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In this paper, we discuss the problem of recovering a star-shaped contour with the

assumption that the contour coordinates can be decomposed into damped sinusoids.

We propose a signal generation method derived from the array processing paradigm,

which yields the center and radius of a circle fitting the contour. Starting from an

initialization circle, we propose to estimate the oscillations of the expected contour

around this circle with a method which copes with noise and strong concavities. We

adopt a signal characterization method which provides the parameters of damped

sinusoids. In addition, we propose a refinement step based on an optimization method

which improves the adequation of the collected signals to the proposed model. The

novel proposed method is compared with an approach based on signal generation and

gradient optimization method, and with GVF method. The experiments show that the

proposed method offers a significant improvement in terms of pixel bias and

computational load, in particular when strongly concave contours in noisy images are

considered. Moreover, the computational load of the proposed method is independent

from the contour concavity and the noise level.

& 2011 Elsevier B.V. All rights reserved.

1. Introduction

Numerous edge detection methods have been pro-
posed. Examples of edge detectors are operators that
incorporate linear filtering [1,2], or local energy [3]. Other
more original edge detection tools include anisotropic
diffusion [4]. We can distinguish two categories of edge
detection methods: region-based methods and contour-
based methods. We will confine our exposition to a partial
list of contour-based methods: the Hough transform is
originally meant for the retrieval of straight lines. Its
generalized version (GHT) [5] retrieves the center of
multiple circles, knowing their radius. A well-known
limitation of the Hough transform is its elevated compu-
tational load, which dramatically increases when the

number of noise pixels increases. GHT is robust to partial
or slightly deformed shapes and tolerant to noise in terms
of estimation accuracy, but GHT requires a high computa-
tional load and a huge storage space, in particular when
the number of noise pixels increases. Level Set segmenta-
tion relies on active contours and techniques of curve
evolution [6]. To avoid some irregularities in the active
contour evolution, a recent improved version [7] proposes
a new variational Level Set formulation in which the
regularity of the Level Set function is intrinsically main-
tained during the Level Set evolution. A drawback of the
Level Set approach is still the tuning of numerous para-
meters. Gradient Vector Flow (GVF) [8] retrieves concav-
ities and weak edges with blurred boundaries. GVF
limitations can be observed when the expected contour
exhibits a strong concavity, that is, a strong curvature: it
was then improved to handle concave regions [9].

Still in the frame of contour-based methods, it has
been proved that array processing and frequency retrieval
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are profitable to image segmentation, either by a region-
based approach [10]or a contour-based approach [11–13].
Array processing and frequency retrieval are based on
algebra tools. They rely in particular on subspace
approaches [14] to retrieve source parameters such as
direction of arrival (DOA) [15,16]. These subspace-based
methods have been recently improved in terms of com-
putational load by avoiding eigendecomposition [17,18].
Algebraic subspace-methods are also used for frequency
estimation purposes [19–23]. Algebraic methods coming
from array processing have been transposed to image
segmentation. In [10], a region approach is adopted. The
authors present a sensor array processing approach to
detect the number of object regions. This number pro-
vides the necessary information for unsupervised image
segmentation. In [11–13], a contour based approach is
adopted, and particular features are expected: either
polygons [11], straight lines [12], or circles [13].

Firstly, in [11], binary polygons can be reconstructed
from a finite number of their complex moments. As
pointed out, the formulation of the shape-from-moments
problem is very similar to several other fields, such as
estimation of sinusoidal component in speech signal
processing [22], and of direction of arrival in array
processing [24,25]. In a noisy case, the contour recon-
struction issue becomes an estimation one. The recovered
binary polygonal vertices are refined by generalized
pencil of function, Hankel total least squares method
and structured total least squares method. Other numer-
ical procedures are presented for the shape-from-
moments reconstruction problem in [26,27]. It turns out
that all of these have established the explicit connection
between the binary polygonal object reconstruction pro-
blem and the field of array processing.

Secondly, a similar analogy is made in [12] between a
straight line in an image and a planar propagating
wavefront impinging on an array of sensors to obtain an
array processing formulation for the detection of line
parameters within an image, replacing the classic Hough
transform approach.

Thirdly, several extensions of this analogy have been
developed to recover linear [28,29], triangular [30], and
circular contours [13,31]. Especially, a different signal
generation scheme is proposed in [13], which yields an
array processing linear phase signal model out of a binary
image containing a circle. In the linear and circular cases,
high resolution methods [24,25] could then be applied to
distinguish possibly very close contours by considering
them as punctual sources.

There exist limitations to these array processing-based
methods. One drawback is that they are limited to
relatively simple shapes: either lines [12,28], possibly
slightly distorted circles [13], or polygons with three or
four corners [11]. And another drawback is that these
methods are limited to a low-noise environment.

The main contributions of this paper are as follows:
Firstly, we detect star-shaped contours which may

exhibit strong concavity. For this, we detect blindly the
center of gravity of the contour [13] and choose an
adequate system of polar coordinates which permits to
consider the contour as star-shaped. Getting inspired

from an existing signal generation method [13], we trans-
form the content of the data composed of a 2-D image
into a 1-D signal. The obtained signal contains the
information of the contour radial coordinates. Contrary
to what has been done in previous works, the contour is
no longer supposed to be linear, circular, or polygonal. It
only has to be star-shaped. We assume that the polar
coordinates of a closed circular-like contour edge is the
sum of several damped sinusoidal components. In this
way, the problem of edge characterization is transformed
into the estimation of the amplitude, frequency, and
damping factor of each sinusoidal component. In this
way, we are able to characterize entirely the contour
coordinates with a parametric estimation method of
multiple damped sinusoids [23]. The advantage of using
a parametric method is that the computational load is
independent from the parameter values. In particular, we
may retrieve very concave contours if the frequency and
the amplitude values are sufficiently elevated.

Secondly, we take into account the requirements of the
frequency estimation method about the algebraic struc-
ture of the signal generated out of the image: the
generated signal must be refined to fit the model required
for the damped frequency estimation. For this, we rear-
range the data as a Hankel matrix form, and we refine the
signal by solving a so-called Structured Total Least Norm
(STLN) problem [32], to get a processed matrix which is
rank deficient. This process is necessary only in the case of
high noise, where it slightly decreases the bias between
expected and estimated contours.

The outline of the paper is as follows. In Section 2, we
describe the problem of retrieving a star-shaped contour,
and show that an adequate image transformation process
permits to reformulate this problem as a damped expo-
nential sinusoidal model. In Section 3, parameter estima-
tion based on the damped exponential sinusoid model is
exploited. In Section 4, the generated signals are refined
to compensate the presence of noise. In Section 5, experi-
ments are performed which show that our method offers
an improvement in terms of pixel bias and computational
load, in particular when strongly concave contours in
noisy images are considered.

The proposed method is compared with GHT [5], with
an array processing-based method [13] which adapts
gradient descent, and with GVF [8].

2. Problem overview and formulation

In this section, we overview the problem of retrieving
a circular contour. Then we focus on the more general
case of a star-shaped contour and formulate the problem
that we solve in this paper. Our framework is that of
parameterized object-based geometric reconstruction, as
opposed to pixel-to-pixel local methods such as GVF [8].

2.1. Problem overview

Assume that a closed circular contour is in an N�N

recorded image Il,m (see Fig. 1). The most simple star-
shaped contour is the circle. A circle is supposed to have
center coordinates ðlc ,mcÞ and radius r. Note that, for a
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binary image, Il,m ¼ 1 on the contour and Il,m ¼ 0 other-
wise. We propose to generate a one-dimensional signal
out of the two-dimensional image, and to exploit this
signal to get the radial coordinates of the expected
contour. For this, we get inspired from [13]: a circular
array of sensors is associated with the image. The sensor
array is supposed to be placed along a quarter of circle
centered on the center point of the expected circle. Let Di

be the line that makes an angle yi with the vertical axis, as
shown in Fig. 1. A signal component zi is associated with
each signal generation Di. The signal component zi for a
given sensor i is generated starting from the top left
corner of the sub-image, and ending on the sensor i. Each
sensor receives the signals only along its corresponding
direction from center to sensor. All pixels in the image are
assumed to propagate narrow-band electromagnetic
waves with zero initial phases. Furthermore, the waves
emanating from pixels in a given direction are confined to
travel only along this direction and towards the corre-
sponding sensor. For more details, refer to [12,13]. The
signal component for a given sensor i is generated by the
pixels in every Di direction as follows:

zi ¼
XNs

l ¼ 1

XNs

m ¼ 1
ðl,mÞ2Di

Il,m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2þm2

q
, i¼ 1, . . . ,S ð1Þ

where Ns is the maximum number of rows and columns in
the sub-image. The signal components form the signal
vector z¼ ½z1,z2, . . . ,zS�

T , where ð�Þ
T denotes matrix

transposition.
The considered signal generation process requires the

knowledge of the center coordinates ðlc ,mcÞ. To estimate
them, a linear array of sensor is placed along the left (or
bottom) side of the image [12,28], and the following

signal generation schemes can be adopted: zleft
l ¼PN

m ¼ 1 Il,m, l¼ 1, . . . ,N and zbottom
m ¼

PN
l ¼ 1 Il,m, m¼ 1

, . . . ,N. These signal components form the vectors

zleft ¼ ½zleft
1 , . . . ,zleft

N �
T and zbottom ¼ ½zbottom

1 , . . . ,zbottom
N �T . By

detecting the dominant components in signals zleft and

zbottom, we can compute the center coordinates, with a
method similar to [13]. There exist some other methods,
such as the extension of the Hough transform [5], and the
least squares method [33] to find the center coordinates
of a circle.

When a single one-pixel wide circular contour with
radius r is present, the signal components read

zi ¼ r, i¼ 1, . . . ,S ð2Þ

The radius value can be estimated as

r¼ z ð3Þ

where z is defined as: z ¼ ð1=SÞ
PS

i ¼ 1 zi.
We now consider the more general case of any star-

shaped contour in a noisy environment. The contour
radial coordinates are contained in the vector
r¼ ½r1,r2, . . . ,rQ �

T , where Q ¼ 4S�1. To retrieve all con-
tour coordinates, we need as many sensors as contour
coordinates. Therefore, we associate the image with a
circular antenna which surrounds the whole image and is
compound of Q sensors. The maximum radius of a circle
centered on the center of the image is N=2, and one
quarter of this circle is made of approximately

ffiffiffi
2
p

nðN=2Þ
pixels. For an exhaustive characterization of the contour,
each pixel must be associated with a sensor. So for the
whole image the minimum number of sensors Q is such
that: Q Z2

ffiffiffi
2
p

nN. For a highly concave contour, a higher
number of sensors will be necessary to characterize all
contour pixels. An example of contour and this antenna
are represented on Fig. 2.

When any one-pixel wide star-shaped contour is pre-
sent, the signal components read

zi ¼ riþni, i¼ 1, . . . ,Q ð4Þ

where ni is a noise term originated by the noise pixels.
Note that the signal generation process is simplified
compared to the one proposed in [13]: no propagation
constant is used, and signal components are directly
related to the contour coordinates. This simplification is
permitted because a single contour is expected.

We express the radial coordinates as

ri ¼ rþxi, i¼ 1, . . . ,Q ð5Þ

Fig. 1. Circular contour with center (lc ,mc), array compound of S sensors,

example of direction for signal generation Di.

Fig. 2. Star-shaped contour with coordinates ri , i¼ 1, . . . ,Q , fitting

circle with radius r, array of Q sensors, example of direction for signal

generation Di, generated signal components zi , i¼ 1, . . . ,Q .
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where xi is the oscillation of the ith pixel around the circle
of radius r (see Fig. 2). Therefore, the generated signal of
Eq. (4) now can be reformulated as

zi ¼ rþxiþni, i¼ 1, . . . ,Q ð6Þ

To characterize entirely the expected contour, it is neces-
sary to retrieve, from the signal components zi, i¼ 1,
. . . ,Q , the parameters r and xi, i¼ 1, . . . ,Q . Existing
methods such as least squares [34], or Gradient descent
[13] could be adapted for this purpose. Snakes methods
such as GVF [8] can retrieve closed contours in a noisy
environment. However, least squares are sensitive to
noise, and the two other methods exhibit drawbacks
which will be demonstrated in the result section. That is
why we formulate the problem in a different, novel way.

2.2. Problem formulation

From the signals z¼ ½z1,z2, . . . ,zQ �
T of Eq. (6), we wish

to retrieve the radius value r, and the oscillations
xi, i¼ 1, . . . ,Q , in particular from contours presenting a
strong concavity. Without loss of generality, we define r

as the mean value of the components zi i¼ 1, . . . ,Q . r is
estimated as

r¼ z ð7Þ

Then, we can compute

xi ¼ zi�r, i¼ 1, . . . ,Q ð8Þ

The values xi, i¼ 1, � � � ,Q are exactly the edge oscillation
values in the case where the image is not impaired with
noise. If the image is impaired with uniformly distributed
noise, the computation of Eq. (8) provides signal compo-
nents xi, i¼ 1, . . . ,Q , which are impaired by random
noise, due to the influence of random noise pixels on
the signal generation process. Therefore, we seek for a
method which retrieves the oscillations of possibly
strongly concave contours, and which is robust to noise.

For this, we propose in the next subsection a model for
edge oscillations xi, i¼ 1, . . . ,Q . We will further adapt an
advanced damped frequency retrieval method to charac-
terize the edge oscillations, in accordance with the
proposed model.

2.3. Damped sinusoidal model for edge oscillations

For the edge oscillations of a star-shaped contour, the
pixel coordinates in a polar representation are supposed
to follow a generalized version of the sinusoidal model,
that is, K damped sinusoidal components, each of which
has respective amplitude, frequency and damping factor.
So we model the edge oscillations as follows:

xi ¼
X2K

k ¼ 1

akejfk eð�dkþ jokÞði�1Þ ¼
X2K

k ¼ 1

ckwði�1Þ
k , i¼ 1, . . . ,Q

ð9Þ

where j¼
ffiffiffiffiffiffiffi
�1
p

. In Eq. (9), xi represents the oscillation
magnitude for i¼1,y,Q, ak is the amplitude of the kth
sinusoidal component, dk its damping factor, ok its
angular frequency, and fk its initial phase. Note that
damping factor dk may be negative. In this case, the
amplitude of the kth component grows with index i.
ck ¼ akejfk is the complex-valued amplitude of the kth
component, and wk ¼ eð�dk þ jokÞ.

The observed signal segment x¼ ½x1,x2, . . . ,xQ �
T is

entirely characterized by the parameters ak, dk, ok, fk,
k¼ 1, . . . ,2K . The number K of sinusoidal components can
be estimated by MDL criterion [35].

3. Parameter estimation

In this section, we determine the parameters cited
above by applying a variant of the parameter estimator in
[21]. Firstly, we rearrange the signal segment x in a
Hankel matrix of size L�M as follows:

X¼

x1 x2 . . . xM

x2 x3 . . . xMþ1

^ ^ ^

xL xLþ1 . . . xQ

2
66664

3
77775 ð10Þ

where L, K, and Q are related by: LZ2K , MZ2K and
Q ¼ Lþ2K�1.

Then, by implementing the Vandermonde Decomposi-
tion (VD) for Hankel data matrix of Eq. (10) with rank of
2K, X can be written as

X¼
VD

SCTT

where C¼ diagðc1,c2, . . . ,c2K Þ

S¼

1 1 . . . 1

w1
1 w1

2 . . . w1
2K

^ ^ ^

wL�1
1 wL�1

2 . . . wL�1
2K

2
66664

3
77775
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Fig. 3. Circle: processed image.
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T¼

1 1 . . . 1

w1
1 w1

2 . . . w1
2K

^ ^ ^

wM�1
1 wM�1

2 . . . wM�1
2K

2
66664

3
77775

According to the shift-invariant property in column
space

SL
¼ SF Z ð11Þ

where SL is a matrix containing all but the first rows of S,
and SF is a matrix containing all but the last rows of S. Z is
a diagonal matrix whose nonzero terms depend on the
expected parameters. By performing SVD, X can be
decomposed as

X ¼
SVD
½U1 U2�

R1 0

0 R2

" #
VH

1

VH
2

" #
ð12Þ

where ð�ÞH is the Hermitian transposition, R1 contains the
largest 2K singular values of X and R2 the L�2K singular
values of X. The matrices U1 and VH

1 contain the first 2K

left and right singular vectors, and their dimension is L�

2K and M � 2K , respectively. Because the rank of X is 2K,
all values of R2 are null. Therefore, we can express X as

X¼U1R1VH
1 ð13Þ

and we get the following equation from Eq. (11) by
orthogonal basis transformation

UF
1Zu
¼UL

1 ð14Þ

where UF
1 contains all but the last rows of matrix U1, UL

1

contains all but the first rows of matrix U1, and Zu is a
similarity transform of Z. The damping factors dk and
frequencies ok (k¼ 1, . . . ,2K) of the exponential sinusoi-
dal model (see Eq. (9)) are estimated from the eigenvalues
of Zu. Then we substitute these estimated dk and ok in Eq.
(9) and compute the least squares solution of the N linear
equations. Finally, the amplitude ak and phase fk of each
component are determined from the magnitude and angle
of ck in Eq. (9). According to these estimated parameters,
we can reconstruct the contour with its oscillations. The
pixel coordinates in the contour are given as

ri ¼ rþ ~xi, i¼ 1, . . . ,Q

where ~xi is the initial estimation of xi, i¼ 1, . . . ,Q . To get
closer to real-world conditions, we consider that the
image is degraded by two sources of impairment: identi-
cally distributed white noise is added to the image, and/or
the edge pixels are displaced randomly. The signal model
of Eq. (9) becomes then

x0i ¼ xiþni

So in the next section, we show how the signal can be
refined to optimize the contour estimation.

4. Signal refinement

We get the initial estimation ~x from the previous
section, which is the approximation of the original pixel
oscillations. This estimation can be expressed as

~x ¼ xþDx ð15Þ

where Dx¼ ½Dx1,Dx2, . . . ,DxQ �
T is the perturbation vector

contained in the initial estimation. Now, our aim is to
minimize the norm of Dx, e.g. JDxJ2, so that the final
approximation is as close as possible to the original
signals, while keeping ~x as a sum of 2K complex expo-
nential sinusoids.

We rearrange the signal vector ~x in a Hankel matrix as

~X ¼ ½ ~XL
~XR� ð16Þ

where

~XL ¼

x1 x2 . . . x2K�1

x2 x3 . . . x2K

^ ^ ^ ^

xJ xJþ1 . . . xQ�1

2
66664

3
77775, ~XR ¼

x2K

x2Kþ1

^

xQ

2
66664

3
77775

and the number J of rows of Hankel matrix ~X should be
greater than the number of signal components 2K while
Jþ2K ¼Q .

Then ~X can be represented by the form similar to Eq. (15)

~X ¼ ½XLþDXL XRþDXR� ¼ ½XL XR�þ½DXL DXR�

where ½XL XR� is a Hankel data matrix as the one in Eq. (10)
and ½DXL DXR� is a perturbation matrix, also with
Hankel form.

Thus, we seek for the minimum norm of ½DXL DXR� so
that the approximation is the closest to the initial estima-
tion, while the matrix ~X is rank-deficient, and matrices
½XL XR� and ½DXL DXR� have Hankel structure. This
problem can be solved as the structured Total Least Norm
problem by the iterative algorithm STLNB [32].

5. Experimental results

In this section, we apply the proposed method to test
images and evaluate its performance. At the same time, we
compare it with other methods, such as Hough transform
[5] dedicated to circular-like contours, GVF (Gradient Vector
Flow) method [8], and gradient optimization method fol-
lowing a specific signal generation scheme [13].

5.1. Parameter setup

In the simulations, the size of processed images is
100�100 pixels. We start by creating test images with a
circular-like contour, where the contour center of gravity
is set to be (50,50). An adequate number of sensors for the
circular antenna is Q¼1600. This elevated number of
sensors is empirically chosen, and is relatively high
because the expected contour may exhibit very concave
contours. Indeed, for strongly concave contours, the pixel
radial coordinates ri vary much when the direction Di of
signal generation changes from sensor to sensor. To take
into account all contour pixels in the generated signals,
the number of sensors must be elevated. While estimating
the number of sinusoidal components in the contour pixel
coordinates, we run MDL criterion with the integer values
1–8 as set of candidates. Indeed MDL provides the
accurate value as soon as this value is in the set of
candidates, and we consider that eight sinusoids is by
far enough to characterize a realistic strongly concave

H. Jiang et al. / Signal Processing 92 (2012) 1567–1579 1571
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star-shaped contour. For the comparative methods Gra-
dient and GVF, the parameters which best fit the expected
contours and which are used in the experiments (unless
specified) are the following: Gradient method [13] is run
with step b¼ 0:05, and 150 iterations. GVF method is run
as follows [8]. For the computation of the edge map: 100
iterations; mGVF ¼ 0:09 (regularization coefficient); for the
snakes deformation: 100 initialization points and 400
iterations; aGVF ¼ 0:02 (tension); bGVF ¼ 0:03 (rigidity);
gGVF ¼ 1 (regularization coefficient); kGVF ¼ 0:8 (gradient
strength coefficient). We define vectors x0 ¼ ½x01, . . . ,x0Q �

T

and x00 ¼ ½x001, . . . ,x00Q �
T as the first and second derivatives of

edge curve vector x, where x0i and x00i (i¼1,y,Q) are the
first and second derivative of edge curve vector x at the
ith pixel. We use the finite differences to approximate the
derivatives:

x01 ¼ 0, and 8i¼ 2, . . . ,Q x0i ¼ xi�xi�1, and
x001 ¼ 0, 8i¼ 2, . . . ,Q�1 x00i ¼ xiþ1�2xiþxi�1, and

x00Q ¼ x00Q�1.
We define the curvature of contour at each pixel

location as follows:

ki ¼
9x00i 9

ð1þx02i Þ
3=2

, i¼ 1, . . . ,Q

The mean value of all kiði¼ 1, . . . ,Q Þ is computed by

k ¼ 1

Q

XQ

i ¼ 1

ki

When the mean value k is large, the contour is considered
to be strongly concave.

The efficiency of the proposed method is measured by
the mean error MEx over the coordinates of the pixels of
the contour. For the four quarters of an image, the
coordinates of the pixels of the contour are contained in
the vector x¼ ½x1, � � � ,xQ �

T defined in Eq. (9), and their
estimates are contained in vector x̂ ¼ ½x̂1, . . . ,x̂Q �

T .
The mean error value of the estimation for each trial is

defined as

MEx ¼
1

Q

XQ

i ¼ 1

9x̂i�xi9

where 9 � 9 means absolute value. So for J trials, the mean
error on pixel position is given by

ME¼
1

J

Xj ¼ J

j ¼ 1

MExj

where MExj
is the mean error value corresponding to the

jth trial.
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Fig. 4. Circle: superposition expected contour and result obtained by

Hough method: MEx ¼ 1:65.
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Fig. 5. Circle: superposition expected contour and result obtained by the

proposed method: MEx ¼ 1:71.
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Fig. 6. Circle: superposition expected contour and result obtained by

Gradient method: MEx ¼ 3:24.
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To evaluate the robustness of the methods, the root
mean squared error (RMSE) of pixel bias is also used and
defined as follows:

RMSE¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

J

Xj ¼ J

j ¼ 1

9MExj
�ME92

vuut

� Experiment 1: circular-like contour: In this experi-
ment, we construct a nearly circular star-shaped contour,
and add Gaussian white noise in images with mean value
0 and standard deviation 1, to compare our method with
the Hough transform, Gradient and GVF methods. The
number K of sinusoids estimated by MDL is 1. From

Figs. 4–7, where the result contour is plotted in gray, it
can be seen that all four methods detect the contour with
a rather low bias: values of mean error MEx are 1.65, 1.71,
3.24 and 1.85 pixels respectively. The number of itera-
tions is 60 for Gradient method and 200 for GVF method.
� Experiment 2: case of small/large edge oscillations: In

some cases, due to the acquisition conditions or the image
quantization, the continuous form of contour edge is not
perfect. It is therefore very interesting to evaluate the
robustness of the proposed method to pixel location
errors. We produce test images by initially creating a
star-shaped contour and then adding pixel displacement
by modifying the actual pixel radial coordinates with a
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Fig. 7. Circle: superposition expected contour and result obtained by

GVF method: MEx ¼ 1:85.
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Fig. 8. Processed image: k ¼ 2:7� 10�3, with small edge perturbation

and noise ð0,10�2
Þ.
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Fig. 9. Processed image, with large edge perturbation and noise ð0,10�2
Þ.

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

Fig. 10. Initialization of the methods for both processed images of Figs. 8

and 9.
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Gaussian random variable. Either with mean value 0 and
standard deviation 1 (see Fig. 8), or with mean value 3
and standard deviation 2 (see Fig. 9). The pixel coordi-
nates are rounded to the nearest integer. We assume
there exists equally distributed random noise in the
image, with mean value 0 and standard deviation 10�2.
The number K of sinusoids estimated by MDL is 3
(Fig. 10). Referring to Figs. 11–16, when the proposed
method is applied, the mean error is MEx ¼ 1:61 when
small random displacements are added; and MEx ¼ 1:86
when larger random displacements are added. When
Gradient method is applied, the mean error value is

increased dramatically from MEx ¼ 1:78 to MEx ¼ 2:25.
When GVF is applied, the mean error value is increased
from MEx ¼ 1:90 to MEx ¼ 2:42. So, Figs. 11–16 show that
the proposed method is not sensitive to the random pixel
displacements, contrary to Gradient method and GVF
method. This is due to the fact that the proposed method
processes the signal generated from the image as a whole,
providing parameters of interest, whereas Gradient
method and GVF are local methods, which may focus on
random pixels.
� Experiment 3: sensitivity to background noise and

strong contour concavity: We now consider a contour with
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Fig. 11. Superposition processed and result obtained from Fig. 8 by the

proposed method (MEx ¼ 1:58).
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Fig. 12. Superposition processed and result obtained from Fig. 8 by

Gradient method (MEx ¼ 1:78).
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Fig. 13. Superposition processed and result obtained from Fig. 8 by GVF

method (MEx ¼ 1:90).
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Fig. 14. Superposition processed and result obtained from Fig. 9 by the

proposed method (MEx ¼ 1:86).
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stronger concavity. Fig. 17 shows the noisy processed
image. The noise mean value and standard deviation
are 0 and 10�2 (see Fig. 18). The initial estimated radius
obtained from Eq. (7) is 30 (see Fig. 19). The number K of
sinusoids estimated by MDL is 3. Figs. 20 and 23 show
the results obtained by the proposed method, which
match well the expected contour, though the contour
concavity is strong and the noise level is elevated.
From the least to the most noisy image, the mean
pixel bias changes just from 1.61 to 1.86. From Figs. 21,
22, 24 and 25, we get that Gradient method and GVF

method (run with 100 and 500 iterations respectively)
do not converge very well to the expected contour.
After increasing the noise level, the mean error values
increase from MEx ¼ 1:80 to MEx ¼ 4:02 when Gradient is
run, and from MEx ¼ 3:17 to MEx ¼ 3:21 when GVF is run.
This proves that our method performs better than
Gradient method and GVF method for a strongly concave
contour with either low or high level noise, and that
Gradient method is very sensitive to the noise level,
whereas GVF method does not cope with a contour
with strong concavity. Note that, considering the
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Fig. 15. Superposition processed and result obtained from Fig. 9 by

Gradient method (MEx ¼ 2:25).
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Fig. 16. Superposition processed and result obtained from Fig. 9 by GVF

method (MEx ¼ 2:42).
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Fig. 17. Processed image with contour concavity k ¼ 1:17� 10�2 and

noise parameters ð0,10�2
Þ.
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Fig. 18. Processed image with same contour as in Fig. 17 and noise

parameters (0,1).
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computational load and the accuracy of estimation for
Gradient method and GVF method, we may choose
different iteration times for different levels of concavity.
We choose the number of iterations so that the accuracy
of the result is not significantly improved when the
number of iterations is increased.

The values of mean error with different levels of noise
and contour concavity are presented in Table 1, where the
first case corresponds to the curvature 0, that means, the
contour is a circle as in Figs. 3–7, and the last case
corresponds to the strongly concave contour as in Figs.

17–25. Each experiment is repeated 50 times with a
different noise realization. It shows that:

� the proposed method is insensitive to both noise level
and contour concavity;
� the GVF method is sensitive to contour concavity;
� the Gradient method is sensitive to noise.

At the same time, we see that when noise variance is
reduced, the accuracy of estimation for all methods is
improved.
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Fig. 19. Superposition expected contour and initialization circle for both

processed images of Figs. 17 and 18.
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Fig. 20. Superposition expected contour and result obtained from Fig. 17

by the proposed method (MEx ¼ 1:61).
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Fig. 21. Superposition expected contour and result obtained from Fig. 17

by Gradient method (MEx ¼ 1:80).
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Fig. 22. Superposition expected contour and result obtained from Fig. 17

by GVF (MEx ¼ 3:17).
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With different levels of noise and contour concavity,
the values of RMSE are shown in Table 2. It can be seen
that the proposed method always yields small RMSE
values, which means that the proposed method is robust
to the contour concavity and the noise level. As seen from
Tables 1 and 2, the proposed method has the best
performance in both accuracy and robustness, followed
by GVF method and Gradient method.

To evaluate the computational load of proposed
method, each method is run 50 times on a PC with 2
Quad CPU 2.83 GHz and 4 Gb memory. Whatever the
concavity strength and the noise parameters, the average
elapsed time is 1.098 s to detect the parameters of the
damped exponential sinusoid model, and it needs 60.91 s

to refine the signals when the noise level is elevated.
When the noise level is very low, it is not necessary to
adopt the refinement of the signals: with noise para-
meters (0,10�3) and (10�2,10�2), the improvement is
around 1%. When the noise level is higher, that is, with
noise parameters (0,10�1) and (0,1), the improvement is
around 4% and 16% respectively. The accuracy of the
estimation depends essentially on the adequate signal
generation and the damped frequency estimation
method. Depending on the application, one may want
to refine the signals at the expense of a higher
computational load.

Table 1
ME values (in pixel) obtained with the proposed method (value with

refinement/without refinement) (A), Gradient method (B) and GVF

method (C), versus concavity and noise percentage.

Concavity k Noise

(0,10�3) (10�2, 10�2)

(A) (B) (C) (A) (B) (C)

0 0.12 0.68 0.19 0.16 0.99 0.20

2.2�10�3 0.13 0.69 0.21 0.15 0.97 0.24

2.7�10�3 0.17 0.76 0.30 0.19 1.03 0.32

1.17�10�2 0.20 0.75 0.45 0.21 1.15 0.49

Concavity k Noise

(0,10�1) (0,1)

(A) (B) (C) (A) (B) (C)

0 0.24 1.32 0.19 0.30 1.44 0.21

2.2�10�3 0.27 1.40 0.29 0.34 1.37 0.28

2.7�10�3 0.31 1.55 0.33 0.45 1.59 0.33

1.17�10�2 0.52 1.83 0.48 0.59 2.25 0.51
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Fig. 23. Superposition expected contour and result obtained from 18 by

the proposed method (MEx ¼ 1:86).
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Fig. 24. Superposition expected contour and result obtained from 18 by

Gradient method (MEx ¼ 4:02).
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Fig. 25. Superposition expected contour and result obtained from 18 by

GVF (MEx ¼ 3:21).
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Concerning Gradient algorithm: as soon as the noise
variance is higher than 10�2, Gradient method does not
provide satisfying results (see for instance Fig. 24); then
we provide the computational load when noise parameters
are (0,10�3): for concavity 2.2�10�3, Gradient method
needs 0.11 s for 150 iterations. For concavity 1.17�10�2,
Gradient method needs 0.22 s for 300 iterations. So Gradient
is faster than the proposed methods, but breaks down as
soon as the noise is slightly elevated, which is a drawback for
any real-world application. GVF does not provide satisfying
results for concavity values which are higher than 2.5�10�3.
For concavity 2.2�10�3, and noise parameters (0,10�3), GVF
requires 1.989 s for 400 iterations. For concavity 2.2�10�3,
and noise parameters (0,10�3), GVF requires 2.020 s for 400
iterations. When the refinement step is not needed, our
method presents the following advantage: we do not need
to specify any a priori known number of iterations. Contrary
to the two comparative methods, the proposed method
works in both harsh conditions: strong concavity and high
noise level. Moreover, it exhibits the same computational
load whatever the experimental conditions: concavity and
noise level. In the considered conditions, this computational
load is two times lower than for GVF.

6. Conclusion

Strongly concave contours are characterized, based on
a damped sinusoid model, which fits signals generated
out of the processed image: an adequate transformation
of the image content provides a 1-D signal, which can be
exploited to retrieve the polar coordinates of the contour
pixels. A frequency estimation method yields the ampli-
tude, frequency, damping factor and phase of the damped
sinusoids which compound the oscillations in pixel posi-
tions around a circle which best fits the expected contour.
Furthermore, we additionally refine the generated signals
by STLNB optimization method so that they better fit the
proposed model, in order to improve the estimation when
the noise level is high. The proposed methods are applied
to test images to evaluate their performance. It has been

shown that there is a significant improvement with
respect to comparative methods in terms of pixel bias,
especially when the contour concavity is strong and the
noise level is high.
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[31] J. Marot, S. Bourennane, Array processing and fast optimization
algorithms for distorted circular contour retrieval, EURASIP Journal
on Advances in Signal Processing (2007) 1–13 Article ID 57354.

[32] S. Van Huffel, H. Park, J.B. Rosen, Formulation and solution of
structured total least norm problems for parameter estimation,
IEEE Transactions on SP 44 (October) (1996) 2464–2474.

[33] R. Takiyama, N. Ono, A least square error estimation of the center
and radii of concentric arcs, Pattern Recognition Letters 10 (4)
(1989) 237–242.

[34] J. Borkowski, B.J. Matuszewski, J. Mroczka, L.-K. Shark, Geometric
matching of circular features by least-squares fitting, Pattern
Recognition Letters 23 (7) (2002) 885–894.

[35] M. Wax, T. Kailath, Detection of signals by information theoretic
criteria, IEEE Transactions on ASSP 33 (2) (1985) 387–392.

H. Jiang et al. / Signal Processing 92 (2012) 1567–1579 1579


