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ABSTRACT

Subspace-based methods rely on the selection of leading ei-
genvectors, associated with dominant eigenvalues. They have
been extended to tensor data processing, such as denoising.
Usually EVD (Eigenvalue Decomposition) is performed and
data projection on leading eigenvectors results in noise re-
duction. Tensor processing methods, in particular multiway
Wiener filtering algorithm, include an ALS (Alternating Least
Squares) loop, which involves several EVDs. Fixed point al-
gorithm is a faster method than EVD to estimate a fixed num-
ber of eigenvectors. In this paper, we adapt fixed point algo-
rithm to the estimation of only the required leading eigenvec-
tors in a tensor processing framework. We adapt inverse po-
wer method to estimate the required noise variance. We pro-
vide a comparative study in terms of speed through an appli-
cation to hyperspectral image denoising.

Index Terms— Algebra, Algorithms, Multidimensional
signal processing, Wiener filtering, Image restoration.

1. INTRODUCTION

Subspace-based methods consider significant and remai-
ning parts of the data. In particular, the eigenstructure of the
covariance matrix of signal realizations provides eigenvec-
tors which span the measurement space. Within the measu-
rement space, leading eigenvectors span the so-called ”signal
subspace” and the remaining eigenvectors span the so-called
”noise subspace”. Subspace-based methods were adapted to
multidimensional -also called tensor- data [1, 2, 3]. Tensor
data generalize the classical vector and matrix data to enti-
ties with more than two dimensions [2, 4]. In this paper, the
term tensor denotes a multiway (or multidimensional) array,
each array entry corresponding to any quantity. Tensor mo-
dels were adopted in chemometrics [4], for DS-CDMA sys-
tem characterization [5], for facial expression classification
by multilinear independent component analysis [6]. In par-
ticular, subspace-based methods are employed for data de-
noising [2]. They include ALS (Alternating Least Squares)
loops whose computational load is dominated by EVDs’ one.
Section 2 reminds the principles of multiway Wiener filte-
ring (MWF ). Section 3 states the issue solved in this paper,
that is, how to reduce the computational load of the ALS loop
in multiway Wiener filtering. Section 4 shows how to adapt

fixed point algorithm and inverse power method to obtain a
fast version of multiway Wiener filtering. Section 5 evaluates
the performances of the proposed method, especially in terms
of computational load, and with an application to hyperspec-
tral image (HSI) denoising.

2. OVERVIEW OFMULTIWAYWIENER FILTERING

The measurement of a multiway signal X by multicom-
ponent sensors with additive noise N results in a data tensor
R of order N from C

I1×···×IN such that : R = X +N . Let
us define E(n) as the nth-mode vector space of size In, as-
sociated with the nth-mode of tensor R. By definition, E(n)

is generated by the column vectors of the nth-mode flatte-
ning matrix. The nth-mode flattening matrix Rn of tensor
R ∈ C

I1×···×IN is defined as a matrix fromC
In×Mn , where :

Mn = In+1In+2 · · · INI1I2 · · · In−1. The goal of various
studies is to estimate the expected signal X thanks to a multi-
dimensional filtering of the data [2] :

X̂ = R×1 H(1) ×2 · · · ×N H(N), (1)

For all n = 1 to N , H(n) is the nth-mode filter applied to
the nth-mode of the data tensor R. In this paper, we assume
that noise N is independent from signal X , and that the nth-
mode rank Kn is smaller than the nth-mode size In (Kn <

In, for all n = 1 toN ). Then it is possible to extend the classi-
cal subspace approach to tensors by assuming that, whatever
the nth-mode, the vector space E(n) is the direct sum of two
orthogonal subspaces, namely E

(n)
1 and E

(n)
2 , which are de-

fined as follows :
• E

(n)
1 is the subspace of dimensionKn, spanned by the Kn

singular vectors associated with the Kn largest singular va-
lues of matrixXn ; E

(n)
1 is called signal subspace [7, 8, 9].

• E
(n)
2 is the subspace of dimension In − Kn, spanned by

the In − Kn singular vectors associated with the In − Kn

smallest singular values of matrix Xn ; E
(n)
2 is called noise

subspace [7, 8, 9].
Hence, one way to estimate signal tensor X from noisy data
tensor R is to estimate E

(n)
1 in every nth-mode of R. The

nth-mode filtersH(n), n = 1 to N , of Eq. (1) optimize an es-
timation criterion. The most classical method consists in mi-
nimizing the mean squared error criterion, given in Eq. (1),
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between the expected signal tensor X and the estimated si-
gnal tensor X̂ :

e(H(1), . . . ,H(N)) = E[‖X −R×1H
(1)×2 · · ·×N H(N)‖2].

(2)
Due to the criterion which is minimized, filters H(n), n = 1
to N , can be called nth-mode Wiener filters [1].

The minimization of Eq. (2) with respect to filter H(n),
for fixed H(m), m �= n, leads to the following expression of
nth-mode Wiener filter :

H(n) = γ
(n)
XR

Γ
(n)
RR

−1
, (3)

where γ
(n)
XR

= E
[
XnT(n)RT

n

]
. The expression of T(n) is

given in [2], and : Γ(n)
RR

= E
[
RnQ

(n)RT
n

]
, with : Q(n) =

T(n)T
T(n). To obtainH(n) through Eq. (3), we suppose that

the filters {H(m), m = 1 to N, m �= n} are known. Data
tensor R is available, but signal tensor X is unknown. So,
only the term Γ

(n)
RR

can be derived, and not the term γ
(n)
XR
.

Hence, some more assumptions on X have to be made in or-
der to overcome the indetermination over γ(n)

XR
[2]. In the one-

dimensional case, a classical assumption is to consider that a
signal vector is a weighted combination of the signal subspace
basis vectors. In extension to the tensor case, [2] proposed to
consider that the nth-mode flattening matrix Xn can be ex-
pressed as a weighted combination of Kn vectors from the
nth-mode signal subspace E

(n)
1 :

Xn = V(n)
s O(n), (4)

with Xn ∈ RIn×Mn , and V
(n)
s ∈ RIn×Kn being the matrix

containing theKn orthonormal basis vectors of nth-mode si-
gnal subspace E

(n)
1 . Matrix O(n) ∈ RKn×Mn is a weight

matrix and contains the whole information on expected si-
gnal tensor X . This model implies that signal nth-mode flat-
tening matrix Xn is orthogonal to nth-mode noise flattening
matrix Nn, since signal subspace E

(n)
1 and noise subspace

E
(n)
2 are supposed mutually orthogonal. Supposing that noise
N is white and independent from signal X , and introducing
the signal model of Eq. (4) in Eq. (3) leads to a computable
expression of nth-mode Wiener filterH(n) :

H(n) = V(n)
s γ

(n)
OO

Λ
(n)−1

Γs
V(n)T

s , (5)

where γ
(n)
OO

Λ
(n)−1

Γs
is a diagonal weight matrix given by :

γ
(n)
OO

Λ
(n)−1

Γs
= diag

[
β1

λΓ
1

, · · · ,
βKn

λΓ
Kn

]
, (6)

where λΓ
1 , . . . , λΓ

Kn
are the Kn largest eigenvalues of Q(n)-

weighted covariance matrix Γ
(n)
RR
. Parameters β1, . . . , βKn

depend on λ
γ
1 , . . . , λ

γ
Kn
which are theKn largest eigenvalues

of T(n)-weighted covariance matrix
γ

(n)
RR

= E[RnT(n)RT
n ], according to the following relation :

βkn
= λ

γ
kn
− σ

(n)2

Γ , ∀ kn = 1, . . . , Kn (7)

Superscript γ refers to theT(n)-weighted covariance, and sub-
script Γ to the Q(n)-weighted covariance. σ(n)2

Γ is the dege-
nerated eigenvalue of noiseT(n)-weighted covariance matrix
γ

(n)
NN

= E
[
NnT(n)NT

n

]
. Thanks to the additive noise and si-

gnal independence assumptions, the In −Kn smallest eigen-
values of γ

(n)
RR

are equal to σ
(n)2

Γ , and thus, can be estimated
by the following relation :

σ̂
(n)2

Γ =
1

In −Kn

In∑
kn=Kn+1

λ
γ
kn

. (8)

To determine the nth-modeWiener filtersH(n) that minimize
the mean squared error in Eq. (2), the ALS algorithm has been
proposed in [2].

3. PROBLEM STATEMENT

Among other computations, the ALS algorithm used in
MWF involves the computation of several EVDs, in the fol-
lowing steps, for each mode and each iteration index :
– Compute γ

(n)
RR

= E[RnR
(n),k
n

T

], determineλγ
1 , . . . , λ

γ
Kn
,

theKn largest eigenvalues of γ
(n)
RR
;

– Compute Γ
(n)
RR

= E[R
(n),k
n R

(n),k
n

T

], determine
λΓ

1 , . . . , λΓ
Kn
, theKn largest eigenvalues of Γ

(n)
RR

;

– For kn = 1 to In, estimate σ
(n)
Γ

2
thanks to (8) and for

kn = 1 toKn, estimate βkn
thanks to (7).

The numerical cost of the ALS loop is dominated by the one
of the EVDs which are performed therein. We seek for a fas-
ter method, which avoids eigenvalue decomposition. In [3],
higher order power method and higher order orthogonal ite-
rative algorithms are proposed instead of EVD to compute
the signal subspace vectors. For a fast estimation of possibly
multiple leading eigenvectors in each mode, various methods
were proposed [10, 11, 12]. For instance QR factorization
[10] is a fast method to estimate all eigenelements of any ma-
trix, but as we seek for only a few of them. So we propose the
fixed point algorithm which is presented in [13]. MWF re-
quires not only leading eigenvectors but also dominant eigen-
values and the noise variance. We propose to use the inverse
power method to obtain the noise power. With these two me-
thods, we show that the computational load is reduced while
keeping the same denoising performances.

4. PROPOSED FAST ALGORITHM

One way to compute the K orthonormal basis eigenvec-
tors of any matrix C is to use the fixed-point algorithm pro-
posed in [13].
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ChooseK , the number of required leading eigenvectors to be
estimated. Consider matrixC and set iteration index p ← 1.
Set a threshold η. For p = 1 toK :
1. Initialize eigenvector up, whose length is the number
of lines of C, e. g. randomly. Set counter it ← 1 and
uit

p ← up. Set u0
p as a random vector.

2. While
∣∣∣∣∣∣uit

p

T
uit−1

p − 1
∣∣∣∣∣∣ < η :

(a) Update uit
p as uit

p ← Cuit
p ;

(b) Do the Gram-Schmidt orthogonalization process
uit

p ← uit
p −

∑j=p−1
j=1 (uitT

p uit
j)u

it
j ;

(c) Normalize uit
p by dividing it by its norm : uit

p ←
u

it
p

||uit
p ||
.

(d) Increment counter it ← it + 1

3. Increment counter p ← p + 1 and go to step 1 until p
equalsK .

However, the fixed-point algorithm itself is not enough to re-
place EVD in the MWF ALS loop.MWF requires not only
leading eigenvectors for eachmode but also the associated do-
minant eigenvalues, and the weight matrix requires eigenva-
lues of signal and data covariance flattening matrices γRR

(n)

and ΓRR
(n), see Eq. (6). This can be achieved in MWF algo-

rithm by the following computationwhich yields the expected
eigenvalues :
V

(n)T

s γ
(n)
RR

V
(n)
s = diag{

[
λ

γ
1 , . . . , λ

γ
Kn

]
}.

In the same way, we have :
V

(n)T

s Γ
(n)
RR

V
(n)
s = diag{

[
λΓ

1 , . . . , λΓ
Kn

]
}.

Thus, βkn
can be computed following Eq. (7). But it also re-

quires the In −Kn smallest eigenvalues of γRR(n), equal to
σ

(n)
Γ , see Eq. (8). Thus, we adapt the inverse power method
to retrieve the smallest eigenvalue of γRR(n) in the following
algorithm :
1. Initialize randomly x0 of sizeKn × 1.

2. While ‖x−x0‖
‖x‖ ≤ ε do :

(a) x = γRR
(n)−1

· x0

(b) λ = ‖x‖

(c) x = x

λ

(d) x0 ← x

3. σ
(n)
Γ = 1

λ

Therefore, σ(n)2

Γ can be estimated and Eq. (6) can be compu-
ted in a fast way.
Let’s consider the computational loads of the proposed and
existing algorithms : The dominant operation in the ALS loop
used inMWF is the eigendecomposition of the size In × In

matrices γ
(n)
RR

and Γ
(n)
RR

(see section 3). So the computatio-
nal complexity of the ALS loop is of same order of magni-
tude as the one of either EVD (eigenvalue decomposition) or

fixed point algorithm. One well-known EVD method is the
Cyclic Jacobi’s method [12]. The Jacobi’s method which dia-
gonalizes a symmetric matrix requires around O(I3

n) compu-
tations [12]. Concerning the fixed point algorithm : Let It be
the number of iterations.
Gram-Schmidt orthogonalization for all basis vectors up and
all values p = 1, . . . , K : O(InK2It) operations ; updating
process for all p = 1, . . . , K basis vectors : O(I2

nKIt) ope-
rations. Then the estimated total number of operations is :
O(InK2It + I2

nKIt) ≈ O(I2
nK + InK2).

If In is large compared to K the computational complexity
can be estimated to be O(I2

n). Then, replacing SVD by fixed
point algorithm, the gain is of one order of magnitude.

5. SIMULATION RESULTS

The proposed method can be applied to any tensor data,
such as color image, multicomponent seismic signals, or hy-
perspectral images [2]. We exemplify the proposed method
with hyperspectral image (HSI) denoising. HSI data used in
the following experiments are real-world data collected by
HYDICE imaging, with a 1.5 m spatial and 10 nm spectral re-
solution and including 148 spectral bands (from 435 to 2326
nm). Then HSI data can be represented as a third-order ten-
sor, denoted by R ∈ RI1×I2×I3 . A multiway white Gaus-
sian noise N is added to signal tensor X . The SNRin (in
dB) in the noisy data tensor, R, is as follows : SNRin =

10 · log
(
‖X‖2

‖N‖2

)
. To quantify a posteriori the quality of esti-

mation, we define the SNRout (in dB) in the estimated tensor,
X̂ as : SNRout = 10 · log

(
‖X‖2

‖X−X̂‖2

)
where ‖ X − X̂ ‖2 is

the noise power in the denoised tensor. We consider HSI data
with a large amount of noise, by setting SNRin = 7.4 dB.
We process images with various number of rows and columns,
to study the proposed and compared algorithm speed as a
function of the data size. Each band has from I1 = I2 = 20
to 256 rows and columns. The number of spectral bands I3 is
fixed to 148. Signal subspace ranks (K1, K2, K3) chosen to
perform multiway Wiener filtering are (10, 10, 15). The num-
ber of iterations for fixed point algorithm is fixed to 5, and 5
iterations of the ALS algorithm are needed for convergence in
multiway Wiener filtering. We denote by MWF the multiway
Wiener filtering method that uses EVD, and by MWFFP the
multiway Wiener filtering method that uses fixed point algo-
rithm and inverse power method. Fig. 1 provides the evolution
of computational times for both MWFFP and MWF-based
tensor denoising, for values of I1 and I2 varying between
60 and 256. With a 3.0 Ghz PC running Windows, conside-
ring an image with 256 rows and columns, MWFFP-based
method leads to SNRout = 17.11 dB with a computatio-
nal time equal to 35 sec. and MWF-based method leads to
SNRout = 17.27 dB with a computational time equal to 17
min. 4 sec. Then the proposed method is 28 times faster, yiel-
ding SNRout values that differ by less than 1%. The propo-
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sed method is 20 times faster ifK1 = K2 = 20 andK3 = 30.
Fig. 2(a) is the raw image with I1 = I2 = 256, Fig. 2(b) pro-
vides the noised image, Fig. 2(c) and (d) are respectively the
results obtained by MWFFP and MWF algorithms.
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Fig. 1.Computational times (in sec.) as a function of the num-
ber of rows and columns : tensor lower-rank approximation
using MWFFP (-*-), MWF (-·-).
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(a) Raw HSI data (b) Noised HSI data
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Fig. 2. HSI image : Results obtained by lower-rank tensor
approximation using MWFFP or MWF.

6. CONCLUSION

We propose an algorithm that improves multiway Wie-
ner filtering in terms of computational load, by using fixed
point algorithm and inverse power method instead of EVD.
We adapt fixed point algorithm for the estimation of leading
eigenvectors and inverse power method for the estimation of
noise power to a subspace-based multiway denoising method.
We exemplify the proposed method on hyperspectral image
denoising when a low number of leading eigenvectors, com-
pared to the image size, are required to perform denoising.We
show that for images with 256 rows and columns, and com-
pared to the considered algorithms, the proposed accelerated

multiwayWiener filtering method using fixed point algorithm
is up to 28 times faster than the version using EVD. The su-
periority of fixed point algorithm respect to EVD is especially
pronounced for low values of signal subspace rank and large
matrix sizes. Further, multicomponent seismic signals or ar-
ray processing data could be considered.
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