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Abstract. The line-fitting problem has been transposed to the signal-
processing framework: Array-processing methods can be applied to vir-
tual signals generated from the image, to estimate straight-line orienta-
tions. This paper deals with the estimation of straight and distorted lines
in images by fast array-processing methods. Hough transform and snake
methods retrieve straight lines and distorted contours, but present limi-
tations. We adapt a fast high-resolution method, the propagator method,
to the estimation of multiple distorted contours. For the first time, a
method is proposed to cope with the intrinsically limited size of images,
which reduces the accuracy of the high-resolution methods due to the
low number of signal realizations. Moreover, an extension to images
impaired by correlated noise is proposed. For this, an extension of the
subspace-based methods to a method based on higher-order statistics is
proposed. Distorted contours are assimilated to distorted wavefronts and
retrieved with a novel optimization method. The performance of the pro-
posed method is validated on several images. © 2010 Society of Photo-Optical
Instrumentation Engineers. �DOI: 10.1117/1.3421576�
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Introduction

xtracting the characteristics of lines or object contours
rom a binary image has been a much-studied problem over
he past few years.1–4 This problem is faced for robotic way
creening, for the measurement of wafer track width in mi-
roelectronics, and generally for the analysis of aerial im-
ges �photolithography, etc.�. An image contains contours
omposed of edge pixels with value 1, over a background
f 0-valued pixels. The time-consuming Hough transforma-
ion is used for straight-line fitting, and snake-type methods
etrieve contours.5 The image contains straight lines com-
osed of black pixels with value 1, over a white back-
round of pixels with value 0. The detection and localiza-
ion of these straight lines are essential tasks in image
rocessing.6–9

In Ref. 1 an extension of the Hough transform is used in
rder to retrieve the main direction of a set of roughly
ligned points. Although this method gives good resolution
ven in the presence of considerable noise, some restric-
ions on its use remain. These restrictions are due to the
ependence on the choice of the quantization step and the
omputational cost of the bidimensional search for the
axima. Array-processing methods are employed in sev-

ral technical fields such as underwater acoustics, seismol-
gy, telecommunications, and radar. These methods are
ased on conjugating the parameters of both arrays and
eceived signals.10–22 Their efficiency has been improved
or several years, and they have led to efficient algorithms
uch as MUSIC and ESPRIT.11,17,20,21 In order to keep the
esolution high and reduce the computational cost, array-
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processing methods have been adapted23,24 to estimate the
angles of multiple straight lines in an image.

In this paper we propose an array-processing method for
angle and offset estimation, in order to characterize recti-
linear or distorted curves in images. For the first time, we
adapt the modified forward-backward linear prediction
�MFBLP� algorithm16 to offset estimation, and we propose
an extension of array-processing methods to the character-
ization of distorted curves.

First, an overview of array-processing methods, adapted
to our image processing problem, is given. A straight line in
an image is characterized by two parameters, which are
successively estimated. First, a high-resolution algorithm is
used for estimating the angle, and then the MFBLP algo-
rithm is used for offset estimation.

The estimation of distorted curves is obtained through
the propagator method, applied to retrieve, for the first
time, distorted lines modeled as distorted wavefronts re-
ceived on a linear array of sensors. Starting from the data
representing an image,12–15 this phase model takes into ac-
count a phase-shift value with respect to a plane wave cor-
responding to an initialization straight line.

The interest of array-processing methods for contour de-
tection was recently emphasized with respect to retrieving
nearly straight contours25 or nearly circular contours.26 Re-
cently, a high-resolution method that avoids the eigende-
composition of the covariance matrix has been proposed to
retrieve straight lines.27 However, this method exhibits
some limitations that are inherent in the processed data, that
is, the images. These limitations were not encountered in
the case of pure array-processing applications. First, the
limited size of images prevents very accurate estimation of
the propagator operator.27 Contrary to the case of pure array
May 2010/Vol. 49�5�1
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rocessing, a limited number of signal realizations are
vailable. Moreover, the method proposed in Ref. 27 as-
umes white Gaussian noise in the processed image, al-
hough the case where the noise in an image is correlated is

ore realistic.
To cope with these limitations, we propose for the first

ime in this paper the following improvements: We intro-
uce a regularization factor in the expression for the propa-
ator operator, which reduces the effect of a biased estima-
ion. We also propose to include the calculation of higher-
rder statistics in the propagator method: We replace the
ovariance matrix by the cumulant slice matrix to suppress
orrelated noise. Once the overall orientation of the curves
s estimated by the propagator method, the offsets of ini-
ialization straight lines are estimated with MFBLP, which
s initially used to estimate the frequencies,16 and which has
een adapted to the source localization framework.17

The theoretical aspects of contour retrieval are illus-
rated by several examples to study the performance of the
roposed algorithms. Various hand-made images and real-
orld photographs are processed. In particular, we exem-
lify the proposed method based on higher-order statistics,
hich copes with correlated noise.
The outline of the paper is as follows: In Sec. 2, we

escribe the practical problem that inspired the proposed
ethod, and we adapt the MFBLP algorithm to estimate the

ffsets. In Sec. 3 the higher-order statistics are used to im-
rove the proposed method in the case of correlated noisy
mages. In Sec. 4 we present the proposed optimization

ethod for estimating distorted lines. In Sec. 5 we present
comparative statistical study on hand-made images; we

xemplify the proposed method on several hand-made and
eal images. Conclusions are reported in Sec. 6.

Problem Formulation

.1 Data Model; Signal Generation from the Image
Data

et us consider an N�C digital image as represented in
ig. 1. Here X and Y are the horizontal and vertical axes,
espectively. A pixel value of the digital image is I�i , l�,
here l and i index the X and Y axes. We consider that

�i , l� is composed of d contours, each fitted by a straight

ig. 1 Image matrix provided with the coordinate system and the
ectilinear array of N equidistant sensors.
ptical Engineering 057002-
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line. We suppose that the digital image I�i , l� contains only
type 1 and 0 pixels. The contours are formed by type
1 pixels called edge pixels, whereas type 0 pixels are asso-
ciated with the background. Each straight line fitting a con-
tour is associated with an offset x0 �the intersection of the
straight line with the X axis� and a parameter � �the angle
between this line and the line of equation x=x0�; see Fig. 2.
At row i, the pixel shift between a contour and the corre-
sponding fitting straight line is denoted by �x�i�. If we
define an artificial propagation constant �, a signal vector r
of length N is generated out of the components �I�i , l� ; i
� �1, . . . ,N� ; l� �1, . . . ,C�� of the image matrix of the re-
corded image.13,19,28 Each component of signal vector r is
defined as follows:

r�i� = �
l=1

C

I�i,l�exp�− j�l�, i = 1, . . . ,N , �1�

where � is a propagation parameter that can be constant or
variable.

When d lines are present in the image, there are up to d
type 1 pixels on the i’th line of the image matrix, located in
the columns x1�i� , . . . ,xd�i�, respectively. The signal re-
ceived by the sensor in front of the i’th row, when no noise
is present in the image, is

r�i� = �
k=1

d

exp�− j�xk�i��, i = 1, . . . ,N . �2�

First, we consider one contour that is actually a straight
line, with angle � and offset x0 �see Fig. 2�. The horizontal
coordinate of the pixel in front of the i’th sensor is

x�i� = x0 − �i − 1�tan � . �3�

Hence the signal received on the i’th sensor reads

r�i� = exp�− j�x�i�� = exp�− j�x0�exp�j��i − 1�tan �� . �4�

If d straight lines are expected and additive noise is present,
the signal received on sensor i reads

Fig. 2 Contour fitted by a straight line characterized by its angle �
and its offset x0.
May 2010/Vol. 49�5�2
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�i� = �
k=1

d

exp�j��i − 1�tan �k�exp�− j�x0k� + n�i� , �5�

here n�i� is the noise due to random edge pixels on the
’th row. Setting ai��k�=exp�j��i−1�tan��k��, sk

exp�−j�x0k�, Eq. �5� becomes

�i� = �
k=1

d

ai��k�sk + n�i� . �6�

From the data vector r= �r�1� , . . . ,r�N��T, we build K
ectors rl= �r�l� , . . . ,r�M + l−1��T, l=1, . . . ,K, of length M
ith d�M �N−d+1. The relationship between K and M

s as follows: K=N−M +1. The lower M, the higher K, that
s, the higher the number of virtual signal realizations that
re available to compute a covariance matrix. We define the
atrix AM��� as

M��� = �a��1�, . . . ,a��d�� , �7�

here a��k�= �1,�k , . . . ,�k
M−1�T, with �k=exp�j� tan �k�.

ith the propagator method,12 we estimate the orientations
�k� of the straight lines. The orientation values �k may be
nfinitesimally close to each other. The main property of
igh-resolution methods and of the propagator method in
articular is their ability to distinguish between two orien-
ation values, whatever the difference between them.

.2 Propagator Method Applied to Angle Estimation
he propagator method12 relies on the partition of the ma-

rix AM���:

M
H ��� = �A1

H � A2
H� , �8�

here A1 is a d�d matrix and A2 is an �M −d��d matrix.
he matrix AM��� has d columns, and so its rank is at most
. If we suppose that the rows �or columns� of A1 are
inearly independent, there exists a linear relationship be-
ween A1 and A2:

2 = �HA1, �9�

here � is a matrix of size d� �M −d�.
Defining the propagator operator as an M � �M −d� ma-

rix Q such that

H = ��H � − I� , �10�

here I is the �M −d�� �M −d� identity matrix, we get

HAM��� = �HA1 − A2 = 0 . �11�

he operator � has to be estimated in order to build the
ropagator matrix Q. Let Rrr be the covariance matrix of
ignals �rl�. We partition the covariance matrix of the re-
eived signals as follows:

rr = �G � H� , �12�

here G is of size M � �M −d�. The matrix � is obtained
rom G and H by minimizing the Frobenius norm of
ptical Engineering 057002-
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H−G�. The simplest solution of this minimization prob-
lem results in12,13,21

� = �GHG�−1GHH . �13�

Equation �13� is obtained through the estimation of the co-
variance matrix. Now, contrary to the case of array-
processing applications where the number of available sig-
nal realizations can be very large, the number K of signal
realizations obtained from the processed image is limited
by the number of rows in the image. Therefore the accuracy
of the estimation of the covariance matrix is not as good as
in the case of an array-processing application, where a large
set of data is acquired over long time periods. Conse-
quently, the propagator computed from a partition of the
covariance matrix may exhibit instability problems. We
propose to improve the stability of the propagator operator
by including a regularization term. The proposed propaga-
tor operator is expressed by

� = �GHG + �IM−d�−1GHH . �14�

where IM−d is the �M −d�� �M −d� identity matrix.
The angle values are such that they lead to the d stron-

gest local maxima of the function f defined as

f��� = ��QHa����2�−1 �15�

over the interval J� defined by

J� = ��− tan−1�	/��, tan−1�	/���� . �16�

Because the angle values are available, the offset values
can be estimated.

2.3 Estimation of the Offsets

An existing time-consuming method for offset estimation is
the extension of the Hough transform.2,4 We use a variable-
parameter propagation scheme;23 least-squares minimiza-
tion is one method for finding the offsets, but this method
cannot provide several close-valued offsets. So we propose
here to adapt a high-resolution method, MFBLP. MFBLP is
meant to estimate one or several offset values for a given
orientation value. In the case where there are parallel
straight lines, MFBLP estimates several offset values. In
particular, MFBLP solves the case of very close parallel
straight lines.

Let dk be the number of offset values corresponding to
the orientation having index k �k=1, . . . ,d�. Considering
the first orientation value, the signal received on sensor i is

r�i� = �
k=1

d1

exp�− j�x0k�exp�j��i − 1�tan �1� + n�i�,

i = 1, . . . ,N . �17�

If we set �=
�i−1�, where 
 is a constant, the signal r
contains a modulated frequency term. After some algebraic
operations �see Ref. 13 for more detail�, we obtain a signal
w with a constant frequency. The value of each component
of w is given by
May 2010/Vol. 49�5�3
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�i� = �
k=1

d1

exp�− j
�i − 1�x0k� + n��i�, i = 1, . . . ,N . �18�

ow, the estimation of the offsets can be considered as a
requency estimation problem.

The offset values x0k may be infinitesimally close to
ach other. Like the orientation values, the offset values can
e retrieved by a high-resolution method, whatever the dif-
erence between them. However, we notice that, contrary to
he case where orientation values were estimated, all fre-
uency terms have the same amplitude.

In order to cope with this problem, we chose to adapt to
his particular frequency retrieval problem the high-
esolution MFBLP method.16,18 We consider dk straight
ines with the same angle �k, and apply the MFBLP method
o the vector w. The MFBLP method can be summarized in
he following seven steps:

Step 1. Form the matrix B of size 2�N−L��L, where L
is such that dk�L�N−dk /2. The j’th column b j of B is
defined by

b j = �w�L − j + 1�,w�L − j + 2�, . . . ,

w�N − 1 − j + 1�,w*�j + 1�,

w*�j + 2�, . . . ,w*�N − L + j��T.

Step 2. Build the length-2�N−L� vector

h = �w�L + 1�,w�L + 2�, . . . ,w�N�,

w*�1�,w*�2�, . . . ,w*�N − L��T.

Step 3. Calculate the singular-value decomposition of B:
B=U�VH.
Step 4. Form the matrix � by setting to 0 the L−dk
smallest singular values contained in �:

� = diag��1,�2, . . . ,�dk
,0, . . . ,0,0,0� .

Step 5. Form the vector g from the following matrix
computation:

g = �g1,g2, . . . ,gL�T = − V��UHh .

The pseudo-inverse of �, denoted by ��, is obtained by
inverting its nonzero elements.
Step 6. Determine the roots of the polynomial function

H�z� = 1 + g1z−1 + g2z−2 + ¯ + gLz−L.

Step 7. Obtain the offset values from the dk complex
arguments of the dk zeros of H�z� located on the unit
circle. The complex argument of each zero is propor-
tional to one offset value. The proportionality coefficient
is −
.

variable-speed propagation scheme associated with MF-
LP exhibits low complexity; MFBLP is able to retrieve

he offset of one line characterized by one offset value, as
ell as several parallel lines with different offset values.
ptical Engineering 057002-
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3 Estimation in the Presence of Correlated
Gaussian Noise

The proposed methods do not allow for correlated noise. As
a result, the detection performance is degraded. Fortunately,
the fourth-order cumulant of any Gaussian random variable
noise is zero, so that the interference of noise can be sup-
pressed as long as it is Gaussian. In this section, we pro-
pose to improve propagator-based methods by computing
the fourth-order cumulant slice matrix of the received sig-
nals instead of the covariance matrix. In the following sec-
tion some higher-order statistics properties are presented.

3.1 Fourth-Order Cumulant-Based Model
For complex variables, the fourth-order cumulant can be
generally defined as

cum4�x1,x2,x3
*,x4

*� = E�x1x2x3
*x4

*� − E�x1x3
*�E�x2x4

*�

− E�x1x4
*�E�x2x3

*� − E�x1x2�E�x3
*x4

*� ,

�19�

where * denotes conjugation. Quite often complex random
variables are analytical signals, so the fourth term on the
right is identically zero. Note that the definition of the cu-
mulant of complex random variables is nonunique. In prac-
tice, continuous signals are often turned into discrete time
series to calculate fourth-order cumulant. Since image data
are stationary, we cannot obtain discrete time series. Thus
the signals received by array sensors are considered to be
spatially smoothed, and a new sample matrix RM is recon-
structed as

RM = �r�1� r�2� ¯ r�K�� = 	 z1

]

zM



= 	 r1 r2 ¯ rN−M+1

] ] � ]

rM rM+1 ¯ rN

 , �20�

where M =N−K+1 and d�M �N−d+1. For every snap-
shot, r�l�=A���s�l�+n�l�, where l=1, . . . ,K. In this way, a
single snapshot across a very large array is transformed into
K snapshots. Provided that there is only one source signal
xi�l�, the signal received by array sensors is denoted by
ri�l�. So for all the source signals, the received signals
at the l’th snapshot are r=�i=1

d ri�l�=�i=1
d a��i� ·si�l�,

i=1, . . . ,d, where si�l�=exp�j�l−1�� tan �i�exp�−j�x0i� �l
=1, . . . ,K� is the i’th source signal for the l’th snapshot.

We define the vector yi�l� by

yi�l� = ri�l� � ri
H�l�

= �a��i� � a*��i�� · si�l�si
*�l� · �a��i� � a*��i��H, �21�

where � denotes the Kronecker product. Based on that in-
dependence property of cumulants and the fact that the
fourth-order cumulants of the Gaussian noise are identi-
cally zero,29,30 we can get the fourth-order cumulant of the
image data:
May 2010/Vol. 49�5�4
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zz,4 = �
i=1

d

zi�l� � zi
H�l�

= �
i=1

d

�a��i� � a*��i��

· cum4�si�l�,si�p�,s
i
*�l�,s

i
*�l�� · �a��i� � a*��i��H.

�22�

In order to reduce the computational load, we use, in-
tead of the cumulant �22�, a cumulant slice matrix, for
xample, an M �M, matrix Czz,4� , here the first row of
zz,4, which offers the same properties29:

rr,4� = �cum4�z1�l�,zi�l�,z1
*�l�,z

j
*�l���

i = 1, ¯ ,M;
j = 1, ¯ ,M;
l = 1, ¯ ,K .

= A��� · � · AH��� , �23�

here zi�l� is the signal received by the i’th sensor for the
’th snapshot, and

= diag�cum4�s1�l�,s1
*�l�,s1�l�,s1

*�l��, . . . ,cum4�sd�l�,

s
d
*�l�,sd�l�,s

d
*�l��� ,

ach of whose diagonal elements is a kurtosis. Equation
23� shows that there is no noise term in the cumulant slice
atrix computed from the generated signals. Therefore,
hen this matrix is computed, the parameters can be better

stimated. Obviously, this reshaped matrix is Hermitian,
nd its dimension is reduced to M �M from M2�M2, so
he computational load is hugely decreased. Then in the
revious proposed algorithm one can replace the covari-
nce matrix by the cumulant slice matrix to estimate the
ngles of the lines, using the propagator and MFBLP to
stimate the offsets. Some results obtained on images im-
aired by correlated noise are presented later in the paper.

Estimation of Nonrectilinear Contours in an
Image by Means of Array-Processing
Methods

.1 Formulation of a Phase Model
he adopted approach for signal generation permits us to
btain a general phase model when distorted contours are
xpected. Let us consider the generated signal r. Each com-
onent of r is as follows:

�i� = exp�− j�x�i��

= exp�j��i − 1�tan � − j� �x�i��exp�− j�x0� . �24�

his expression contains, for one curve and the i’th row of
he image, the value �x�i� of the shift between the position
f the pixel belonging to a straight line fitting the curve,
nd the pixel of the curve itself. Equation �24� is equivalent
o r�i�=ai���s, where ai���=exp�j��i−1�tan�− j� �x�i��
nd s=exp�−j�x0�. It is possible to set together in a vector
odel the components ai��� of all rows of the image. If

everal orientation values are considered, the vector model
oncerning the orientation k is
ptical Engineering 057002-
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a��k� = �exp�− j� �x�1��,exp�j�� tan �k

− � �x�2���, . . . ,exp�j���N − 1�tan �k

− � �x�N����T.

The purpose of the next subsection is to estimate the values
�x�1� , . . . ,�x�N� of the pixel shifts.

4.2 Use of the Propagator Method for the
Estimation of the Phases

Referring to Eq. �10�, the matrix Q has M rows and M −d
columns. Therefore, the vector that will be estimated will
be of length M. We recall that the value of M can be chosen
up to M =N−d+1�N. In practice, the images to be treated
are not supposed to contain a large number of curves, so
that M can be fixed at a value close to N. The technique
that we use is the following: An initialization vector hold-
ing for the N rows of the image is computed. This initial-
ization vector fits the distorted curve by a dominant straight
line. Then, starting from this initialization vector, M phase
values of the signals are computed. The last N−M phases
are supposed to differ from the N−M phases of the initial-
ization vector by a phase shift that is equal to the last com-
puted phase shift. In the general case where several curves
with parameters �k, k=1, . . . ,d, are present, we have to find
the vector a��k�, for k=1, . . . ,d, such that

�QHa��k��2 = 0, �25�

where |·| denotes the L2 norm. Let a��k�0

= �1,exp�j� tan �k� , . . . , exp�j��N−1�tan �k��T be a vector
obtained by using the initial estimate of the orientation of
the straight lines fitting the k’th contour. We use the
conjugate-gradient method, initialized by the vector a��k�0,
to estimate a��k� by minimizing the criterion of Eq. �25�.
The sequence of vectors of the recurrence loop are obtained
by the relation

∀q � N: a��k�q+1 = a��k�q − 2�QQHa��k�q,

0 � q � niter, �26�

where q indexes the elements of the sequence of the recur-
rence loop, 0���1 is the step size, and niter is the number
of iterations. We stop the recursion when the criterion is
below a fixed threshold.

From the complex argument of the components of the
vector a��k�, we get the values of �x�i�. At this point, the
values of �k for each curve indexed by k, each offset x0, and
�x�i� for i=1, . . . ,M have been calculated. The last N−M
pixels are supposed to be collinear and parallel to the ini-
tialization straight line, from the M’th pixel to the bottom
of the image. Thus, the positions of the pixels of each dis-
torted curve are known at this point.

4.3 Summary of the Proposed Algorithm
From a given image, the successive steps leading to the
estimation of the distorted curves are the following:

• Generate signal r from the image �2�.
• Compute the partition �12� of the matrix Rrr, and build

the propagator operator �Eqs. �10� and �13��.
May 2010/Vol. 49�5�5
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• Perform the initialization step: Estimate the overall
orientations of the curves, using the propagator matrix
�15�; estimate the offsets of the initialization straight
lines, with the MFBLP method.

• Estimate the fluctuations of the curves around the ini-
tialization straight lines using Eqs. �25� and �26�.

Experimental Results; Computation Times

.1 Real-World Images
his subsection is divided into two parts: One is devoted to

he retrieval of straight lines, and the other to the retrieval
f distorted contours.

When the procedure for straight-line retrieval is run, the
alues of parameters � and 
 have to be chosen. As con-
erns the parameter �, Ref. 23 provides a study that gives
he maximum value of an estimated orientation, with a
alue of � equal to 1. This maximum value is 73 deg and is
nough, considering that if the image is rotated by 90 deg,
ll orientation values present in the image can be computed.
e applied such a rotation to the image of Fig. 2, in order

o detect the crossties, which are supposed to have an ori-
ntation of 90 deg. This is equivalent to placing the antenna
t the bottom of the image. If � is smaller, the maximum
rientation value is higher, but it was empirically shown
hat the value 1 gives the best results. If � is higher, the

aximum value of an estimated orientation is lower. That
s why we chose to use the value 1 for �. As concerns 
, it
ust be such that its value multiplied by the maximum

ffset remains in an interval of length 2	. Indeed, MFBLP
ethod leads to the frequency value −
x0. This frequency

alue must be in the interval �0,2	� in order to avoid any
hase indeterminacy. Therefore we can choose for instance
he value 2.5�10−3 for an image containing 200 columns.

As concerns the parameter M, it can be chosen up to
−d+1, where d is the number of expected contours. Be-

ause the number of estimated phase-shift values between
he initialization straight line and the expected contour is
qual to M, we decided to fix M at an elevated value, close
o the number of rows in the image. The search step angle
s 0.3 deg in the interval J�; elsewhere, it is specified.

Figure 3 is a photograph having size 200�200, taken by
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Fig. 3 Initial transmitted image.
ptical Engineering 057002-
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a camera moving on a railway. The propagator method with
a variable propagation scheme associated with MFBLP is
used. First, an edge-enhancing procedure is performed
along the lines. This gives the image of Fig. 4. The orien-
tation values are 20 and −26 deg; the offset values are 82
and 91 �see Fig. 5�. To estimate the position of two
crossties, a gradient operator is applied along the columns
�see Fig. 6�. Then the antenna is placed at the bottom of the
image. In the gradient image, two dominant lines appear,
which are detected by MFBLP if the number d1 of offsets
to be estimated is fixed at two for the orientation 0 deg. For
the retrieval of the rails only, the computation times for
each method are the following: For this image, the propa-
gator method takes 0.13 s. We chose a 0.1-deg step in the
search interval J� of Sec. 2.2. For the estimation of the two
offsets, the variable-speed propagation scheme associated
with MFBLP takes 1.1 s, whereas the extension of the
Hough transform takes 42.9 s. The low numerical complex-
ity of our methods allows fast processing of photographs
with a large number of edge pixels.
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Fig. 4 Image processed by an edge-enhancement operator along
the rows.
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Fig. 5 Localization of two parallel crossties and the two rails.
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Gradient vector flow5 �GVF� is well suited for a com-
arison with our method. Its popularity is due to its ability
o attract an active contour toward an object boundary from

sufficiently large distance and its ability to move a con-
our into object cavities. This enables an initialization by
ny contour—for instance, a rectilinear one—whatever the
urvature of the expected contour. GVF is based on a re-
ursive optimization method. We may perform any number
f iterations and thus control its computational load.

Figure 7 presents an aerial image containing a road.
ach side of the image has size N=470. An edge enhance-
ent and a threshold are applied �see Fig. 8�. When the

roposed methods were applied, the parameter M was cho-
en equal to 468 to maximize the number of pixel shift
alues that were actually estimated. One initialization
traight line is obtained, which has the same overall orien-
ation as the road. The angle value is −3.3 deg, and the
ffset value is 289 pixels �see Fig. 9�. After the initializa-
ion step, for which �=1, the propagator matrix was com-
uted again with �=5�10−3. This avoids any phase inde-
erminacy with respect to the value of the pixel shifts.
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ig. 6 Image processed by an edge-enhancement operator along
he columns.
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Fig. 7 Initial image.
ptical Engineering 057002-
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Our optimization method was run with �=5�10−4 and
400 iterations. Figure 10 shows that the bias �

=1 /N�i=1

N �x̂�i�−x�i��, where x̂�i� is the estimate obtained for
the position of the pixel of row i� obtained with our method
�
=0.2� is due to some disruptions. When GVF is applied,
it is initialized independently of our methods. As Fig. 11
shows, for this image the initialization contour must be
close to the expected contour in order for GVF to converge.
We performed 40 iterations for the computation of the edge
image and 25 iterations for the deformation step. The pa-
rameter values are �GVF=0.15 �regularization parameter in
the GVF formulation�, 
GVF=0.1 �tension�, and �GVF
=0.001 �rigidity�. Figure 12 shows that the mean pixel bias
�
=0.6� is due to concentration on some noisy pixels. Fig-
ures 13–16 present the results obtained from a photograph
of a river, with the same parameters except N=200 and
M =197. The relation �25� holds independently for both ori-
entations and corresponding pixel shifts. So our method
detects the two banks of the river, whereas GVF cannot.
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Fig. 8 Result of the edge detector.
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Fig. 9 Proposed method: superposition of the initial image and the
initialization straight line.
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.2 Statistical Results
ere we first study the speeds of our methods and of the

xtension of the Hough transform for angle and offset esti-
ation. In our experiments, we consider 200�200 images,

ontaining one straight line, and impaired by an impulse
oise: Some percentage of the background pixels become
dge pixels. We chose the noise percentage values 0%, 1%,
%, 4%, 10%, and 15%. For all noise percentage values,
ngle estimation by the propagator method take 0.12 s, and
ffset estimation by the proposed method based on the
ombination of a variable-speed propagation scheme with
FBLP takes 0.39 s. The extension of the Hough transfor-
ation takes 0.40, 0.50, 1.2, 2.0, 5.6, and 9.6 s. So our
ethod for offset estimation is faster when the noise per-

entage is larger than 1%, which is generally the case for
eal-world images. The maximum ratio between computa-
ion times �24.6� is obtained with the highest noise percent-
ge value. When the Hough transformation is used to esti-
ate all angle and offset values, it takes 8.6, 20.4, 30.7,

1.4, 105.5, and 152.0 s. Running the set of proposed
ethods for both angle and offset estimation takes 0.51 s.
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ig. 10 Proposed method: superposition of the initial image and the
stimate.
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Fig. 11 GVF method: initialization.
ptical Engineering 057002-
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Therefore, the computation time taken by running the
Hough transform method is up to 300 times as long.

Now, let us compare the robustness of our method and
GVF with respect to the amplitude of the distortions of a
single curve. In order to simulate real-world conditions, the
positions of the edge pixels are given by the sum of two
amplitude-modulated sinusoids. We denote by amp and per
the multiplicative factors that characterize the amplitude
and period of the first sinusoid, which are five times as high
as the amplitude and period factors of the second sinusoid.
The second sinusoid simulates a small-amplitude high-
frequency perturbation. A single straight line, which is ob-
tained by our method for straight-line retrieval, is used to
initialize both methods. One hundred points regularly dis-
tributed along this straight line are chosen to initialize the
GVF. The parameters for the GVF and for our initialization
methods are the same as in Sec. 5.1. We choose M =199 in
order to maximize the fit between the processed data and
the image. The appropriate value of the regularisation co-
efficient is �=0.1. Our optimization method is run with �
=5�10−4 and 500 iterations. The number of iterations for
each method is chosen such that the computation time is the
same for our method and for GVF. For all images, the
proposed method for angle estimation takes 0.11 s, and our
method for offset estimation takes 0.39 s. For the retrieval
of the pixel shifts GVF needs 24.3 s, whereas our method
needs 21.3 s. The first criterion that is used to measure the
accuracy of the results obtained is the mean value of the
mean bias 
. For Tr trials, the mean error ME is defined by
ME=1 /Tr� j=1

Tr �
 j�, where j indexes the trials and 
 j is the
mean bias obtained at the j’th trial. The standard deviation
Std is defined by Std= �1 /Tr� j=1

Tr �
 j −ME�2�1/2.
We first illustrate in Figs. 17 and 18 the results obtained

by both methods on one curve with amplitude parameter 3
and period parameter 1.5. The images show that the mean
pixel bias obtained with our �propagator� method is lower.
The statistical results presented now are obtained with simi-
lar curves, having several pairs �amp, per� of amplitude and
period values given in Table 1. We perform Tr=1000 trials.
At each trial, the amplitude and period factors are multi-
plied by a random number following a normal law with
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Fig. 12 GVF method: superposition of the initial image and the
estimation.
May 2010/Vol. 49�5�8

se: http://spiedigitallibrary.org/ss/TermsOfUse.aspx



m
t
a
v
m
e
v
t
m
e
i

5

T
c
n
t
a
i
v
m

Bourennane, Fossati, and Marot: Contour estimation in images using virtual signals

O

Downloaded Fro
ean 1 and standard deviation 0.01. Statistical results for
he proposed method and the GVF method, for each pair of
mplitude and period factors are presented in Table 1. ME
alues obtained with our method are less than 1. The GVF
ethod leads to ME values that are 3 times as high as the

rror obtained with our method, for all amplitude factor
alues. The Std values obtained with GVF are at least 1.2
imes as high as the values obtained with our method. This

ay be due to a dependence of GVF on its multiple param-
ters that is higher than the dependence of our method on
ts own parameters.

.3 Higher-Order Statistics for Images Impaired by
Correlated Noise

o evaluate realistically the interest of this algorithm, we
onsider that the image is impaired by correlated Gaussian
oise. The noise is simulated by the following steps. First,
he bidimensional random Gaussian noise matrix is gener-
ted, which has the same dimension as the initial binary
mage and obeys a Gaussian distribution with mean 0 and
ariance �2. Then, we pass the generated Gaussian noise
atrix through a the spatial Gaussian low-pass filter, so that

Table 1 ME and Std values �in pixels� obtained
and period.

amp per

Propa

ME

0.5 1.0 4.59�10−1

1 1.1 4.70�10−2

1.5 1.2 4.85�10−2

2 1.3 4.98�10−2

2.5 1.4 5.60�10−2

3 1.5 5.11�10−2
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Fig. 13 Initial image.
ptical Engineering 057002-
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we can obtain the expected correlated Gaussian noise by
choosing certain filter parameters. The impulse response of
the filter is

h�x,y� =
1

2	�1�2
exp�−

x2

2�1
2 −

y2

2�2
2� ,

where �1 and �2, which are the vertical and horizontal
deviations, determine the correlation strength of the noise
image. Specially, �1=�2 means an isotropic Gaussian low-
pass filter. In the simulation, the filter function h�x ,y�
should be discretized to get the filter template, which is
centrosymmetric. Herein, the correlation length of the cor-
related Gaussian noise is defined as

CL =
CLx + CLy

2
,

where CLx and CLy are 2�1 and 2�2. We set the size of the
detected image at 100�100. As an example, in Figs. 19–21
the standard deviation of the white Gaussian noise is 6, and
the CL of the correlated Gaussian noise is 6. For the initial

e proposed method and GVF, versus amplitude

GVF

Std ME Std

0�10−3 1.56 2.04�10−3

2�10−3 2.09 2.19�10−3

2�10−3 2.65 1.26�10−2

3�10−2 3.66 4.33�10−2

4�10−2 4.17 6.13�10−2

7�10−2 4.70 9.54�10−2
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Fig. 14 Result of the edge detector.
with th

gtor
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mage �see Fig. 18�, there are two straight lines whose
ngles are respectively 32 and 20 deg and whose offsets are
5 and 55. The estimation results provided by the
ovariance-based and the cumulant-based propagator algo-
ithm are shown in Figs. 20 and 21. The results in Fig. 21
re more accurate than those provided by the second-order
lgorithm. The estimated orientations of two lines are 32.1
nd 20.2 deg. For the offsets, they are respectively 94.8 and
4.9, by the MFBLP algorithm.

Even when the image is severely corrupted by correlated
aussian noise, the cumulant-based algorithm can still cor-

ectly characterize the lines, while using second-order sta-
istics algorithms yield a large bias. In the first experiment,
hree lines at 40, 20, and −20 deg are considered in the
mage. The standard deviation of the white Gaussian noise
s set at 12, and CL is 12. We can get a pseudospectrum like
ig. 22 for the propagator algorithm. The means of the
stimated angles are respectively 39.8, 20.2, and −20.1 deg
f the number of trials is 500. In a second experiment, after
e change the angles to 32, 28, and −20 deg �see Fig. 23�,
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Fig. 15 Proposed method: initialization.
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ig. 16 Proposed method: superposition of the initial image and the
stimation.
ptical Engineering 057002-1
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our algorithm can still evaluate the angles with almost no
error. The means of the estimated angles are 32.0, 28.1, and
−19.9 deg for 500 trials.

The next experiment concerns an image with crossing
straight lines in a correlated noise environment �see Figs.
24 and 25�. The line offsets are 95 and 25 pixels; the line
angles are 40 and −20 deg. To generate the correlated
Gaussian noise, the standard deviation of the white Gauss-
ian noise is 2, and the correlation length of the correlated
Gaussian noise is 8.

6 Conclusion
In this paper, we have first proposed a fast algorithm with-
out eigendecomposition for the characterization of distorted
curves in images. We have combined the propagator
method, which reduces the computational load needed in
the majority of the existing methods, and the MFBLP algo-
rithm for estimating the parameters of nonrectilinear lines.

We paid attention to the specificity of images and hence
adapted the propagator method; we improve the stability of
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Fig. 17 Initial image, initialization, and results obtained by the pro-
posed method and by GVF: least distorted contour.

100 200

20

40

60

80

100

120

140

160

180

200
100 200

20

40

60

80

100

120

140

160

180

200
100 200

20

40

60

80

100

120

140

160

180

200
100 200

20

40

60

80

100

120

140

160

180

200

Fig. 18 Initial image, initialization, and results obtained by the pro-
posed method and by GVF: most distorted contour.
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ig. 19 Initial image and estimated results for two lines at 32 and
0 deg: initial scaled image.
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ig. 20 Initial image and estimated results for two lines at 32 and
0 deg: result without cumulant.
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ig. 21 Initial image and estimated results for two lines at 32 and
0 deg: result with cumulant matrix.
ptical Engineering 057002-1
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Fig. 22 Pseudospectrum using cumulant-based propagator algo-
rithm: three lines at 40, 20, and −20 deg.
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Fig. 23 Pseudospectrum using cumulant-based propagator algo-
rithm: three lines at 32, 28, and −20 deg.
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Fig. 24 Two crossing straight lines in correlated noise environment.
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he propagator operator to take account of the small number
f available signal realizations, and consider the case of
orrelated noise, which is more realistic than white noise in
mage processing. To adapt the proposed algorithm we have
eplaced the covariance matrix by the fourth-order cumu-
ant of the generated virtual signal. A numerical simulation
hows that using cumulant-based algorithms can improve
he detection performance when correlated noise exists in
n image. For the retrieval of distorted curves, we have
roposed the propagator method to estimate the overall ori-
ntations of the straight lines that approximate the distorted
urves optimally. Then the MFBLP algorithm was used to
btain the offsets. The orthogonality relation between the
ropagator operator and the transfer matrix is exploited in
rder to retrieve the fluctuations of the distorted curves
long the initialization straight lines. Computer simulations
nd experimental images demonstrate the performance of
he proposed algorithm and the effectiveness of the propa-
ator method applied to the characterization of distorted
urves. These methods can also be extended to detect other
ontours in images, such as circles and ellipses.
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