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Abstract

The high resolution methods of array processing lead to
an improvement of the results obtained for source lo-
calization. By adopting specific conventions, it is pos-
sible to employ high resolution methods to character-
ize straight lines in an image. In this paper we pro-
pose an original method that leads to the estimation of
the parameter ”offset” of the straight lines. The pro-
posed method is fast and effective compared an exist-
ing method. An extension to non rectilinear contours is
developed.

Introduction

The array processing methods aim at characterizing sources.
The so-called high resolution methods allowed to im-
prove the spatial resolution for source localization [1].
By adopting some conventions it is possible to apply
these methods to the characterization of straight lines
in an image, by their parameters angle and offset. Some
methods have already been proposed in [3]. Neverthe-
less none of these methods leads to an entire character-
ization of the straight lines by means of high resolution
methods: either only the angles are estimated, or the Ex-
tension of the Hough Transform is employed for the es-
timation of the offsets. In this paper, a coherent set of
high resolution methods is proposed. We will show that
specific formalism and methods lead to the estimation of
the offsets. We will emphasize on the advantages of our
method respect to the Extension of the Hough Trans-
form. In particular, this method will be applied to im-
ages containing a roughly aligned set of points and to
real grey level images. An extended procedure is dedi-
cated to the characterization of non rectilinear contours.

1. THE DATA MODEL

Let I(x, y) represent image (Figure 1). We consider that
I(x, y) is compound of d straight lines and an additive
uniformly distributed noise. Moreover, in this model we
suppose that the numerical image I(x, y) contains only
binary pixels. The pixels ′1′ form the straight lines, they
are called ”useful pixels”, whereas the ′0′ pixels are as-
sociated to the background. The image size is N × N .
Each straight line in an image is associated to an off-
set x0 on the X axes and an angle θ, between this line

and the line of equation x = x0 (Figure 1). It is possible
to generate some signals out of the image data: In or-
der to establish the analogy between the localization of
sources in array processing and recognition of lines in
image processing, we consider the N lines of the image-
matrix as the N outputs of a linear array compound of
N equidistant sensors ranged along the image side. The
signal received by each sensor can be considered as the
result of the pixels of the corresponding line in the ma-
trix. We can therefore define the signal received by the
ith sensor as the superposition of the useful pixels be-
longing to the corresponding line. So there are d non
zero pixels on the ith line of the image-matrix, local-
ized on the columns x1, · · · , xd respectively; the signal
received by the sensor in front of the ith line, is [4]:

zi =

k=d∑
k=1

e−jµxk (1)

Where µ is a parameter that can be constant or variable -
constant or variable parameter propagation scheme-. Fig-
ure 1 illustrates the case of one line with angle θ and off-
set x0. In the presence of d different straight lines in the
image and an additive noise, the signal received on the
sensor i is:

zi =

k=d∑
k=1

ejµi tan(θk)e−jµx0k +ni, i = 0, · · · , N − 1

(2)
Starting from this signal, the ESPRIT [1] or Propaga-
tor [2] methods can be used to estimate the orientations
{θk} of the straight lines [3]. We propose in the follow-
ing a method for the estimation of the offsets.

Fig. 1. (a) The image-matrix provided with the coor-
dinate system and the rectilinear array of N equidistant
sensors. (b) A straight line characterized by its angle θ
and its offset x0.

IV - 9650-7803-8874-7/05/$20.00 ©2005 IEEE ICASSP 2005

Authorized licensed use limited to: FhI fur Integrierte Schaltungen Angewandte Elek. Downloaded on October 31, 2008 at 05:48 from IEEE Xplore.  Restrictions apply.



2. ESTIMATION OF THE OFFSETS

There exists a method for the estimation of the offsets
which is the Extension of the Hough Transform [3]. Con-
sidering the polar parametrization of straight lines, the
distances {ρk} of the corresponding normals are esti-
mated by projecting the image along the orientation θk

and by retrieving, for k = 1, . . . , d:

ρk = argmax
−
√

2N≤ρ≤
√

2N

i=Np∑
i=1

c (ρ − xi cos θk − yi sin θk)

(3)
where Np is the number of useful pixels having compo-
nents (xi, yi), contained in the image and c is a truncated
cosine function. The complexity of the method, with a
given step for the variation of ρ, is: O(d∗(10∗N ∗Np +
10 ∗ N)) � O(d ∗ 10 ∗ N ∗ Np).
The numerical cost of the algorithm is rather elevated
when the number of non zero valued pixels is elevated.

2.1. The variable speed propagation scheme

We propose another method that behaves better in terms
of complexity with complex images.

Signal generation The two main properties of the for-
malism used in the case of offset estimation are the fol-
lowing: the propagation speed is variable in function of
the line, and a high resolution method is applied several
times -for each orientation value- in order to retrieve off-
set values. The signal received on sensor i is then, when
the first orientation value is considered:

zi =

k=d1∑
k=1

e−jτx0kejτitan(θ1)+ni, i = 0, · · · , N−1

(4)
d1 is the number of straight lines with angle θ1. When τ
varies linearly in function of the line index the measure
vector z contains a modulated frequency term. Indeed
we set τ = αi.

zi =

k=d1∑
k=1

e−jαix0kejαi2tan(θ1) + ni (5)

This is a sum of d1 signals that have a common quadratic
phase term but different linear terms. The first treatment
consists in obtaining an expression containing only lin-
ear terms. This goal is reached by dividing zi by the non
zero term ai(θ1) = ejαi2tan(θ1). We obtain then:

wi =

k=d1∑
k=1

e−jαix0k + n
′

i, i = 0, · · · , N − 1. (6)

The resulting signal appears as a combination of d1 sinu-
soids or frequencies : fk = αx0k/2π, k = 1, · · · , d1.
Consequently, the estimation of the offsets can be con-
sidered as the frequencies estimation problem [5]. In
the following a high resolution algorithm, initially intro-
duced in spectral analysis [5], for estimating the offsets
is proposed.

2.2. The Modified Forward Backward Linear Pre-
diction method:

By adopting our signal model we adapt the spectral analy-
sis method called modified forward backward linear pre-
diction method (MFBLP) [5] for estimating the offsets:
We consider dk straight lines with given angle θk, and
apply the MFBLP method.
1) For a data vector w we form the matrix Q of size
2 × (N − L) × L:

Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

wL−1 wL−2 ... w0

wL wL−1 ... w1

wL+1 wL ... w2

. . . .

. . . .
wN−2 wN−3 ... wN−L−1

w∗
1 w∗

2 ... w∗
L

w∗
2 w∗

3 ... w∗
L+1

w∗
3 w∗

4 ... w∗
L+2

. . . .

. . . .
w∗

N−L w∗
N−L+1 ... w∗

N−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

We build the size 2 × (N − L) × 1 vector:

h =
[
wL, wL+1, ..., wN−1, w

∗
0 , w∗

1 , ..., w∗
N−L−1

]T

L is such that:

dk ≤ L ≤ N − dk/2

2) Calculate the singular value decomposition of Q:

Q = UΛVH

3) Form the matrix Σ setting to 0 the L − dk smallest
singular values contained in Λ.

Σ = diag {λ1, λ2, ..., λdk
, 0, ..., 0, 0, 0}

4) Form the vector g from the following matrix compu-
tation:

g = [g1, g2, ..., gL]
T

= −V ∗ Σ
′

∗ UHh

The pseudo-inverse of Σ, written Σ
′

, is obtained by in-
verting its non zero elements and transposing it.
5) Determine the roots of the polynomial function H ,
where

H(z) = 1 + g1z
−1 + g2z

−2 + ... + gLz−L

6) The dk zeros of H that are located on the unit circle
have as arguments the frequency values; these frequency
values are proportional to the offsets, the proportionality
coefficient being −α.

2.3. Numerical complexity of the proposed algorithm:

we remind that N is the size of one side of the image, L
is a parameter chosen close to N .

The successive operations and their respective com-
plexity are the following:
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• Signal generation: O(Np).

For each of the d directions found by the propagation
scheme:

• Creation of the matrix Q: O(2 ∗ (N − L) ∗ L) =
O(N) since N ≈ L,

• Singular value decomposition of Q: O((N−L)3+
N3) = O(N3),

• Creation of the matrix Σ: O(L) = O(N)

• Creation of the vector g: two matrix products with
complexity O(L) and a shift of the values of g:
O(L), give a total complexity O(L + L + L) =
O(N)

• Creation of the polynomial function H : O(L) =
O(N).

• Research of the zeros: the procedure ”roots” is
based on an eigen-decomposition of an L×L ma-
trix. Thus the complexity is O(N3).

The total complexity of the method is finally O(Np+
d ∗ N3) � O(d ∗ N3). We note that the complexity of
the method ”variable speed propagation scheme” does
not depend on the number of ”useful” pixels.

2.4. Simulation results

The images employed have size 200×200 pixels. The
propagation parameters values are µ = 1 and α = 2.5 ∗
10−3. L is equal to its maximum authorized value (close
to 200). Some results concerning binary images have al-
ready been proposed [1]. Figure 2 presents the result ob-
tained on an image containing a set of roughly aligned
points. The overall orientation of these points is effi-
ciently retrieved by the proposed method. The conven-
tions adopted in the constant speed propagation scheme
can be generalized to the problem of grey level images.
The modification respect to the initial formalism is the
following: the pixel values belong to the discrete inter-
val [0; 255]. The propagating signal coming from one
pixel is associated with an amplitude that is proportional
to the value of the gradient on the pixel. The aim in
the example given in Figure 3 is to find the two rails
of a real grey level image. The Figure 3(c) shows that
the two rails are efficiently retrieved. For the estimation
of the offsets, knowing the two orientation values, the
Extension of the Hough Transform lasts three minutes,
the variable speed propagation scheme associated to the
method MFBLP lasts five seconds.
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(a)initial image (b)estimation (c)initial image, estimation

Fig. 2. The main direction of a set of points
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(a)Initial image (b)Edge-enhanced image
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(c)Estimation (black lines), initial image

Fig. 3. Railway

3. ESTIMATION OF NON RECTILINEAR
CONTOURS IN AN IMAGE AS AN INVERSE

PROBLEM

In this section, a method is proposed for the estimation
of continuous non rectilinear contours. It relies on the
formulation of an inverse problem over the generated
signals and the determination of a phase model.

3.1. Temporal invariance of phase models in array
and image processing

The determination of the phases by High Resolution meth-
ods relies on the a priori knowledge of a model. This is
the case in particular for the wavefronts with incidence
direction θ on the array. This phase does not depend on
time: ∀ t, θ(t) is a constant θ. The phases are then con-
stant during the observation of the obtained signals.
The phase model introduced in the case of a straight line
contained in an image is

ϕi = −µ(i − 1) tan θ

3.2. From a wavefront to a distorted wave: instabil-
ity of the propagating medium

We assume here fictitious hypothesesmodelling the tem-
poral evolution of a propagating medium.

1. The ′0′ level pixels of the image correspond to the
propagating media.

2. At the instant (t = 0), an emitting source is lo-
calized in the propagation medium. One of the
incident wavefronts on the array sensors is con-
sidered as a straight line in the image. At the be-
ginning we will consider that the medium is ho-
mogeneous, linear and isotropic. Therefore the
medium is stable.

3. At an instant tlim, the propagating medium is no
longer stable. The waves emitted by the source
are disrupted and distorted.

4. In the course of time the medium (starting from
a given instant) finds anew a stability state that
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minimizes the perturbing contributions to which it
is submitted. The distorted curve contained in the
image to be studied is considered as a distortion
of a wave that follows the medium stabilization.

3.3. The inverse problem

An initialization step consists in determining a straight
line that fits a locally rectilinear portion of the curve to
be studied; we aim at determining the N unknowns of
the image xk, forming a vector Xinput and taken into
account in the sensor k:

zk = e−jµxk , ∀ k = 1, . . . , N

The observation vector obtained is

Zinput =
[
ejϕ1 , . . . , ejϕN

]T
(7)

with ϕk = −µxk. We aim at minimizing

J(Xl) = |Zinput − Zestimated for Xl
|2

For this purpose we use gradient with fixed step type
methods. The gradient is estimated by finite differences.
We stop when the gradient is under a threshold. The
series converges (k → +∞) towards a vector X̂ such
that

Zinput = Z
�X

that is to say X̂ is a local minimum argument of J . There
exist an N -uplet of relative integers written pl such that

Xinput = X̂ +
2π

µ
[p1, p2, . . . , pN ]T (8)

The next step concerns the determination of Xinput. The
uniqueness of the correct N -uplet for the reconstruction
of the distorted wave requires to determine at least one
of the components xl of X . At this stage of the method
the choice of an initialization by a convenient straight
line steps in.

3.4. Simulation results

Figure 4 presents the main steps of the method.

Fig. 4. (a)Initialization of the method (b)- Determina-
tion of the vector X̂ (c)-junction of the different parts of
the curve by determining the coefficients pl

4. CONCLUSION

By adopting a specific formalism, it is possible to apply
array processing methods for the estimation of both an-
gle and offset of straight lines in an image. An efficient
method for the estimation of the offsets was proposed.
Therefore we got a coherent set of methods based on
array processing that leads to the parameters of straight
lines in an image. Until now the offset values were ob-
tained with the Extension of the Hough Transform. The
proposed method is efficient compared to this method;
it performs well with roughly aligned points; moreover
by applying this method to real grey level images, we
showed that its computational cost is lower than the cost
of the Extension of the Hough Transform. The case of
non rectilinear contours was examined. Starting from
the results of the previous method, an extended method
enables the characterization of non rectilinear curves.
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ment partir d’une séquence d’images ”,
CD GRETSI 2001, Toulouse, september
2001.

[5] D.W. Tufts and R. Kumaresan, ”Esti-
mation of frequencies of multiple sinu-
soids: making linear prediction perform
like maximum likelihood”, Proc. IEEE,
vol. 70, pp. 975-989, sept.1982.

IV - 968

Authorized licensed use limited to: FhI fur Integrierte Schaltungen Angewandte Elek. Downloaded on October 31, 2008 at 05:48 from IEEE Xplore.  Restrictions apply.


