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Abstract: The application of the high-resolution methods of array processing to source localisation
has led to a considerable improvement in results. By considering some conventions, these methods
can be applied to the characterisation of straight lines in an image. It is proposed to associate a
high-resolution method with a method that generates a signal out of an image. This approach
permits, in particular, to estimate the parameter ‘offset’, that is, the intersection with the upper
side of the image of the straight lines. The proposed approach is fast and efficient when compared
with the well-known method ‘extension of the Hough transform’.

1 Introduction

The problem of detecting and locating straight lines in an
image is a classical problem of image processing [1]. Its
applications concern, for instance, robotic vision, aerial
image analysis and fitting of particle trajectories in bubble
chambers. Some well-known methods exist for such prob-
lems. Least-squares methods aim at minimising the sum
of squared vertical, horizontal or normal distances of all
points to the desired line [2, 3]. The drawback of these
methods is the sensitivity to outliers. Another proposed
method for finding line parameters that fit a given data
point set is the Hough transform [4]. One problem with
this method is the quantisation of the axes of the transform
plane. A good resolution will imply a large data bin size.
Also, the method of ‘extension of the Hough transform’
has also been employed, with the a priori knowledge of
the angles of the straight lines [5]. The problem with that
method is that a small quantisation step still implies a
high computational cost and a large quantisation step can
result in a bias on the offset values.

The value of the angles can be estimated by the so-called
array processing methods. The array processing methods
aim at characterising signal sources. The ‘high-resolution’
methods permit improvement of the spatial resolution for
source localisation [6, 7]. By making an analogy between
a straight line in an image and a plane wavefront, it is poss-
ible to apply the high-resolution methods used in array pro-
cessings to the detection and localisation of straight lines
in an image. A ‘propagation scheme’ allows to simulate
the propagation of the wavefront and its reception on the
antenna. These conventions, as well as some array pro-
cessing methods for straight line characterisation, have
already been proposed in [8].

Nevertheless, none of these methods leads to an entire
characterisation of the straight lines by means of high-
resolution methods: either only the angles are estimated or

the extension of the Hough transform is employed for the
estimation of the offsets. In this paper, we show that it is
possible to estimate straight line parameters by a coherent
set of high-resolution methods. We present the specific
formalism and the methods allowing the estimation of the
offsets. We emphasise the advantages of our method, com-
pared with the extension of the Hough transform, particu-
larly its lower complexity. An important result we
obtained is that by using a high-resolution method, we
obtain a resolution that is optimal and independent of the
computational load.

2 Data model

Let us consider an N � N digital image represented in Fig. 1.
Y and X are vertical and horizontal axes, respectively. One
pixel value of the digital image is I(i, q), where i and q
index the Y and X axes. We consider that I(i, q) is composed
of d straight lines and an additive uniformly distributed noise.
We suppose that the digital image I(i, q) contains only pixels
1 or 0. The straight lines are formed by type 1 pixels and are
called ‘edge pixels’, whereas type 0 pixels are associated with
the background. Each straight line in an image is associated
with an offset x0, which is the intersection of the straight
line with X-axis, and a parameter u, which is the angle
between this line and the line of equation x ¼ x0 (Fig. 1).

It is possible to generate some artificial signals out of the
image data. In order to establish the analogy between the
localisation of sources in array processing and the recog-
nition of lines in image processing, we consider the N
lines of the image-matrix as the N outputs of a linear
array composed of N equidistant sensors placed along the
image side. The signal received by each sensor can be con-
sidered as the result of the pixels of the corresponding line
in the matrix. We can therefore define the signal received by
the ith sensor as the superposition of the edge pixels belong-
ing to the corresponding line. The signal zi corresponding
to the ith sensor is obtained from the components of the
image I as follow

zi ¼
Xq¼N

q¼1

Iði; qÞe�jmq ð1Þ

where m is a parameter that can be constant or variable. We
can consider the propagation scheme with a constant or
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variable parameter. For an image with d straight lines, there
exist, on the ith line of the image-matrix, b � d edge pixels,
localised on the columns x1, . . . , xb; in this way, the signal
received by the sensor in front of the ith line, when no noise
is present in the image, is written as [8, 9]

zi ¼
Xk¼b

k¼1

e�jmxk ð2Þ

where

xk ¼ x0k � i tanðukÞ k ¼ 1; . . . ; b

Fig. 1 illustrates the case of only one line with angle u and
offset x0. In the presence of d different straight lines in the
image and an additive noise, the signal received on the
sensor i is

zi ¼
Xk¼b

k¼1

e jmi tan uk e�jmx0k þ ni i ¼ 0; . . . ;N � 1 ð3Þ

Starting from this signal, the ESPRIT [6] or Propagator [10]
methods can be used to estimate the orientations fukg of the
straight lines, by first calculating a covariance matrix [5, 8].
We propose in Section 3 a method for the estimation of the
offsets.

3 Estimation of the offsets

A classical method for offsets estimation is the extension of
the Hough transform [5]. Considering the polar parametrisa-
tion of straight lines, the distances frkg of the corresponding
normals are estimated by projecting the image along the
orientation uk and by retrieving

rk ¼ argmax
�
ffiffi
2
p

N�r�
ffiffi
2
p

N

Xi¼Np

i¼1

cðr� xi cos uk � yi sin ukÞ

k ¼ 1; . . . ; d ð4Þ

where N is the size of the image, Np is the number of edge
pixels having components (xi, yi) contained in the image
and c is the function defined by

cðrÞ ¼
cos

p

2

r

R

� �
if jrj , R

0 otherwise

(
ð5Þ

where R is a width parameter.

3.1 Complexity of the extension of the Hough
transform

In order to compute the set of values of (4), a step dr is chosen
between each value of r. In practice, dr ¼ R/21 pixel, and
R ¼ 3 [5]. So, for each orientation value, there exist
1/dr �

p
2 � N ’ 10� N radial coordinate values. The com-

plexity of the method is given by the number of operations
needed for each step. For each of the d orientation values:
for each radial coordinate value (1/dr �

p
2 � N ’ 10� N

values), and for Np values, we count the number of operations,
including one storage operation for the argument of the func-
tion c. Neglecting the time required by the additions, we con-
clude that six operations concern the computation of the
argument of the function c, seven operations are needed for
the function c itself. Consequently, 13 operations are realised
in order to compute the general term in the summation of (4).
Then, we should find the relative maxima of a set of
1/dr �

p
2 � N ’ 10� N values. For each value of this set,

13 operations are necessary to compare each value to the pre-
vious and the next one and to store the relative maxima. Then,
we have to sort the relative maxima that we have obtained.
The number of operations needed for this sorting depends
on the number ns of the relative maxima we have found.
The ‘Quicksort’ algorithm has a complexity of
O(ns� log2(ns)). Note that ns is not directly linked to the
number of edge pixels or the image size. Nevertheless, exper-
iments have shown that ns is around N/5.

Consequently, the total number of operations for
this method is d � (10 � N � 13 � Npþ 10 � N � 13 þ
(N/5) log2(N/5)). The numerical cost of the algorithm
grows with the number of edge pixels. In Section 3.2, we
propose a method that has a lower complexity.

3.2 Variable speed propagation scheme

We propose to associate a signal generation method, which
is used specifically for the offsets estimation, with a high-
resolution method called modified forward–backward
linear prediction method (MFBLP).

3.2.1 Signal generation: The two main properties of
the formalism used in the case of offset estimation are as
follows.

1. The propagation speed is linearly variable with the index
of the line. This is an arithmetical trick which will permit
to obtain a signal containing some frequencies which are

Fig. 1 N�N digital image

a Image-matrix provided with the coordinate system and the rectilinear array of N equidistant sensors
b Straight line characterised by its angle u and its offset x0
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directly proportional to the offset values. Therefore the
offset values retrieval becomes a frequency retrieval
problem.
2. A high-resolution method is applied several times – for
each orientation value – in order to retrieve the offset values.

The signal zi corresponding to the ith sensor is obtained
from the components of the image I by the following
computation

zi ¼
Xq¼N

q¼1

Iði; qÞe�jtq ð6Þ

We set t ¼ ai, the signal is obtained by

zi ¼
Xq¼N

q¼1

Iði; qÞe�jaiq ð7Þ

Then, when the first orientation value is considered, the
signal received on sensor i is

zi ¼
Xk¼d1

k¼1

e�jtx0k e jti tanðu1Þ þ ni i ¼ 0; . . . ;N � 1 ð8Þ

where d1 is the number of straight lines with angle u1. As t
varies linearly as a function of the line index, the measure
vector z contains a modulated frequency term

zi ¼
Xk¼d1

k¼1

e�jaix0k e jai2 tanðu1Þ þ ni ð9Þ

In (9), zi is a sum of d1 signals that have a common quadratic
phase term but different linear phase terms. The first treat-
ment consists in obtaining an expression containing only
linear terms. This goal is reached by dividing zi by the
non-zero term ai(u1) ¼ e jai2 tan(u1). We then obtain

wi ¼
Xk¼d1

k¼1

e�jaix0k þ n0i i ¼ 0; . . . ;N � 1 ð10Þ

The resulting signal appears as a combination of d1 sinu-
soids with frequencies fk

fk ¼
ax0k

2p
k ¼ 1; . . . ; d1

The noise term n0i in (10) is composed of the contribution of
the randomly added pixels, as well as the terms that are due
to all orientation values except the first one. The influence
of the contribution of the signals coming from other orien-
tations is included in the influence of the noise. Equation
(10) shows that the estimation of the offsets can be con-
sidered as a frequency estimation problem [11]. In the fol-
lowing, a high-resolution algorithm, which has been
initially introduced in spectral analysis [11], is proposed
for the estimation of the offsets.

3.3 Modified forward–backward linear
prediction method

By adopting the signal model of (10), we adapt the spectral
analysis method called the MFBLP method [11] for estimat-
ing the offsets. We consider dk straight lines with given
angle uk.

We apply the MFBLP method to the data vector w.
The goal is to retrieve the frequencies fk ¼ ax0k/2p,
k ¼ 1, . . . , d1. The MFBLP algorithm can be summarised
into the six following steps.

1. For a data vector w, form the matrix Q of size
(2 � (N 2 L)) � L. The jth column qj of Q is defined
by qj ¼ [wL2j, wL2jþ1, . . . , wN212j, wj

� , wjþ1
� , . . . ,

wN2Lþj21
� ]T. Construct the size (2 � (N 2 L)) � 1 vector

h ¼ ½wL;wLþ1; . . . ;wN�1;w�0;w�1; . . . ;w�N�L�1�
T

L is such that

dk , L � N �
dk

2

2. Calculate the singular value decomposition of Q

Q ¼ ULV H

3. Form the matrix S by setting to 0 the L 2 dk smallest
singular values contained in L

S ¼ diagfl1; l2; . . . ; ldk
; 0; . . . ; 0; 0; 0g

4. Form the vector g as follows

g ¼ ½g1; g2; . . . ; gL�
T
¼ �V � S0 � UH h

The pseudo-inverse of S, denoted by S0, is obtained by
inverting its non-zero elements.
5. Determine the roots of the polynomial function H(z),
where

HðzÞ ¼ 1þ g1z�1 þ g2z�2 þ � � � þ gLz�L

6. Among the zeros of H, there are dk zeros that are located
on the unit circle. They have as arguments the frequency
values; these frequency values are proportional to the
offsets, the proportionality coefficient being 2a.

3.4 Numerical complexity of the proposed
algorithm

We remind the reader that Np is the number of edge pixels in
the image and L is a parameter chosen close to N. In prac-
tice, L is the integer part of (N 2 (dk/2)), where dk is the
number of parallel lines with a given orientation index k.
The number of operations needed for each calculation is
explained as follows.

First, for signal generation, 7 � Np operations are needed
in (6). For each of the d orientations found through constant
parameter propagation, the signal w is obtained from the
signal z with 4þ 3 � N operations. The MFBLP method
is applied with L ¼ N 2 1, because one offset is
expected. The number of operations needed at each step is
as follows.

† For the creation of matrix Q, 2 � (N 2 L) � L or equiva-
lently 2 � (N 2 1) operations are needed.
† For the singular value decomposition of Q, the complex-
ity for the decomposition itself is given by (2 � (N 2 L))3.
The storage of the values of the matrices containing the
singular vectors needs (2 � (N 2 L))2 and L2 operations.
The storage of the singular values needs 2 � (N 2 L) oper-
ations. So the complexity of this singular value decompo-
sition is 14þ (N 2 1)2.
† For the creation of matrix S, L operations are needed.
† For the creation of vector g, two matrix products with a
complexity equal to L and a shift of the values of g with a
complexity equal to L are performed; the total complexity
is 3L.
† The creation of the polynomial function H needs L
operations.
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† For the research of the zeros, the procedure ‘roots’ is based
on an eigendecomposition of an L � L matrix. This eigende-
composition dominates the other operations realised by the
function ‘roots’ in terms of complexity. Thus, the
complexity of this procedure is L3 or equivalently (N 2 1)3.

The total number of operations for this method is finally
7 � Npþ d � (11þ 10 � Nþ (N 2 1)2

þ (N 2 1)3). We note
that for image sizes around 100 � 100, the complexity of
the method ‘variable speed propagation scheme’ does not
depend much on the number of ‘edge’ pixels because
Np� N3. The use of the MFBLP method allows to differen-
tiate close offsets, with an optimal precision. Moreover, this
precision is independent of the computational load.

3.5 Simulation results

The size of the considered images is 200 � 200 pixels.
The signals that lead to the orientation values are generated
with the constant parameter m ¼ 1. We set, in the variable
speed propagation scheme and the MFBLP method,
a ¼ 2.5 � 1023 and parameter L equal to its maximum auth-
orised value (which has to be close to 200, the size of the
image).

When we seek for parallel lines, if two offset values are
retrieved for a given angle value, it is possible to charac-
terise two parallel lines. Fig. 2 illustrates the case of two
parallel lines. The results obtained by both extension of
the Hough transform and the variable speed propagation
scheme are presented in Table 1. The error is less than 1
pixel for the two straight lines. In each case, the bias can
be due to rounding errors. We note from (9) and (10) that,
if orientation term u1 was not perfectly estimated, the fre-
quency term to be estimated will be modulated. The modu-
lation factor is D tan(u1)/x0 for a bias value D tan(u1) on the
estimation of tan(u1) and a given offset value x0. In the case
where x0 ¼ 100, the modulation factor is in the order of
1023. Therefore an efficient estimation of the offset values
slightly relies on the efficiency of the estimation of the

orientation values. This is also the case for the extension
of the Hough transform which computes the number of
pixels aligned along the estimated orientations.

In the case of isolated objects, the method copes with
straight segments; this allows the detection of object con-
tours. Fig. 3 shows that the four segments of an object con-
tained in the image are detected. The summits of the object
are determined by the intersection of the recovered straight
lines. The object is efficiently segmented.

The conventions adopted in the constant speed propa-
gation scheme can be generalised to the problem of grey
level images. The modification with respect to the initial
formalism is the following: the pixel values belong to the
discrete interval [0; 255]. The propagating signal coming
from 1 pixel is associated with an amplitude that is pro-
portional to the value of the gradient on the pixel. The
method was applied to real grey level images. The aim
in the example given in Fig. 4 is to find the two rails.
Fig. 4c shows that the two rails are efficiently retrieved.

The preprocessed image obtained after edge enhancing
contains 13 126 edge pixels. We further remind the reader
that the total number of operations is, respectively,
d� (10� N� 13� Npþ 10� N� 13þ (N/5) log2(N/5)) for
the extension of the Hough transform and
7 � Npþ d � (11þ 10 � N þ (N 2 1)2

þ (N 2 1)3) for the
high-resolution-based method. Then, the theoretical
complexity ratio is 42.8. In practice, on a 3.0 GHz PC, for
the estimation of the offsets, knowing the two orientation
values, the extension of the Hough transform takes 47.0 s,
whereas the variable speed propagation scheme associated
with the method MFBLP takes 1.1 s. The experimental
ratio is 42.7.

In order to check the accuracy of our theoretical com-
plexity determination, we measured the computational
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Fig. 2 Case of two parallel lines

a Initial image
b Result obtained with variable scheme method
c Result obtained with extended Hough transform

Table 1: Results obtained by extension of the Hough
transform and the variable speed propagation scheme

Offset 1 Offset 2

Real value 80 140

Variable speed propagation

scheme

80.75 140.85

Extension of the Hough transform 80.88 140.78

a b

Fig. 3 Isolated object

a Original image
b Superposition of the original image and the result obtained
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time for each method on images with two straight lines and
different noise percentage, on the same computer. For
images with two straight lines, 5, 8, 10, 20 and 25% of
noisy pixels, we computed the ratio between the experi-
mental values of the complexities of the extension of the
Hough transform and the high-resolution-based methods.
Table 2 gives for these noisy images and the real grey
level image of Fig. 4c the computational time of both
methods, the experimental computational time ratio, the
number Np of edge pixels and the theoretical complexity
ratio. We can draw the following conclusions on the
complexities of both methods: the complexity of the high-
resolution-based method does not depend on the number
of edge pixels and is more than ten times lower than the
complexity of the extension of the Hough transform as
soon as the image contains more than 10% of edge pixels.
When photographs (real grey level images) are treated,
the computational time ratio between the two methods
can be larger than 40 as for the case of Fig. 4, choosing
our programming methods. The small difference between
theoretical and experimental complexity values can be
due to the approximation made when the eigende-
composition was considered as dominating in the function
‘roots’ of the MFBLP method. For the three highly noisy
images, during the application of the extension of the
Hough transform, the presence of uniformly distributed
pixels provokes the appearance of a number of relative
maxima, which is larger than for the other images. This
leads to a longer computational time for the sorting
operation.

Knowing that the complexity of the orientation esti-
mation step is lower than the complexity of the offset
estimation step, if we make the reasonable assumption
that the microprocessors speed will rapidly increase,

our high-resolution-based set of methods could be
employed for a real-time industrial image processing
application.

4 Conclusion

We considered the problem of straight line parameters esti-
mation in images. By adopting a specific formalism, it is
possible to apply high-resolution methods coming from
array processing to the estimation of both angle and offset
of straight lines in an image. In this paper, we proposed
an efficient method for the estimation of the offsets.
Therefore, we obtained a coherent set of methods based
on the high-resolution methods of array processing, which
leads to the parameters of straight lines in an image, with
a precision that does not rely on computational load and
complexity.

This set of methods consists in the following steps: create
a signal from the image with a constant propagation
parameter and estimate the angles using the ESPRIT
algorithm [6]; create a signal from the image with a variable
propagation parameter and estimate the offsets with the
MFBLP method; plot the estimated straight lines, with the
angle and offset estimated values. Until now, the offset
values have not been obtained with a high-resolution
method. The proposed method is efficient when compared
with the extension of the Hough transform. It performs
well with parallel lines with close offset values. The use
of the MFBLP method leads to a precision on offset
estimation that is optimal and independent of the
computational load. The case of parallel lines can be
encountered in practical situations such as aerial image
analysis (the detection of the borders of a road) and parallel
lines fitting of a silicon wafer. We showed by theoretical

Table 2: Experimental and theoretical data concerning the complexity of the high-resolution-based method and the
extension of the Hough transform method

Noise level 5% 8% 10% 20% 25% Grey level image

High resolution: tHR, s 1.1 1.1 1.1 1.1 1.1 1.1

Hough transform: tHT, s 6.1 10 15.6 29 40 47

Experimental ratio: tHT/tHR 5.5 9.1 14.2 26.4 36.4 42.7

Np 2099 3217 4167 7846 9947 13126

Theoretical ratio 6.9 10.5 13.7 25.7 32.5 42.8

First line gives the type of image that is treated; second and third lines give the computational time in seconds, for both methods; fourth
line gives the ratio between these two values; fifth line gives the number of edge pixels, sixth line gives the ratio between theoretical
complexities, computed from the size of the images (200 � 200) and the number of edge pixels.

20 20 2040 40 4060 60 6080 80 80100 100 100120 120 120140 140 140160 160 160180 180 180200 200 200

20 20 20

40 40 40
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80 80 80

100 100 100

1 02 1 02 1 02

140 140 140

160 160 160

180 180 180

200 200 200

a b c

Fig. 4 Real grey level images

a Initial image
b Edge-enhanced image
c Superposition estimation (black lines) and initial image
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computations, and by an application to real grey level
images, that the computational cost of the proposed
method is lower than that of the well-known extension of
the Hough transform. This could allow in the near future
an application to real-time image processing in an industrial
context.
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