of N sensors receiving the
signals generated by P (P<N) narrow-band sources in the
presence of an additive noise. The received signal vector
is sampled and the FFT algorithm is used to transform the
data into the frequency domain, we present these samples
by [I]:

r=Ars A
H

+rn,wherer=E[xxH
], rS=E[SSH],

r n =E [ on H ] =(j 2 I ,

where E [.] denotes the expectation operator and I is the

(NxN) identity matrix. In the following, the propagator

and EO algorithms are presented and improved.

Where~;=2Jl'f.fl.sin(0;); d is the sensor spacing and c is
c

the wave propagation velocity. Assume that the signals
and the additive noises are stationary and ergodic zero
mean complex-valued random processes. In addition, the
noises are assumed to be uncorrelated between sensors,
and to have identical variance (J'2 in each sensor. It

follows from these assumptions that the spatial (NxN)
spectral matrix of the observation vector is given by:

(I)x(j) = A(j)s(j)+ o(j)

In the rest of the paper the frequency f is omitted. In Eq.
(I) x is the Fourier transform of the array output vector,

S = [s1 , ••• , sp ] T is the signal source vector and

0= [n1, ... ,nN ] T is the additive noise vector.

The (NxP) matrix A = [a(01), ... , a(0p)] is the transfer

matrix of the sources-sensors array system with respect to
a chosen reference point. The steering vectors a(O;) where

0;, i=I, ... ,P, is the DOA of the i th source measured with

respect to the normal of the array. For a linear uniform
array with N sensors the steering vector is

1. INTRODUCTION

Propagator, and Ermolaev-Oershman (EO)
methods are noneigenvector algorithms which exhibit low
computational load. These algorithms are efficient in non­
noisy or high signal to noise ratio (SNR) environments.
However both algorithms shall be improved. Propagator is
not robust to noise; EO algorithm requires the knowledge
of a threshold value between largest and smallest
eigenvalues, which are not available as
eigendecomposition is not performed.

In this paper, we propose new versions of the
propagator and EO localization methods [I, 3] which
employ a factorized spectral matrix and which are
efficient in noisy situations. To this end, we use the upper
triangular matrices obtained by the LU or QR
factorizations of the spectral matrix.

We exploit the benefit of the factorization
algorithm regarding the new rearrangement of the
elements of the spectral matrix in the resulting upper
triangular matrices R or U. All the signal information is
focused in the upper-left comer block matrix of size equal
to the number of sources. This block matrix contains the
largest diagonal elements of the factorized matrix. In other
words, it concentrates the signal information which is
scattered in all spectral matrix elements. This
concentration improves the robustness to noise of
propagator method.

Source localization is based on the spectral matrix
algebraic properties. Propagator, and Ermolaev­
Gershman (EG) noneigenvector algorithms exhibit a low
computational load. Propagator is based on spectral
matrix partitioning. EG algorithm obtains an
approximation of noise subspace using an adjustable
power parameter of the spectral matrix and choosing a
threshold value. In this paper, we aim at demonstrating
the usefulness ofQR and LVfactorizations ofthe spectral
matrix to improve these methods. Experiments show that
the modified propagator and EG algorithms based on
factorized spectral matrix lead to better localization
results, compared to the existing methods.
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3. OVERVIEW OF PROPAGATOR AND EG
ALGORITHMS

We present in this section two noneigenvector
methods, Propagator and "Ermolaev and Gershman"
methods.

where r ll and r iZ are, respectively, (PxP) and

(Px(N-P)) matrices, using the partition of matrix A we

have: In non-noisy environment (02 = 0), the relation

r12=rllor is used to estimate Or :

4. IMPROVED ALGORITHMS

Assume that spectral matrix r bears LU factorization,
then it is expressed as [4, 5]:

(3)

where 'e' stands for "Ermolaev". The threshold value As

is between Ap and AP+1 • In practice parameter m can be set

to 10.

4.1 Propagator method.
We insert an LU decomposition step in Propagator
method to improve its robustness to noise. The properties
of the upper triangular matrix are used to minimize the
influence of model errors.

m~oo

In the presence of noise, Eq. (3) is no longer valid. An
estimation of the matrix Or is provided by minimizing

the cost function J (Or)= Ilr12-GII0rI12, where 11.11 is the

Frobenius norm. The optimal solution is given by:

Or =G ~ll r 12 • In practice the data are generally impaired

and the SNR value is not always high. Then, the
performance of propagator method depends on the signal

information contained in the block matrix GIl respect to

the noise and its linear dependency with the block matrix

r iZ '

3.2 Ermolaev Gershman algorithm
The basic principle of EG method is to obtain the
projector on the noise subspace by:

The estimation ofpropagator is performed in this way:
We define the data matrix X containing all K signal
realizations as: X=[Xl," .,XK].
Matrix X is partitioned (in the same way as A) as

x=[ XTiT IT. The resulting spectral matrix will be

expressed as follows:

3.1 Propagator method
Propagator method [1] relies on the partition of the
transfer matrix A. Providing that A is full rank P, and the
first rows are linearly independent, there exists a

Px(N-P) matrix Or called propagator operator, such

that [5] A= U~A, where A and A are the PXP and

(N-P}<P block matrices respectively obtained by

partitioning the transfer matrix: A =[ATAT]T, define

the Nx(N-P) matrix Dr: Dr =[o~ - I N _p ] T,

where I N- p is the (N-P}«N-P) identity matrix. We get
- '"Df!A=Uf! A-A=O. In other words the (N-P) columns of

Dr are orthogonal to the columns of A. This means that

the subspace spanned by the columns of the matrixDr is

the same as the subspace spanned by the noise subspace
given by the eigenvectors associated with the (N-P)
smallest eigenvalues of matrix r. We then obtain the
DOAs of the sources by the peak positions in the so-called

spatial spectrum [1 ]: FPr(e)=la(e) H Dr D{f a(e)J-I .

Propagator algorithm is based on the noise subspace

spanned by the columns of matrix Dr. The computation

of matrix Dr requires a prior knowledge of matrix A,
which is unknown. However, matrix Dr can be estimated

only from the received data [1].

(4)

(2)
(5)

Using Eqs. (2), (3) and (5), we have:
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(6)

Finally, the novel estimate of the propagator operator
using LV factorization is: "u = U~IIU 12' Following

similar calculations with the QR factorization, and same
partitioning of matrices Q and R, we obtain:

II R = R ~II R 12 • The useful signal components are

concentrated in matrices VII and V 12' This yields a

better robustness to noise compared to the case where the
classical propagator method is applied.
Let the matrices

Du =lll~ -IJr and DR =lll~ -IJr.
It follows that the DOAs of the sources are given by the
positions of the maxima of the following functions:

Fu_pr(O) = laH(O)Du D~ a(O) J-I,
FR_pr(O) = laH(0) DR DZ a(O)]-1

4.2. Ermolaev Gershman algorithm
Following the algebra results published in [4, 5], we have:

Ap > Ilu 2211> Ap+1 ' and Ap > IIR 22 11 > Ap+1 •

Then we can choose either As =A~ =IIV 2211 or

signals of equal power have DOA values: 5°, 10°, 20°,
25°, 35°, 40°, 50° and 55°, and are temporally stationary
zero-mean with the same central frequency fo = 115 Hz.

The additive noise is not correlated with the signals and it
is also assumed white. SNR is defined by:

SNR = 10 log 10 (s/( 2
), where s is the power of the

source and (j2 is the noise variance.

6.1. Propagator method.
We have considered several simulations with

different SNR values. Firstly, the employed propagator
methods .are calculated with SNR = 0 dB. The number of
sources is taken equal to 8, and supposed to be known.

It has been shown that, in the presence of an
additive noise, the performances of the standard
propagator are considerably degraded. However, the
results obtained show that these degradations are not
significant when the proposed propagator algorithms are
used even if the values of SNR are relatively low. Indeed
Figs. 1, 2 and 3 show that only the proposed methods have
localized all the sources when the SNR is equal to 0 dB.

12'trl'

5. ALGORITHM COMPLEXITIES

The main advantage of the methods presented in this
paper, namely propagator and Ermolaev and Gershman
methods is their low computational load.

Traditional Proposed method
method

Propagator N2p+p2N+p3 P2{N-P+l)

Ermolaev and N3 N 3/3+ N2
Gershman

The proposed methods are based on the LV or QR
factorization which requires considerably less
computations than eigendecomposition. This result is
interesting for large arrays with few sources which is often
the case in underwater acoustics.

Fig. 1. Dr -Propagator
SNR=OdB.
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Fig. 3. DR-Propagator
with SNR= 0 dB.
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Fig. 2. flu-Propagator,
SNR=O dB.

6. SIMULATION RESULTS

In the following simulations, a linear antenna of
N= 15 equispaced sensors is used, sensors being distant by

d =_c_, where f 0 is the source frequency and c is the
2fo

velocity of the propagation. Eight uncorrelated source

The previous results have shown that even in the presence
of noise the propagator algorithms localize all sources
when LV or QR factorization is used.

6.2. Ermolaev Gershman algorithm
In order to compare the performance of the considered

algorithms based on our thresholds A~ or A: to one
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Fig. 4. EG algorithm as a function of the threshold
values ~ and As; with m=10 and SNR= -5 dB.
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based on the threshold value As arbitrarily chosen

between Ap and Ap +l , several experiments with the same

experimental conditions as in the previous subsection are
carried out with m =1O. Figs. 4 and 5 exemplify the
obtained localization results.

Fig. 5. EG method as a function of the threshold
values A§ and As; with m=10 and SNR= -5 dB.
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The results obtained show that the rank revealing
triangular factorizations improve DOA localization, by
enabling the choice of a convenient threshold value.
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