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Abstract. In the framework of wave propagation, finite difference time domain (FDTD) algorithms, yield high
computational time. We propose to use morphing algorithms to deduce some approximate wave pictures of their
interactions with fluid-solid structures of various shapes and different sizes deduced from FDTD computations
of scattering by solids of three given shapes: triangular, circular and elliptic ones. The error in the L? norm
between the FDTD solution and approximate solution deduced via morphing from the source and destination
images are typically less than 1% if control points are judiciously chosen. We thus propose to use a morphing
algorithm to deduce approximate wave pictures: at intermediate time steps from the FDTD computation of
wave pictures at a time step before and after this event, and at the same time step, but for an average frequency
signal between FDTD computation of wave pictures with two different signal frequencies. We stress that our
approach might greatly accelerate FDTD computations as discretizations in space and time are inherently
linked via the Courant—Friedrichs-Lewy stability condition. Our approach requires some human intervention
since the accuracy of morphing highly depends upon control points, but compared to the direct computational
method our approach is much faster and requires fewer resources. We also compared our approach to some
neural style transfer (NST) algorithm, which is an image transformation method based on a neural network. Our
approach outperforms NST in terms of the L? norm, Mean Structural SIMilarity, expected signal to error ratio.
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1 Introduction

Numerical simulations for elastodynamic wave propaga-
tion in complex media require huge computing resources
and even with parallel computing resources, the compu-
tations may last many hours (for 2D configurations) or
many days (in 3D). Elastodynamic waves play a key role in
well-established research topics including medical imaging
[1] and site-city interactions [2], at small and large scales,
respectively. Research in seismic metamaterials (SM) that
tarted with large scale experiments on the control of surface
Rayleigh waves in structured sedimentary soil near the
French Alpine city of Grenoble in 2012 [3] has led to
numerous numerical investigations of their properties with
finite element commercial softwares in the frequency
domain [4-6], and also with spectral finite element [7-9]
and finite difference time domain (FDTD) [10] freewares in
the time domain. Research in SM is based upon bold
analogies with electromagnetic metamaterials [11], that
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benefit from the invariance of Maxwell’s equations under
coordinate changes [12], that underpin perfectly matched
layers (PMLs) [13]. PMLs are essential when dealing with
scattering problems in unbounded domains. However,
research advances in SM are hindered by the complex
nature of soil (e.g. its heterogeneity) and the size of the
computational domain required to accurately model the
interaction of elastodynamic waves with structural ele-
ments added to the bare soil. The governing equations for
linear elasticity are not formed invariant, which makes
PMLs a more delicate matter than in electromagnetism
[14]. Moreover, when designing an SM, one needs to play
with the size and shape of inclusions in soil, as well as their
spacing and other geometric and elastic parameters to
achieve the required effect (shielding, absorption and
deflection). However, for each parameter change, all the
computations have to be redone. This is actually only the
tip of the iceberg as SM genuinely undergo nonlinear effects
that make the direct numerical simulations even more
challenging. Bearing in mind the complexity of the direct
problem, solving an optimization inverse problem seems
thus hardly tractable. To circumvent this obstacle, our idea
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is to deduce intermediate results between two calculated
results without having to recalculate anything. In other
words, our objective is not to obtain the most accurate
result, but to obtain an acceptable result in a very short
period of time and small computational resources, so that
we can move toward the best setting of parameters for our
numerical simulations, as quickly and efficiently as
possible. Now the point is how to proceed to make this
idea come true. Photonics has entered the era of deep
learning, neural networks and artificial intelligence, see e.g.
[15], and such tools can be easily translated to the realm of
acoustics [16], due to the similar structure of the governing
equations. However, correspondences between governing
equations for electromagnetic and elastodynamic waves are
less straightforward, so we will see and check which
technologies may be used to reach our goal.

Metamaterials do not escape the need for optimization
[15,17,18], in particular with the prowess achieved by
artificial intelligence, in the broadest sense, and more
precisely by neural networks [18]. Actually, only a few
papers deal with the application of neural networks to
metamaterials. For instance, Pomot et al. proposed a
genetic algorithm to optimize the structure of an invisibili-
ty cloak in the framework of acoustic wave propagation in
metamaterials [19], but this is another approach to the
optimization of a metamaterial. Among the various kinds
of neural networks, there is the technique of the Neural
Style Transfer (NST) [20,21], which consists of the
transformation of an image into another with an iterative
process. In the present work, NST is used as a comparative
method.

In a recent work [22], some of us proposed to apply the
computer graphic technique of morphing [23] — which
consists in transforming an image into another with a series
of intermediate images — to the field of photonics (in the
case of cylindrical media allowing for a split of the vector
problem into s and p polarizations). Governing equations
for electromagnetic waves in such cylindrical media (i.e.
invariant along z3) have the following form:
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with u3= Hy the longitudinal magnetic (resp. uz= Ej3
electric) field unknown, 7 the anisotropic permittivity
(resp. permeability) and & the permeability (resp.
permittivity) in s (resp. p) polarization. Moreover, d/0 z;
and d/dt denote the partial space and time derivatives,
respectively, and fis the source term. In [22], f had some
time-harmonic dependence exp(iwt), with w the angular
wave frequency. Thus, the solution was assumed to be
time-harmonic in (1) and the second derivative in time was
replaced by —”.

Morphing was applied in a way that is similar to some
techniques used in the transformational optics (TO)
domain. In TO, a Cartesian grid is deformed to control
in some desired manner the trajectory of light. In
metamaterials, a grid or a Delaunay mesh is transformed

in a similar way [24]. In [22], we essentially worked with the
time-harmonic Maxwell’s system in a cylindrical setup
whereby the governing partial differential equations
(PDEs) have scalar-valued unknowns. In [22], we empha-
sized the potential use of morphing as a mean to speed up
computations by deducing the wave pattern induced by the
scattering by, say an elliptical obstacle of eccentricity
(a+b)/2 from the knowledge of the wave patterns from
elliptical obstacles of eccentricities a and b.

The FDTD method is an iterative process introduced
by Kane Yee in 1966 in a seminal article [25] about the
application of centered finite difference operators on
staggered grids in space and time for each electric and
magnetic vector field component in Maxwell’s curl
equations. The general principle of FDTD is that the
wave field meshes, and the calculation of the wave
propagation in each node is based on the wave propagation
in the nearest nodes from the considered node. Following
its success in computational electromagnetics, FDTD was
later adapted to elastic wave propagation problems. The
FDTD is completely different from the finite element
method (FEM) which is based upon variational (or weak)
forms of governing equations. Moreover, in stark contrast
to FDTD, FEM originates in problems of elasticity [26,27]
and it consists in applying a wave propagation function to
all the nodes of the mesh at the same time. The traditional
FEM leads to spurious modes in electromagnetics, and thus
finite edge elements have been developed to circumvent
such technical obstacles [28].

We note that results in [22] hold for acoustic waves, in
which case n;, in equation (1) stands for the anisotropic
density and « in the inverse of the bulk modulus. Equation (1)
is also valid for anti-plane elastic waves in cylindrical media,
in which case n;,stands for the anisotropic shear modulus and
k for the density.

Here, we would like to demonstrate that results in [22]
can be extended to PDEs with vector-valued unknowns
such as in problems for in-plane coupled shear and pressure
waves in cylindrical isotropic media. Such elastodynamic
problems are modeled by the Navier equation
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where C is the rank-4 (symmetric) elasticity tensor with
entries O@y’kl:)\vfszfskl“r M(8Lk3811+8tlajk)) i, j, k‘, = 1, ey d, A
and u being the Lamé parameters and p the mass density.

Equation (2) reduces to (1) when we assume the
displacement field has the form (0, 0, uz) (1, 22, t). We note
that these are two hyperbolic PDEs that become elliptic
PDEs when a time-harmonic dependence is assumed, such
as in [22]. Numerical schemes for solving hyperbolic and
elliptic PDEs are very different, and thus is it is far from
obvious that morphing would help accelerate numerical
simulations for the former, even if this was successful for
the latter.

In the present paper, we want to focus on the in-plane
case for which the displacement has the form (uy, ug, 0)(zy,
o, t) and so d= 2 in equation (2). We will focus on the case
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of hyperbolic PDEs, and so we face the double challenge of
moving from scalar elliptic PDEs to vector hyperbolic
PDEs.

However, if morphing works it will allow us to overcome
the convergence criterion for numerical methods such as for
FDTD, which is known as Courant-Friedrichs-Lewy
(CFL) condition [29]. CFL is a necessary condition for
convergence of hyperbolic PDEs:
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where C'is the Courant constant and C,,,, is linked to the
largest speed of elastic waves in the simulation. More
precisely, Atis the time step (whose dimension is time) and
Azis the length interval (whose dimension is length) in the
FDTD scheme. Moreover, v, and v, are the velocity
amplitudes associated with u; and u,. We note that C'is
dimensionless and so is C,,«. In most situations, the user
has to choose Cy,.., as the exact value for the largest speed
of sound present in the simulation. However, if a user wants
to run several simulations with different media then things
become more complicated.

In this 2D study, we need to fulfill the following CFL
criterium
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with Chax=1.5mm/ws. We consider a grid step Az=0.1
and so the time step is set as At = 0.99Ax/(\/§C’max).

Clearly, morphing is foreign to the CFL condition in the
case of a linear phenomenon. Indeed, morphing is just a
linear interpolation on the shapes and the colors between
two images computed wvia FDTD. Since they were
computed via FDTD, these two images respect the CFL
conditions, and since morphing transforms, in a linear way,
the first image into the second one, by proportionality of
the linear phenomenon it also respects the CFL conditions.
So, for a linear wave propagation phenomenon, there is no
stability rule to be applied on morphing as it is simply
based on some image treatment. We keep in mind that if
we were to study a non-linear problem, the proportionality
rule would no longer apply and thus linear interpolation of
two images with morphing would not be appropriate to
accelerate numerical simulations. Thus, it is interesting to
check whether or not one can interpolate elastic fields
computed via FDTD at different time steps to almost
immediately retrieve elastic fields at intermediate time
steps with reasonable accuracy. Similarly, it is interesting
to check if morphing can be used to interpolate elastic fields
computed for sources at different frequencies.

First of all, we show how we have built our tests. Then,
we have three sets of tests: the first one is based on isosceles
triangles, the second one on convex lenses, and the last one
on a Luneburg lens. In our first tests, we remind how we
used the morphing applied in the space domain, with this
small difference that now we are working on elastic waves
(using FDTD computations) and no more in TO.

At < (4)

Here, we further show that morphing can be used in the
time domain. However, one could also argue that the
morphing technique can be applied not only to changes of
shapes of physical domains but also to changes in time (in
actuality, morphing came from the field of computer-aided
animation, intermediate images being deduced by morph-
ing to make movies more fluid [30]).

Then, we describe the morphing principle applied to the
propagation of acoustic (pressure and shear) waves
generated by a Gaussian pulse and scattered by aluminum
lenses of varying thicknesses in water, at the same time-
step. We also describe the application of morphing to the
same kind of waves scattered by an aluminum lens of a
given thickness at different time steps.

In the end, we go back to the frequency domain (time-
harmonic elastic waves, i.e. an acoustic signal periodic in
time), and we apply morphing to deduce the wave pattern
at a given frequency sandwiched between two frequencies
where the wave pattern has already been computed.

Note that for these last two applications (in the time
domain and in the frequency domain), we also compare the
style transfer method to the use of the morphing technique.

The outline of the paper is as follows. In Section 2, we
explain what morphing is, how it works, we show how we
have built our tests and how we proceeded with them. In
Section 3, we show results achieved via morphing and we
compare them against those obtained by computation. We
measure the differences between these two methods
(morphing-assisted computations versus fully numerical
solutions). In Section 4, we discuss the strength and
weakness of morphing as an acceleration tool for FDTD,
and more generally for numerical simulations involving
hyperbolic PDEs. In Section 5, we draw some concluding
remarks.

2 Morphing algorithm: principles
and illustrative examples

In what follows, we make use of two free-wares [31,32] for
respectively morphing [31] and FDTD [32] algorithms, but
of course, other softwares could equally well be used for our
purpose. Note that we have used a desktop computer
running under Windows 10 64 bits, with a processor at
3.70GHz and 64Go of RAM.

2.1 Definitions

We shall use the following two definitions to evaluate the
difference between images. First, following [22], we
introduce

) 1 N /P2
L norm = NXZ 255 (5)

i=1

where the sum is taken over all the N pixels (P;),_; y in
the grayscale image P, and each pixel P; has a value
between 0 and 255, see Figure Al in Appendix.
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Fig. 1. Shapes of obstacles: (a) For each isosceles triangle, the point force (directed along the 1 axis) is located at the center of gravity
of the triangle and the density outside the triangle is ten times larger than inside the triangle. Moreover, starting from this equilateral
triangle of base 20 cm, and a height H equal to 10v/3 cm, we have built three isosceles triangles keeping always the same base of 20 cm
but increasing each time the height H as follows: four-thirds of H for the first isosceles triangle, five-thirds of H for the second isosceles
triangle, and six-thirds of H for the last isosceles triangle. (b) A convex lens (of maximum half-width H) with a point force (directed
along the @, axis) above it. (¢) A layered Luneburg lens (a disk surrounded by 10 concentric layers) with a point force (directed along ;)
on its left side. The density of disk, layers, and the surrounding medium, appears on the color scale (in units of 10° kg.mfl).

Next, starting from all three components (red, green
and blue) of all N pixels both in the colored image of the
calculation result (noted R) and in the colored image
(noted D) of the difference between the calculation result
and an estimated result (noted E), such that D= R — E, we
define the calculation of the expected signal to error ratio
(ESER) as follows:

3 N R2
ESER = 10 x log (ZZ D;’) (6)
il

=1 i=1

where the sum is taken over the squares of all three
components (noted in ‘1) and all N pixels (noted in ‘¢’), of R
(i.e. Ry) and D (i.e. Dy), by dividing R by D.

2.2 Principle

In [22], we explained how morphing works: one must place
some control points, both in the two computation result
images, and launch the morphing software which creates a
mesh, starting from the control points, for each of these two
images. Then, one must proceed with a transformation of
the mesh of the first image to make it match the mesh of the
second image. Once the morphing process is over, we can
choose and pick one of the intermediate results of the
morphing, for instance at 50% of the process, and compare
this result with the computation result for an average value
of parameters.

2.3 Exemplification

In this subsection, we remind how we have proceeded to use
the morphing in the spatial domain, even if it was in TO in
what we have already published [22], but the point is to
understand well how the morphing works and how we have
used it.

2.3.1 Creating different obstacles

For the spatial tests, we need different shapes of obstacles.

As a first illustrative example, we show in Figure 1 the
wave pattern of a point force-generating elastic waves in a
low-density elastic medium surrounded by an elastic
medium with a density that is ten times higher. To avoid
reflections on the boundaries of the computational domain,
we set some perfectly matched layers [33]. The low-density
medium is of an equilateral triangular shape, see Figure 1,
and the point force is located at the barycenter (i.e. center
of gravity) of the triangle.

For our tests, we stretch the height H, see Figure la, to
create three different isosceles triangles which all have the
same base of 20 cm. So, starting from an equilateral triangle
of base 20 cm, where all the heights are, of course, 10v/3 cm
long, we create three isosceles triangles with the same base
of 20 cm but increasing each time the height H as follows:
four-thirds of H for the first isosceles triangle, which means
% x 10v/3 cm height, five-thirds of H for the second
isosceles triangle, which means % x 104/3 cm height, and
six-thirds of H for the last isosceles triangle, which means
% x 10v/3 cm height.

For the second set of tests, we start from this lens with
this kind of shape, see Figure 1b, then we have built three
lenses only by increasing the size of H as follows: H equal to
2.5 cm for the first lens, H equal to 5 cm for the second lens
and H equal to 7.5 cm for the last lens. The three lenses are
50 cm wide.

As a second illustrative example, we show in Figure 1b
the wave pattern of a point force-generating elastic waves
in a low-density elastic medium near an elastic medium
with a density 1.85 times larger (aluminum). To avoid
reflections on the boundaries of the computational
domain, we set some perfectly matched layers [33]. For
all our tests, the point force is located above the lens, at
12.5 cm from the top and 25 cm from the left or the right
side.
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(a)

(b)

(c)

Fig. 2. Three convex lenses of increasing width 2 H at their center: (a) H= 2.5 cm for Lens 1; (b) H=5cm for Lens 2 and (¢) H= 7.5 cm
for Lens 3. All three lenses are 50 cm wide (from left to right); the point force marked by the yellow dot is located on the orthogonal
bisector at a distance 12.5 cm from the top of the lens. The mass density is 1.85 larger inside the lens than in the surrounding medium.

As shown in Figure 2, in our tests we use three kinds of
lenses:

= the first, Figure 2a, which we will call “Lens 1”7, with
H=2.5cm,

= the second, Figure 2b, which we will call “Lens 27,
with H=5.0cm,

= the third, Figure 2c, which we will call “Lens”, with
H=7.5cm.

where H is the half-width of the lens at its center, see
Figure 1b.

All these lenses are tested in a computational domain of
50 cm by 50 cm, where the lenses are placed in the middle of
the field. Note that the width of the lenses is 50 cm.

2.3.2 Applying the FDTD computation to our obstacles

For each triangle, we throw a signal for the radiation
pattern of a point force of central frequency 10 kHz located
at the gravity point of an isosceles triangle. The FDTD
snapshots have been taken at the time t=710ps.

For each lens, we throw a signal just above the lens
(located at x; = 25 cm and 2, = 12.5 cm) with a frequency of
250 kHz. Then we generate the FDTD snapshots and keep
the snapshot taken at the time ¢t=140 ws.

2.3.3 Applying the morphing computation between some
FDTD computation results

For a given snapshot time, we wuse the morphing
computation between the smallest isosceles triangle, see
Figure 3a, and the highest isosceles triangle results, see
Figure 3b, which leads to Figure 3d.

This takes 20 s once we have placed the control points,
which has been done manually, but some algorithms based
on convolutional experts network [34-37] could be
implemented to avoid any human intervention.

We compare the latter to the average isosceles triangle
result, see Figure 3c. Note the strong similarities between
Figures 3c and 3d. Figure 3e is Figure 3c transformed in a
grayscale image. For this we take the mean value, for each
pixel, of the three R, G, and B channels. The same process
will be performed in the rest of the paper we turning an
RGB image into a gray level one. Figure 3f is Figure 3d
transformed in a grayscale image, and Figure 3g is the
absolute value of the difference between Figures 3e and 3f.
When we compute the L* norm for Figure 3g, we get a
result of 0.0729, which means a difference of 2% between
Figures 3¢ and 3d (Cf. Fig. Al in Appendix). Note that the
size of the field is 80 cm by 80 cm.

For a given snapshot time, we use the morphing
computation between Lens 1, see Figure 4a, and Lens 3, see
Figure 4b, which leads to Figure 4d, which we compare to
the Lens 2 result, see Figure 4c. Figure 4e is Figure 4c
transformed in a grayscale image, Figure 4f is Figure 4d
transformed in a grayscale image, and Figure 4g is the
absolute value of the difference between Figures 4e and 4f.
When we compute the L? norm for Figure 4g, we get a
result of 0.0473, which means a difference of 1% between
Figures 4c and 4d, but note that nothing happens at the
bottom of the images while this part is counted for the L?
norm computation. It explains such a good result.

2.3.4 Applying the NST computation between the same
FDTD computation results

Style transfer manipulates images to adapt for these images
the appearance or visual style of another image. To perform
this kind of trick, the style transfer technique relies on
artificial intelligence, and more precisely, on neural
networks.

The seminal work of Gatys et al. [20] demonstrated the
power of convolutional neural networks (CNNs) in
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¥

Fig. 3. Snapshot time ¢= 710 ps for the radiation pattern of a point force (directed along x,) vibrating at frequency 10 kHz located at
the gravity point of an isosceles triangle of height % x 10v/3 cm and base 20 cm (a), isosceles triangle of height g x 10v/3 cm and base
20cm (b), isosceles triangle of height § x 10v/3 cm and base 20 cm (c); morphing result (d) between (a) and (b). Note the strong
similarities between (c) and (d). (e) is (c) transformed in a grayscale image, (f) is (d) transformed in a grayscale image, and (g) is the
absolute value of the difference between (e) and (f). Note that the size of the field is 80 cm by 80 cm.
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Fig. 4. Snapshot time t= 140 s for the radiation pattern of a point force (directed along z,) generating a Ricker pulse with central
frequency 250 kHz and spectral bandwidth 10 kHz, which is located at 12.5 cm from the top and 25 cm from the left and the right edge of
a field of 50 cm by 50 cm, applied to three cases. (a) Applied to the “Lens 17, (b) applied to the “Lens 3", (c¢) applied to the “Lens 27;
morphing result (d) between (a) and (b); (e) is (c¢) transformed in a grayscale image; (f) is (d) transformed in a grayscale image and (g) is

the absolute value of the difference between (e) and (f).
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creating artistic imagery by separating and recombining
image content and style. This process of using CNNs torender
a content image in different styles is referred to as NST.

In a few words, this technique will first try to find
specific shapes in the first image which could match with
these kinds of shapes in the second image, and then, replace
in the first image the content of these shapes by the
corresponding content in the second image. We adapt
the implementation proposed in [38], which is based on the
work concerning large-scale machine learning problems and
presented in [39]. In [39], a linear optimization method is
studied, namely the limited-memory Broyden—Fletcher—
Goldfarb—Shanno algorithm [39]. Its almost sure global
convergence is established. In our examples, we have run the
algorithm proposed in [38] with 10 epochs and 100 steps per
epoch. For a given snapshot time, we use the NST
computation between the smallest isosceles triangle, see
Figure 5a, and the highest isosceles triangle results, see
Figure 5b, which gives us a result, see Figure 5d we compare
totheaverageisosceles triangle result, see Figure 5¢c. Note the
weak similarities between Figures 5c and 5d. Figure 5e is
Figure 5c¢ transformed in a grayscale image, Figure 5f is
Figure 5d transformed in a grayscale image, and Figure 5g is
the absolute value of the difference between Figures 5e and
5f. When we compute the L? norm for Figure 5g, we get a
result of 0.2598, which means a difference of 6.3% between
Figures 5¢ and 5d. Note that the size of the domain over
which we analyze the field is 80 cm by 80 cm. Moreover, the
total computation duration is 170 min on our desktop
computer.

For a given snapshot time, we use the NST computation
between the results for Lens 1, see Figure 6a, and Lens 3, see
Figure 6b. This gives us a result, see Figure 6d, that we
compare to the Lens 2 result, see Figures 6¢. Figure Ge is
Figure 6¢ transformed in a grayscale image; Figure 6f is
Figure 6d transformed in a grayscale image, and Figure 6g
is the absolute value of the difference between Figure Ge
and 6f. When we compute the L? norm for Figures 6g, we
get a result of 0.0427, which means a difference of 1%
between Figures 6¢ and 6d, but note that nothing happens
at the bottom of the images while this part is accounted for
the L? norm computation. This explains the remarkably
good result. Figure 6d has nothing to do with Figure 6c.
Figure 6d looks much more like Figure 6a, all the more so
since the reflected wave does not correspond to the
reflection of Lens 2, but rather to that of Lens 1.

3 Results

We explore the abilities of the morphing to face setting
modifications. We no longer modify the spatial structure of
the obstacle. We consider two different time intervals or
two different values of the frequency of the wave.

3.1 Two new applications

For the first time in this paper, instead of creating different
obstacles, we will keep the same obstacles, but we will work

with different snapshot times, for what we call the “time
domain” use, and we will work with the same obstacle at
the same snapshot time, but with different frequencies, for
what we call the “frequency domain” use. For both “time
domain” and “frequency domain” use, we will still apply
the FDTD computations on our obstacles, and then, we
will still apply the morphing computation between some
FDTD computations results. To go further, we will also
apply the style transfer computation between some FDTD
computation results. For our tests in “time domain”, we
will use the “Lens 27, as described in Figure 2b, at different
snapshots time, at ¢=190ws, at ¢t=195us and at
t=200 ws, with a signal just above the lens (based at
21 =25 cm and 2, =12.5 cm, still in a field of 50 cm by
50cm) at a frequency of 250kHz. For our tests in the
frequency domain, we have designed a Luneburg lens with
aradius of 5 cm based in the center of a domain of 50 cm by
50cm. As shown in Figure lc, this lens is made of
eleven layers, or let us say ten circular layers plus a central
disc. The central disc has the highest density, that is
3360 kgm?, and each time we cross a layer, starting from
the center of the lens to the outside the lens, the density
decreases by 160 kgm™? (see the density scale in Fig. 1c).
Note that the medium outside the lens has a density of
1600kgm>. The signal starts from a point force located
at 5.5cm from the center of the lens. As shown in
Figure 1c, let us say that this point force is on the left side
of the lens. Finally, we launch a signal at three different
frequencies: 25, 30, and 35 kHz, and for each frequency, we
keep the snapshot of the radiation pattern at the time
t =480 p.s.

3.2 Time domain results
3.2.1 By using the morphing technique

Here we have worked on the Lens 2, still in a field of 50 cm
by 50cm, and once again with a force point at 250 kHz
located at 12.5 cm from the top and at 25 cm from the left
and from the right edge. In Figure 7a we show the snapshot
time at ¢=190 us. Note that the reflected wave is just
below the force point and starts to cross it. In Figure 7b we
show the snapshot time at ¢=200pus. Note that the
reflected wave is just above the force point. In Figure 7c we
show the snapshot time at t=195ps. Note that the
reflected wave is right in the middle of the force point. In
Figure 7d we show the result of the morphing technique
applied between Figures 7a and 7b. Note the strong
similarity with Figure 7c. The reflected wave is also in the
middle of the force point. Figures 7e is Figure 7c trans-
formed into a grayscale image. Figures 7f is Figure 7d
transformed into a grayscale image. Figure 7g is the
absolute value of the difference between Figures 7e and 7f.
We show here the small difference between Figures 7e and
7f, which is confirmed by the L? norm computation applied
to Figure 7g, which is equal to 0.0392, that is, a difference of
1% between Figures Te and 7f. However, we have to note
that nothing happens at the bottom of the image while this
part is counted for the L? norm computation. It explains
such a good result.
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i

Fig. 5. Snapshot time ¢ = 710 ws for the radiation pattern of a point force (directed along z,) vibrating at frequency 10 kHz and located
at the gravity point of an isosceles triangle of height % x 10v/3 cm and base 20 cm (a), isosceles triangle of height % x 10v/3 cm and base
20 cm (b), isosceles triangle of height 2 x 10v/3 cm and base 20 cm (c); (d) show the neural style transfer result between (a) and (b).
Note the weak similarities between (c) and (d). (e) is (¢) transformed in a grayscale image, (f) is (d) transformed in a grayscale image
and (g) is the absolute value of the difference between (e) and (f). Note that the size of the field is 80 cm by 80 cm.
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Fig. 6. Snapshot time t= 140 s for the radiation pattern of a point force (directed along z,) generating a Ricker pulse with central
frequency 250 kHz and spectral bandwidth 10 kHz, located at 12.5 cm from the top and 25 cm from the left and the right edge of a field of
50 ¢cm by 50 cm, applied to three cases. (a) the “Lens 17, (b) applied to the “Lens 3”, (c) applied to the “Lens 2” (c); (d) shows the neural
style transfer result between (a) and (b), (e) is (¢) transformed in a grayscale image, (f) is (d) transformed in a grayscale image and (g) is
the absolute value of the difference between (e) and (f).
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Fig. 7. Snapshot time from ¢= 190 ws (a), t =200 ps (b), and ¢= 195 us (c), for the radiation pattern of a point force (directed along z,)
generating a Ricker pulse with central frequency 250 kHz and spectral bandwidth 10 kHz, located at 12.5 cm from the top and 25 cm
from the left and the right edge of a field of 50 cm by 50 cm, applied to the “Lens 2”; morphing result (d) between (a) and (b), (e) is
(c) transformed in a grayscale image, (f) is (d) transformed in a grayscale image and (g) is the absolute value of the difference between

(e) and (f).
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Fig. 8. Snapshot time from ¢= 190 ws (a), t =200 ps (b), and ¢= 195 us (c), for the radiation pattern of a point force (directed along z,)
generating a Ricker pulse with central frequency 250kHz and spectral bandwidth 10 kHz, located at 12.5 cm from the top and 25 cm
from the left and the right edge of a field of 50 cm by 50 ¢m, applied to the “Lens 27; style transfer result (d) between (a) and (b), (e) is
(c) transformed in a grayscale image, (f) is (d) transformed in a grayscale image and (g) is the absolute value of the difference between

(e) and (f).
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3.2.2 By using the style transfer technique

Now we keep exactly the same settings, but we replace the
morphing technique with the style transfer technique. This
means that Figure 8a is the same as Figures 7a, Figure 8b is
the same as Figure 7b, and Figure 8c is the same as
Figure 7c. In Figure 8d we show the result of the style
transfer technique applied between Figures 8a and 8b. At
first sight, we could think of a strong similarity with
Figure 8c, but when we focus on the reflected wave, we see
that it is just below the force point and that it starts to cross
this force point, exactly like it does in Figure 8a. Actually,
the reflected wave should have been right in the middle of
the force point, like it does in Figure 8c. This shows the
weakness of the style transfer technique in the time domain
application. As made in the previous tests, we have in
Figure 8e, Figure 8c transformed into a grayscale image,
and in Figure 8f, Figure 8d transformed into a grayscale
image. In Figure 8g we have the difference between
Figures 8e and 8f. This shows much more white pixels than
in Figure 7g, and when we compute the L? norm applied to
Figure 8g, we get a result of 0.0745, that is, a difference of
2% between Figures 8e and 8f. It clearly confirms that in a
time domain application, the morphing technique is more
efficient than the style transfer technique. Moreover, there
are not so many differences between Figures 8a, 8b, and 8c
(or Figs. 7a, 7b and 7c¢), which explains why the style
transfer technique seems to work in the time domain
application. Once again, we have to note that nothing
happens at the bottom of the image while this part is
counted for the L? norm computation. It also explains such
a good result.

3.3 Frequency domain results
3.3.1 By using the morphing technique

For our tests in the frequency domain, we have worked on
a Luneburg lens, as described in Section 3.1. We have
launched a signal at three different frequencies: 25kHz, as
shown in Figure 9a, 35kHz, as shown in Figure 9b, and
30kHz, as shown in Figure 9c. Then, we have applied the
morphing technique in Figure 9d, between Figures 9a and
9b. At first sight, we see strong similarities between
Figures 9c and 9d. In Figure 9e, we display Figure 9c
transformed into a grayscale image, and in Figure 9f,
Figure 9d transformed into a grayscale image. Figure 9g is
the absolute value of the difference between Figure 9e and
9f. When we compute the L? norm on Figure 9g, we get a
result of 0.1118, that is, a difference of 3% between
Figure 9c and 9d. We have to note that nothing happens
on the right part of the image (about a third of the image),
while this part is taken into account for the L? norm
computation. It explains such a good result. Whatever it
is, in this test, the starting images in Figures 9a and 9b are
quite different, or, let us say, much more different than in
our test in the time domain, between Figures 7a and 7b,

which shows the efficiency of the morphing technique.

3.3.2 By using the style transfer technique

Now we keep exactly the same settings as previously, but
we replace the morphing technique with the style transfer
technique. This means that Figure 10a is the same as
Figure 9a, Figure 10b is the same as Figure 9b, and
Figure 10c is the same as Figure 9c. In Figure 10d, we show
the result of the style transfer technique applied between
Figure 10a and 10b. At first sight, we see that Figure 10d is
very different from Figure 10c, but that it looks more like
Figure 10a, particularly concerning the wavelength. The
biggest problem is that the crest lines of the wave pattern
are blurred. In other words, the colors are poorly defined,
whereas they represent the signal amplitudes. This shows
the weakness of the style transfer technique in the
frequency domain application. As in the previous tests,
we display in Figure 10e, Figure 10c transformed into a
grayscale image, and in Figure 10f, Figure 10d transformed
into a grayscale image. In Figure 10g, we have the absolute
value of the difference between Figures 10e and 10f. This
shows much more white pixels than in Figure 10g,
particularly in a kind of internal crown, and when we
compute the L? norm applied to Figure 10g, we get a result of
0.1285, that is, a difference of 4% between Figures 10e and 10f.
It clearly confirms that in a frequency domain application, the
morphing technique is more efficient than the style transfer
technique. Once again, we should note that nothing happens
on the right part of the image (about one-third of the image),
while this part is taken into account in the L? norm
computation. It explains such a good result.

4 Discussion, or strength and weakness
of morphing as an acceleration tool for
FDTD

4.1 Application field

Now that we know how morphing works, we can envisage
many possible applications, and not only in an FDTD, or a
TO context. Morphing can be applied to other wave
phenomena providing we consider linear governing equa-
tions (what corresponds to linear transforms). In our case
(an elastic wave application), as we have seen, morphing
proves to be already an invaluable tool.

4.2 Interest

We have seen how well morphing performs to interpolate
the results of simulations. Thus, we explained why it may
work and how one can use this readily available tool to
accelerate numerical simulations. The main interest of this
renewed approach to FDTD is to considerably reduce
computational time and resources.
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(9)

Fig. 9. Snapshot time ¢= 480 s, for the radiation pattern of a point force directed along z;, and located at 5.5 cm from the center of a
Luneburg lens with a radius of 5 cm based in the center of a field of 50 cm by 50 cm, with a frequency of 25 kHz (a), 35 kHz (b) and 30 kHz
(¢); morphing result (d) between (a) and (b), (e) is (¢) transformed in a grayscale image, (f) is (d) transformed in a grayscale image and
(g) is the absolute value of the difference between (e) and (f).
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Fig. 10. Snapshot time ¢t =480 ps, for the radiation pattern of a point force located at 5.5 cm from the center of a Luneburg lens with a
radius of 5 cm based in the center of a field of 50 cm by 50 cm, with a frequency of 25 kHz (a), 35 kHz (b) and 30 kHz (c); (d) show the
style transfer result between (a) and (b), (e) is (c) transformed in a grayscale image, (f) is (d) transformed in a grayscale image and (g) is
the absolute value of the difference between (e) and (f).
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Table 1. Values of three metrics for morphing and style transfer experiments: L* norm, Mssim and ESER.

Case Figure L? norm Mssim ESER
Morphing spatial triangle 3 0.0729 0.6725 11.2627
Morphing spatial lens 4 0.0473 0.9257 16.8309
Style transfer spatial triangle 5 0.2598 0.0990 5.6355
Style transfer spatial lens 6 0.0427 0.6927 15.5942
Morphing time domain 7 0.0392 0.9500 18.7929
Style transfer time domain 8 0.0745 0.5954 13.0028
Morphing frequency domain 9 0.1118 0.8858 10.7400
Style transfer frequency domain 10 0.1285 0.7060 9.0602

However, we still need someone to compute the starting
and destination images and even more importantly
someone who can judiciously place control points therein,
before using any morphing algorithm.

4.3 Efficiency

Until now, morphing seems to be efficient, but this
remains a qualitative feeling: by naked eyes, looking at
the results in Figures 3, 4, 7, or 9, we understand that the
result obtained is good when a few pixels with elevated
gray level values are present, each time, in Figure (g).
We need, however, a quantitative metric. For this, we
still consider the difference between the result (in gray
level) of the computational method and either the
morphing or the style transfer, and we compute the L*
norm of this difference image, which has been scaled
between 0 and 1. Note that this comparison function is
not linear and behaves as a square root function. With
this method, we obtained an average numerical value of
0.05 for the comparison between the two grayscale
images, let us say with the difference image (g) of
Figures 3, 4, 7, and 9.

4.4 Limits of applicability of morphing

Even if the morphing technique has proved its efficiency
with the monotonous functions, and, in particular, with the
linear functions, on the other hand, this technique is no
longer efficient as soon as we apply it to a non-monotonous
function.

If in TO the function was the signal, in FDTD the
function would correspond more to the homogeneity or
heterogeneity of the medium, with a function all the more
linear as the medium is homogeneous. This can be seen by
comparing Figures 9d to 9c: all the wave fronts that did not
cross the Luneburg lens match very well between these two
figures. On the other hand, the part of the wave front which
crosses the Luneburg lens, and especially the part of the

wave fronts which is still on the right side of the Luneburg
lens, gives a morphing result that does not match well the
computed result.

If we focused our L? norm function between —gand g,
inside the Luneburg lens, of course we would get a quite bad
result.

4.5 Comparison with other methods

To highlight the interest in morphing, it seemed interesting
to us to compare it with other methods. Our first idea was
to try with Machine Learning, or Deep Learning, but these
kinds of methods require databases that, unfortunately, do
not exist. This idea has therefore been abandoned. Then,
we thought of making averages between the images of
results obtained by the calculations. Here again, this idea
could not work, because if the average coordinates between
two points of the same image are half the distance between
these two points, on the other hand, it is not the same
between two points with different coordinates, each located
on a different image from the other point. Indeed, the
average between two images is done “point-to-point”, or,
more precisely, with identical coordinates in the two
images, which means that displacements are not taken into
account. So the average between two images does not make
sense at all. Finally, we thought about neural networks and
more precisely the NST approach. At first glance, this idea
might seem interesting, but the total lack of color sharpness
is really catastrophic. Indeed, we must understand the
importance of colors in numerical simulations:
the maximum amplitude of the signal is in red, and the
minimum amplitude of the signal is in blue. Each
intermediate color between blue and red corresponds to
a specific amplitude of the signal. If the colors are
approximate, then the amplitudes are also approximate.
In other words, the lack of precision of the colors leads to a
false result. The tests that we have carried out with the
NST give qualitative and quantitative results that are
worse than those obtained using morphing.
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We summarize the quantification of error between the
fully numerical solutions and the morphing-based (or NST-
based) solutions to the elastic wave equations in Table 1. We
stress that the L norm should be as close to 0 as possible. It is
not a percentage of error between images becauseit isasquare
root-like curve (an L? norm value of 0.75 mean a difference of
50% between two images), whereas the Mssim (Mean
Structural SIMilarity [40]) should be as close to 1 as possible.
Finally, we also use what we call the “expected signal to error
ratio” (ESER), which is a kind of “signal to noise ratio”. To
calculate our ESER, we add the squares of the values of each
component (red, green and blue) of each pixel of the reference
image (obtained by the calculation) and we divide this result
by the sum of the squares of each component of each pixel of
the image to be compared (obtained by calculation result
minus morphing or by style transfer result).

We calculate the decimal logarithm of the result of our
division, and multiply the result by ten. If z=1log(a) and
x4+ 1=1og(b), there is only one unity between z and z+ 1,
but actually, it means a difference of ten times between a
and b (b=10a). However, we multiply by ten our
logarithm, which means that from 10 onward, our result
starts getting good.

In Figure 4, the L? norm is three times less than in
Figure 9. One might think that the morphing has
malfunctioned in Figure 9. However, the corresponding
Mssim values are relatively close: 0.92 in Figure 4 and 0.88 in
Figure 9.

In Figure 6 for the same application case as in Figure 4,
the style transfer gives an L? norm which is very close to the
result in Figure 4 obtained by morphing. On the other
hand, the Mssim is much worse (0.69 for the style transfer
against 0.92 for the morphing).

In general, morphing gives results that are slightly
better in terms of L? norm and better in terms of Mssim.

The exception to the rule (or rather the case taken to the
extreme) is Figure 5 compared to Figure 3: the result given by
morphing is much better than that given by style transfer in
terms of L? norm, and the result in terms of Mssim given by
style transfer is catastrophic, which in fact makes the result
obtained by morphing extremely satisfactory in comparison.

5 Concluding remarks

This paper deals with the acceleration of the computations
required to study wave propagation phenomena. For this
purpose, we adapt a morphing algorithm.

Firstly, we have extended a previous study to elastic
phenomena, and to the frequency and time domains. In this
framework, and although we mainly exemplify the abilities of
morphing in an already explored application, a significant
outcome of this paper, with respect to existing work, is the
comparison of morphing with an up-to-date algorithm
involving neural networks, namely style transfer.

Secondly, we have tested two new applications of
morphing in FDTD, that is, in the temporal and frequency
domains. Here again, we have proved the efficiency of the
morphing technique. In the framework of these two new
applications, we have further tested the above-mentioned
NST technique, and here again, morphing has proved to be
more efficient.

The elastic phenomena which are studied are linear,
and morphing is also based on linear interpolations. So,
valuable property of morphing in this case, is that the
Courant—Friedrichs-Lewy conditions are inherently
respected.

Referring to three different numerical criteria, namely
the L? norm, Mssim, and ESER, morphing provides results
that areslightly, or even significantly better. Referring to the
visual aspect of the images obtained through morphing, and
especially for the experiments in the frequency domain, the
shape of the waves in the morphing result is much better
preserved than in the case where style transfer is applied.

Morphing has thus proved to be an invaluable tool for
the exploration of transformation-based elastic metama-
terials in the time and frequency domains, as an accelerator
of an FDTD algorithm. The usefulness of morphing for
analysis of transformed-based electromagnetic non-disper-
sive metamaterials in the frequency domain has already
been established in [22] for a finite element algorithm, and
we are confident this should carry through for FDTD
algorithms provided this remains within the framework of
non-dispersive media. Extension of our study to dispersive
electromagnetic and elastic metamaterials could be envis-
aged making use of the formalism of auxiliary fields [41,42],
as this would circumvent the challenge of a non-linear
setting for morphing. Finally, we point out that morphing
could also be used to accelerate designs of metamaterials in
combination with topological optimization techniques such
as used in [43].

R. Aznavourian acknowledges funding from the National
Research Technology Association for the CIFRE grant #2020/
0078 of his PhD thesis.

Appendix A

Test of L2 norm

Note that this comparison function is not linear and
behaves as a square root function if we choose the L?
norm, cf. Figure Al, wherein we also show for
comparison what a norm looks like (clearly, the latter
norm cannot be used to make fine estimates for small
discre2pancies between images, which is why we opt for
the L* norm).
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