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ABSTRACT

Blurred contours are often sought in digital image process-
ing. Most of the existing techniques try to detect blurred
contours by fuzzy techniques. In this article, we propose
to model the blurred contours by generating the virtual sig-
nals from the image, and provide a new viewpoint to de-
tect blurred contour. Especially, the blurred contour with
exponential distribution can be presented by three parame-
ters. Then, array processing methods are adopted to estimate
these parameters, and optimization method is also consid-
ered when the spread parameter is estimated. Experiments
finally prove that the proposed methods estimate the param-
eters of blurred contours accurately and with a reduced com-
putational load.

1. INTRODUCTION

Blurred contours occur very often in images, owing to ob-
ject movements, light transmission environment, etc. Several
methods have been proposed for solving this problem. One
can distinguish two categories of methods: those which per-
form contour-based segmentation, and those which perform
region-based segmentation. Firstly, contour-based segmen-
tation methods consider blurred contours as textured regions
in the image, that is, a set of pixels which has a transverse
width of more than one pixel. These methods aim at de-
termining a mean position of the pixels of the textured re-
gion. In particular a recent model for active contours based
on techniques of curve evolution, which was adapted from
the level set paradigm, was proposed to segment contours
”without edges” [1].

Secondly, region-based segmentation methods rely on
the theory of fuzzy sets, to define membership functions and
classify the pixels. In particular, a blurred paradigm was
adopted in the frame of mathematical morphology to char-
acterize the repartition of objects in an image by ”fuzzy” re-
lationships [2]. In this fuzzy paradigm, one could localize an
object at left or at the right-hand side of another object. This
led in particular to applications for medical 3D image seg-
mentation [2]. Also, unsupervised segmentation was adapted
to classification by a fuzzy version of hidden Markov chains
[3]. In [3], a fuzzy membership function is added to a crisp
membership to characterize the values taken by the Markov
process and thereby classify pixels in an image.

Array processing methods, and in particular high reso-
lution methods [4], were adapted to contour characteriza-
tion [5, 6]: a specific signal generation scheme yields an
array processing signal model out of an image with 1-pixel
wide contours. High resolution methods could then be ap-
plied to distinguish close contours by considering them as

punctual sources. In this paper, we propose a novel approach
to characterize blurred contours, that is, contours which are
no longer one pixel wide but characterized by a spread pa-
rameter. For this, we derive a novel signal model. The ad-
vantage of the proposed model: it permits to characterize en-
tirely a linear blurred contour with three parameters orienta-
tion, offset, and spread. We adapt subspace-based methods
of array processing to provide an estimate of the orientation
and offset parameters. Then, DIRECT optimization method
is adapted to retrieve the spread parameters.

Section 2 states the blurred contour retrieval problem,
section 3 derives an array processing model out of signals
generated from the image. Section 4 adapts subspace-based
methods of array processing to estimate orientation and off-
set parameters of the blurred contours. Section 5 proposes
a method for the estimation of the blurred contour spread
parameters. Section 6 proposes a refined offset estimation.
Section 7 summarizes the proposed methods and section 8
presents experimental results.

2. PROBLEM STATEMENT

In this section, we provide the models that we adopt for the
processed image, for the gray level distribution of the con-
tours which are present in the image, and for the technique
which permits to generate a signal out of the image content.
Let I(i, l) be an N×C recorded image (see Fig. 1(a)). We
consider that I(i, l) is compound of a blurred contour and an
additive uniformly distributed noise. The blurred contour is
supposed to have width 2X f , main orientation θ , and cen-
ter offset x0. The contour gray level variation around its
main orientation in every row can be, in a general manner,
described by a decreasing exponential function; for exam-
ple, a Gaussian evolution depending on a spread parameter

σ : g(x) = 1√
2πσ
e
− x2

2σ2 = G e
− x2

2σ2 .

(a) (b)

Figure 1: (a) linear antenna model in an image containing a blurred line; (b) blurred
contours characterized by the main orientations θk and offsets x0k in the image
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If there are multiple blurred contours in the image, every con-
tour is characterized by the main orientation θk and the off-
set x0k (see Fig. 1(b)). Every blurred contour obeys Gaussian
distribution with the variance σk

2. We expect that such a con-
tour model facilitates the transfer of array processing meth-
ods to the considered parameter estimation issue. In order to
set the link between image data representation and sensor ar-
ray processing methods [7], array sensors are supposed to be
placed in front of each row or column of the image. Each sen-
sor receives the signal only from its corresponding row in the
matrix. All the pixels in the image are assumed to propagate
narrow-band electromagnetic waves with zero initial phases.
Furthermore, we assume that the waves emanating from pix-
els in a given row of the image matrix are confined to travel
only along that row towards the corresponding sensor.

We adopt the signal generation scheme proposed in [7]:

z(i) =
C

∑
l=1

I(i, l) e− jµl , i= 1, . . . ,N (1)

In the next section, we show that the adopted models and
signal generation process yield an array processing signal
model, which is handled by subspace-based methods of ar-
ray processing.

3. ARRAY PROCESSING SIGNAL MODEL

Firstly, we assume that the image contains only one blurred
contour of width 2X f , main orientation θ , offset x0, and

spread parameter σ . The signal generated on the ith sensor is
then expressed as:

z(i) = G ∑
X f
x=1 e

− jµ(x0+x−(i−1)tan(θ))e−
x2

2σ2

+ G ∑
X f
x=1 e

− jµ(x0−x−(i−1)tan(θ))e−
x2

2σ2

+ G e− jµ(x0−(i−1)tan(θ))

(2)

That is:

z(i) = G ∑
X f
x=−X f e

− jµ(x0+x−(i−1)tan(θ))e−
x2

2σ2

= G e− jµx0e jµ(i−1)tan(θ) ∑
X f
x=−X f e

− jµxe−
x2

2σ2

(3)

where G is the maximum gray level value in the image, and
X f is the half-width of the contour. If σ is small enough com-
pared with the number of columns in the image, we can turn
the considered discrete calculation into a continuous case cal-
culation. Eq. (3) becomes:

z(i)≈ G e− jµx0e jµ(i−1)tan(θ) ∫ +∞
x=−∞ e

− jµxe−
x2

2σ2 dx
(4)

A general formula provides the equality:

∫ +∞

x=−∞
e−ax

2+ jbxdx=

√

π

a
e−

b2

4a (5)

It is easy to express eq. (4) by

z(i) =
√
2πG e− jµx0e jµ(i−1)tan(θ)σe−

µ2σ2

2 (6)

Eq. (6) is the signal in the i-th row in the case where there
exists only one blurred contour in the image.

Secondly, we consider the case where the image contains:

• d blurred contours, with orientations θk, offsets x0k, and
spread parameters σk (k = 1, . . . ,d);

• identically distributed noise pixels.

The expression of the received signal by ith sensor becomes:

z(i) =
√
2πG ∑dk=1 e

− jµx0ke jµ(i−1)tan(θk)σke−
µ2σk

2

2 + n(i)
(7)

where n(i) is a noise term originated by the noise pixels
during the signal generation process. The expression of the
signal components in Eq. (7) permits to adopt the notations
coming from array processing. We define:

1. the source amplitude associated with the k-th contour as:

s(k) = G e− jµx0k ∑
X f
x=−X f e

− jµye
− x2

2σk
2
, k = 1, · · · ,d.

When the continuous approximation holds, the source
amplitude components are expressed as:

s(k) =
√
2πGe− jµx0kσke

− µ2σk
2

2 ,k = 1, · · · ,d (8)

2. the steering vector associated with the k-th contour as:

c(θk) = [c1(θk),c2(θk), · · · ,ci(θk), · · · ,cN(θk)]T , with

ci(θk) = e
jµ(i−1) tan(θk).

3. the noise vector n= [n(1),n(2), . . . ,n(N)]T .

These notations permit to express the signal generated out of
the image in a matrix form:

z= C(θ )s+n (9)

where:
z= [z(1),z(2), . . . ,z(N)]T , C(θ ) = [c(θ1),c(θ2), · · · ,c(θd)],
s= [s(1),s(2), · · · ,s(d)]T .

Eq. (9) shows that, by adopting the signal generation
scheme of Eq. (1) and the proposed model for blurred con-
tours, we can make an analogy between the signals gener-
ated out of the image and an array processing signal model.
Therefore, we expect that array processing methods can yield
the parameters of the expected contours.

4. SUBSPACE BASED METHODS OF ARRAY
PROCESSING FOR ORIENTATION AND OFFSET

ESTIMATION

4.1 Estimation of the blurred contour main orientation

An array processing method can be applied to the generated
signal provided in eq. (9), to characterize the contours in the
image by retrieving their parameters. However, for the sig-
nal generated from the image, which is time-independent, we
can not get any sample series, so a subspace-based parame-
ter estimation method such as MUSIC can not be directly
adapted to the image signal [8]. We have to simulate artifi-
cially multiple signal measurements out of a single sample
array data by splitting the array (of length N) into smaller
overlaying sub-arrays (of length M). This is called spatial
smoothing technique. There exist a constraint on M, and a
relationship between N, M and the number of snapshot P:
d <M ≤ N−d+1; andM = N−P+1. For details, refer to
[7]. From the observation vector z we obtain P overlapping
sub-vectors. By grouping all sub-vectors obtained in matrix
form, we obtain

ZP = [z1, · · · ,zP] (10)
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where
zp =CM(θ )sp+np, p= 1, · · · ,P. (11)

Each column ofCM(θ ) is a vector of lengthM expressed as:

c(θk) = [c1(θk),c2(θk), · · · ,ci(θk), · · · ,cM(θk)]T , with
ci(θk) = e

jµ(i−1)tan(θk), and
sp = [sp(1),sp(2), · · · ,sp(d)]T where

sp(k) =
√
2πGσke

− jµx0ke
−µ2σ2

k
2 e j(p−1)µtan(θk), p =

1,2, · · · ,P.
The covariance matrix of all sub-vectors of Eq. (10) is
defined by:

Rzz =
1

P

P

∑
p=1

zpzp
H (12)

where (.)H denotes Hermitian transpose. We operate the sin-
gular value decomposition (SVD) of Rzz.

Rzz = [U1 U2]Λ V (13)

For independent sources, the columns of matrix
U1 (M× d) span the signal subspace, the columns of
matrix U2 (M× (M− d)) span the noise subspace, and
Λ = diag(λ1,λ2, · · ·λd) where λi is the eigenvalue associ-
ated with the ith eigenvector. Hence, U2 is orthogonal to
the steering vectors c(θk) , k = 1, . . . ,d. We estimate the θk
parameters (k = 1, . . . ,d) through the maxima of the pseudo
spectrum [8] given by

MUSIC(θk) =
1

‖ cH (θ ) ·U2 ‖2
(14)

where cH (θ ) is a model for the signal subspace vectors.

4.2 Estimation of the blurred contour offset

Once the orientation values are known, the offset values
can be estimated by variable speed generation scheme [6]
and TLS-ESPRIT algorithm [7]. Variable speed propagation
scheme consists in setting µ = α(i− 1). Eq. (7) becomes:
z(i) =

√
2πG ∑dk=1 e

− jα(i−1)x0ke jα(i−1)2tan(θk)σke−
(α(i−1))2σk

2

2 + n(i)
(15)

We can consider for instance the first orientation θ = θ1.
As θ1 value has been estimated, we can divide z(i) by

the term e jα(i−1)2tan(θ1). We obtain:

w(i) = z(i)/e jα(i−1)2tan(θ1) =

√
2πG e− jα(i−1)x01σ1e

− (α(i−1))2σ1
2

2 + n′(i) (16)

where n′(i) is a noise term resulting from the influence noisy
pixels and all but the first contour.
At this point, the value of σ1 is not known and we propose
an approximation which permits to get momentarily a gross
estimate of x01 without the prior knowledge of σ1. If the
propagation parameter α is chosen such that α(i− 1) <<
1, ∀ i= 1, . . . ,N, we can adopt the following approximation:
w(i)≈ w̃(i) =

√
2πG e− jα(i−1)x01σ1+ n(i) (17)

The signal w̃ = [w̃(1), w̃(2), . . . , w̃(N)] fits the model re-
quired by the frequency estimation TLS-ESPRIT method [7]
which retrieves the first offset value x01 from Eq. (17).

The division process of Eq. (16) and the adaptation
of TLS-ESPRIT method are repeated for each value k =
1, . . . ,d. At this point a gross estimate of the offset values
is available, which will be used to estimate the spread pa-
rameter values.

5. DIRECT METHOD FOR SPREAD PARAMETER
ESTIMATION OF THE BLURRED CONTOURS

In this subsection we propose a least-square criterion which
involves the signal generated out of the image and the signal
model of Eq. (9). This criterion depends on the parameters
of all contours. We adapt DIRECT optimization method to
retrieve the spread parameter values by minimizing this cri-
terion.

5.1 Least-squares criterion derivation

The contour orientations estimated by MUSIC algorithm are
used to compute the steering matrix C(θ ) (see Eq. (9)).
The source vector s depends not only on the offset param-
eters x0k (k = 1, . . . ,d), but also on the spread parameters
σk (k = 1, . . . ,d). Therefore we propose to retrieve the com-
ponents of the source vector s, through the following crite-
rion minimization:

ŝ= argmin
s

||Z−Cs||2 (18)

It is easy to show that the density function of the mea-
surement noise is Gaussian if the outliers are identically
distributed over the image [7]. Therefore, the above least-
squares problem provides the maximum likelihood estimate
for the source vector. The relationship between the source
vector components and the spread parameter values is given
by (see eq. (8)):

s(k) = f (σk) =
√
2πGσke

− jµx0ke−
µ2σk

2

2 (19)

We denote by σ = [σ1, . . . ,σd ]
T

the vector con-
taining all spread parameter values, and by f(σ) =

[ f (σ1), . . . , f (σd)]
T = [s(1), . . . ,s(d)]T the source vector. We

denote by σ̂ = [σ̂1, . . . , σ̂d ]
T
the vector containing the esti-

mates of all spread parameter values. From eqs. (18) and
(19), we get:

σ̂ = argmin
σ

||Z−Cf(σ)||2 (20)

which can be expressed as:

σ̂ = argmin
σ

(J(σ)) (21)

where J denotes the criterion to be minimized. To solve eq.
(21) and minimize criterion J, we adopt a recurrence loop to
modify recursively vector σ̂ . The series vectors are obtained
from the relation ∀q ∈ N:

σ̂q → f(σ̂q)→ J(σ̂q) (22)

When q tends to infinity, the criterion J tends to zero and
σ̂qk = σk, ∀ k = 1, . . . ,d. To carry out this recurrence loop,
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we adopt the robust DIRECT (DIviding RECTangles) opti-
mization method [9]. DIRECT method is initialized by σ̂0,
and a research space which is an acceptable interval for each
value. Vector σ̂0 and the research space are a priori fixed by
the user. The main property of DIRECT is that it is able to
obtain the global minimum of a function. DIRECT normal-
izes the research space in a hypercube and evaluates the so-
lution which is located at the center of this hypercube. Then,
some solutions are evaluated and the hypercube is divided
into smaller cubes, supporting the zones where the evalu-
ations are small. When the required number of iterations
q = It is reached, DIRECT provides the estimated vector of
spread parameters σ̂ It = [σ1,σ2, . . . ,σd ].

6. REFINED ESTIMATION OF THE OFFSET
VALUES

The knowledge of all spread values σk, k = 1, . . . ,d permits
to avoid the approximation made in section 4, which led to
signal components w̃(i) out of signal components w(i) (see
Eq. (17)). Starting from the expression of w(i) in Eq. (16),
we derive the signal ω(i), i= 1, . . . ,d:
ω(i) =

w(i)/(
√
2πσ1e

− (α(i−1))2σ1
2

2 ) = G e− jα(i−1)x01 + n′(i) (23)

where n′(i) is a noise term resulting from the influence of all
but the first contour. The signal components ω(i) fit TLS-
ESPRIT method, which is applied d times to retrieve the ex-
act offset values x0k, k= 1, . . . ,d.

7. SUMMARY OF THE PROPOSED ALGORITHM

An outline of the proposed blurred contour estimation
method is given as follows:

• find out the mean position of the pixels of the contour:

– choose µ as a constant value, and estimate the orien-
tations θk (k = 1, . . . ,d) by MUSIC method;

– choose µ as a variable value µ = α(i− 1), and es-
timate the offsets x0k (k = 1, . . . ,d) by TLS-ESPRIT
method;

• estimate the spread parameters σk (k = 1, . . . ,d) through
the minimization of a least-squares criterion by DIRECT
optimization method;

• obtain a refined estimation of x0k (k = 1, . . . ,d), with the
knowledge of the previously estimated σk values.

8. EXPERIMENTAL RESULTS

8.1 Hand-made images

In all numerical experiments, we consider images of size
N ×N where N = 200. At the same time, all experiments
are performed on a computer equippedwith 2.83GHz 2 Quad
CPU and 4Go memory. As concerns parameter µ , [7] pro-
vides a study that gives the maximum value of an estimated
orientation. Adequate parameters are µ = 10−1, to esti-
mate the orientation parameters with MUSIC method, and
µ = 10−3, to estimate the spread parameters with DIRECT
methods. The value of α is set as 2.5 10−3.

• Case 1: the spread parameters of two blurred contours
have both large values.

Fig. 2 exemplifies the case where the spread parameters
are 8 and 8 respectively, the center offsets of two blurred

contours x01 = 150 and x02 = 40, and the main orientation
of two contours are θ1 = 10◦ and θ2 = −10◦. The proposed
method is compared with Chan and Vese’s level set method
[1], which meant to delimitate blurred contours.
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Figure 2: (a) processed image with two blurred contours; (b) pseudo spectrum
when MUSIC algorithm is exploited; (c) estimation by the proposed method; (d) su-
perposition of the initial image and Chan and vese result

Orientation values are estimated as 10◦ and −10◦. For
this, signal generation and MUSIC algorithm lasts 0.069 sec.
Offset values are estimated as 150 and 40. For this, TLS-
ESPRIT algorithm lasts 0.17 sec. The spread parameters
are estimated as 8.01 and 7.98 by 15 iterations of DIRECT
in 0.053 sec. From Fig. 2(d), we can see that Chan and
Vese method provides a boundary for the two expected con-
tours. Namely, the method converges, and the active contour
stops inside the blurred boundaries of the object. However,
we denote that the proposed method characterizes the whole
contour including grey level variation, whereas the levelset
method considers local properties to stop the evolution of the
active contour.
• Case 2: concurrence between blurred contour and high-
contrast contour in the image.

In the following experiment, we try to detect the image
including blurred contour and high-contrast, one pixel wide
contour. The main orientation of blurred line is 10◦, its offset
is 150, and the spread parameter σ is 8. For the high-contrast
straight line, its orientation and offset are −10◦ and 40.
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Figure 3: (a) processed image; (b) contour center pixels;(c) superposition of the
initial image and the center pixel estimation

From Fig. 3, the estimated orientation of blurred contour
is 10◦. The offset is estimated as 149.6 pixels. The estimated
spread parameter is 8. The detection of high-contrast line
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contour is characterized by the estimated orientation −10◦
and offset 40.3. The estimated spread parameter is found to
be 0.01. So the bias on the estimated parameters is always
1% or less.

8.2 Real-world images

We consider the estimation of the cinematic parameters of
multiple objects in an image. In [10], a technique is proposed
for estimating the parameters of two-dimensional (2-D) uni-
form motion of multiple moving objects in a scene, based
on long-sequence image processing and the application of a
multi-line fitting algorithm.

Figure 4: Motion estimation: image sequence and trajectories [10]

A specific formalism and a line detection algorithm
yields the cinematic parameters of the objects [10]. How-
ever the proposed method does not take into account the
variation along time of the cinematic parameters of the ob-
jects. Fig. 4 shows the first and last images among a set
of 100 images representing two helicopters moving on a
fixed background with a supposedly uniform speed. Esti-
mated cinematic parameters [10] are v1x = 1.1 pixels/frame
and v1y = −0.2 pixels/frame; v2x = −1.5 pixels/frame and
v2y = 0.9 pixels/frame. This estimation would be valid for a
punctual object and a constant speed. The trajectory is not a
straight line because of the size of the object and the slight
speed variations.
We propose to measure the imprecision due to the size of the
object and the speed variation. Fig. 5 is the bottom right im-
age of Fig. 4. By estimating the spread parameter σ for the
two contours, we deduce the accuracy of the estimation of
the cinematic parameters. In this case the estimated spread
parameters are σ1 = 10 and σ2 = 15, which yields a maxi-
mum bias on the trajectory slopes and thereby on the speeds
of ∆v1y = σ1/N = 5% and ∆v2y = σ2/N = 7.5%.

9. CONCLUSION

We show in this paper how array processing and DIRECT
optimization method can be applied to characterize blurred
contours in images. In particular we propose a model for
blurred contours. We show that, with an adequate signal
generation technique, we obtain signals which follow an ar-
ray processing model. We adapt subspace-based methods of
array processing to retrieve the orientation and a gross esti-
mate of the offset of the blurred contours. We propose an
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50 100 150 200

50

100

150

200

Figure 5: Trajectory characterization

adequate optimization strategy to retrieve the spread param-
eters of all contours. Then, we obtain the exact offset values
with the knowledge of the spread parameters. Experimental
results obtained on hand-made images and real-world ma-
chine vision images proved the efficacy and the interest of
the proposed method.
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