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Abstract-This paper focuses on the denoising of multidimensional data by a tensor subspace-based method. In a seminal work, 

multiway Wiener filtering was developed to minimize the mean square error between an expected signal tensor and the estimated 

tensor. It was then placed in a wavelet packet framework, with the pending issue of a reliable method for the estimation of multiple 

signal subspace dimensions for multiple coefficients of the wavelet packet transform. For the first time in this paper, we aim at 

estimating the signal subspace dimensions for all modes of wavelet packet coefficients by minimizing the least squares criterion with 

the best possible optimization strategy. In the paper, the interest of a genetic algorithm and particle swarm optimization for this 

purpose are compared. Also, the computational load is reduced as follows: the best subspace dimension values are estimated on 

subsampled data, and the original data is denoised with values of signal subspace dimension which are scaled by subsampling factors. 

The results obtained are compared on multispectral images regarding signal-to-noise ratio and perceptual image quality for various 

noise levels: the proposed method outperforms the existing ones for various multispectral images, containing different numbers of 

bands. An application to plant leaf fluorescence image denoising is included. 

Keywords- Image Denoising; Multispectral Imaging; Optimization 

I. INTRODUCTION 

Multispectral images are now used, in life science for instance (see [1] and references inside), but also in remote sensing 

applications. In this context, devoted sensors have been developed, such as ROSIS sensor (Reflective Optics System Imaging 

Spectrometer) [2], or AVIRIS sensor (Airborne Visible/Infrared Imaging Spectrometer) [3]. 

The multispectral image can be obtained by selecting some important bands from the hyperspectral images obtained by 

these airborne sensors. Most of the multispectral aerial images are impaired by noise [4, 5] from solar radiation, or atmospheric 

scattering [6] for instance. Multispectral images acquired in the life science context may also be noisy in the case where the 

imaged phenomenon, such as fluorescence [1], yields a low luminous intensity, or when the light is scattered, such as in some 

medical issues [7]. Because of the presence of noise in hyperspectral or multispectral images, there exists a growing interest in 

developing algorithms to denoise such images. 

Relation with previous work in the field: A seminal work consisted in adapting Wiener filtering in a tensor framework, 

yielding the Multiway Wiener Filtering (MWF) [8], a subspace-based method requiring the estimation of the dimension of the 

signal subspace, also called rank, along with each mode. This estimation is usually performed with the statistical Akaike 

information criterion (AIC) [9], working best with a very high number of signal realizations. Recently, the MWPT-MWF 

(Multidimensional Wavelet Packet Transform-Multiway Wiener Filtering) method has been proposed [4, 10, 11], yielding 

good results regarding signal to noise ratio (SNR) improvement and classification accuracy. Wavelet packet transform (WPT) 

is applied to a signal over a certain number of levels, similarly to discrete wavelet transform (DWT). However, when the DWT 

is applied, only the approximation coefficient is decomposed from one level to the next. When WPT is applied, each 

coefficient, either approximation or detail, is decomposed itself into an approximation and a detail coefficient from one level to 

the next. 

In this work, we use Multidimensional Wavelet Packet Transform (MWPT), the extension of WPT to multidimensional 

arrays such as multispectral images (see [4] and references inside). When MWPT is applied, each coefficient is a 

multidimensional array. 

The drawback of MWPT-MWF is that, due to a large number of coefficients which are computed, a large number of signal 

subspace dimension values must be estimated to ensure accurate denoising results. In [4], a study about the accurate depth of 

the wavelet packet decomposition has been performed, but the signal subspace dimensions are still estimated with AIC. In [12], 

the minimization of the least squares criterion is proposed to estimate the rank values. This criterion is a squared difference 
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between the expected image and a reference image obtained by a rough denoising of the raw image to process. The relevance 

of this criterion and its optimality are not proven. Also, the problem of the high computational load of the proposed methods 

was still pending, as well as its dependence on the reference image involved in the criterion. As for the applications considered 

up to now in related papers, to the best of our knowledge, the considered values of SNR in the processed data are rather 

elevated [4, 13]. Indeed, the last generation of airborne sensors provide images of high quality. 

Goal and contributions: In this context, where a criterion should be minimized while considering the computational load, 

this paper offers the following contributions: Firstly, we compare several optimization methods such as genetic algorithm (GA) 

using a Lagrangian algorithm [14, 15] or particle swarm optimization (PSO) [16], but also Nelder-Mead [17], considering 

whether they are adequate to estimate the signal subspace dimensions in MWF. Secondly, we propose an unsupervised method, 

named MWPT-MWF-RE (Multidimensional Wavelet Packet Transform-Multiway Wiener Filtering with Rank Estimation). 

For the first time in this context, we aim at reducing the computational load, by estimating the required rank values on 

subsampled data. Thirdly, the adequate number of decomposition levels for wavelet packet decomposition is estimated 

automatically, on subsampled data as well. Also, the algorithm becomes free from the dependence on the reference image 

thanks to an iterative process. 

As the proposed methods perform best for rather low SNR values regarding SNR improvement, we propose, as a last 

contribution of this paper, an application to the denoising of fluorescence images acquired from plant leaves. In this context, 

the relevant light emitted by the leaves is of very low intensity, hence the low SNR values obtained in some conditions of 

acquisition. 

Outline: Section II. sets the problem of the estimation of multiple values of signal subspace dimensions for MWF in a 

wavelet framework: we propose a criterion to minimize, highlight the need for a global optimization method for this purpose, 

and propose a literature review on bio-inspired stochastic optimization methods. In Section III., we show how to adapt a 

genetic algorithm or particle swarm optimization to minimize the proposed criterion. In Section IV., this algorithm is 

implemented as follows: the optimal values for signal subspace dimension are first estimated on a subsampled version of the 

data, and scaled before their use for multiway Wiener filtering of multidimensional wavelet packet coefficients. We propose an 

unsupervised MWF in MWPT: we show the interest of the automatic estimation of multiple ranks, and how to refine the 

reference image required in the proposed criterion. In Section V., we show the denoising results obtained with the proposed 

optimization algorithms on various types of multidimensional images: an RGB image, multispectral images obtained from the 

ROSIS sensor, and a multispectral acquisition of a plant leaf fluorescence phenomenon. These results are compared results 

with those obtained with other subspace-based methods such as the truncation of higher-order singular value decomposition 

(HOSVD), MWF, but also Perona-Malik [18] which is based on a diffusion process. 

Notations: The following notations are used in the rest of the paper: scalars are denoted by italic lowercase roman, like a; 

vectors by boldface lowercase roman, like a; matrices by boldface uppercase roman, like A; tensors by uppercase, like A; and 

the n-mode product, denoted by           for modes 1, 2, and 3 respectively, is defined as the product between a tensor A 

and a matrix B in mode n. 

II. STATE-OF-THE-ART AND PROBLEM SETTING 

The accurate estimation of signal subspace ranks for the purpose of multidimensional data is still pending and has become 

a required step since multiway Wiener filtering has been inserted in a wavelet framework. To solve this issue, we propose a 

criterion to be minimized with a global optimization method. 

A. Rank Estimation Issue in a Multidimensional Context 

A noisy multidimensional signal will be considered, also called tensor: a signal X impaired by a multidimensional additive, 

zero-mean white Gaussian noise N [19]. For instance, the additive case holds for hyperspectral images [9, 20]. As concerns the 

white noise assumption, it is also generally adopted for multidimensional images [19], and permits to focus on the main issue 

of this paper. In the case where the noise is not white, a prewhitening process could be applied as proposed in [2]. Thus, this 

tensor can be a model for an HSI, expressed as: R = X + N. Tensors R, X, and N are of size    ×     ×   . For each spectral band 

indexed by i = 1, . . . ,   , the noise N(:, :, i) is assumed additive, zero-mean, white and Gaussian. The objective is to denoise 

the tensor R with a subspace-based method. Subspace-based methods have been shown to exhibit good denoising results when 

applied to data with main salient orientations in the image [21]. They provide an estimated signal tensor which, generally in the 

literature and the remainder of this paper, is denoted by  ̂. This estimate depends on the so-called signal subspace dimensions‘ 

or signal subspace ranks‘ {  ,   ,   } which must be estimated. 

B. Multiway Wiener Filtering in the Wavelet Framework 

In [1], MWF has been inserted into a wavelet framework to denoise images while preserving details. In tensor form, 2-

dimensional wavelet packet transform (WPT) is applied for each mode to get the multidimensional wavelet packet transform 

(MWPT): 
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                (1) 

In Eq. (1),   
   is the wavelet packet coefficient tensor for levels in             

 ; for each value of   between 1 and 3, 

             indicate the WPT matrices, and    denotes the n-mode product [4]. 

To select the ‗frequency‘ components out of the wavelet packet coefficient tensor, a ‗frequency‘ index is defined for the 

mode     or  . A set of indices forms the index vector m            
 . For   equal to 1, 2 or 3, the index value     is 

such that 0 ≤   ≤     − 1. 

The coefficient subtensor extracted from   
   and containing the frequency components for a given index vector m is 

denoted by     
 . It is worth noticing that the size of each coefficient     

  is 
   

   
 along mode  , whatever the index vector m [4]. 

The principles of multidimensional wavelet packet transform-multiway Wiener filtering (MWPT-MWF) proposed in [4] 

are to apply MWF to each coefficient subtensor     
 . Following the same notation as for the noised tensor R, let     

   and  ̂   
   

be the coefficient subtensors for the expected tensor X and its estimate  ̂ respectively. From the Parseval theorem, minimizing 

the MSE between X and its estimate  ̂ is equivalent to minimizing the MSE between     
   and  ̂   

   for each m: 

    ‖   ̂‖
 

 ‖  
    ̂ 

  ‖
 

 ∑ ‖    
    ̂   

  ‖
 

  (2) 

To minimize the expression ‖    
    ̂   

  ‖
 
 for all instances of vector  , multiway Wiener filtering is applied. This requires, 

for each vector  , the knowledge of three rank values. 

C. Proposed Criterion for Optimal Rank Selection 

In the literature, the Akaike Information Criterion (AIC) [4] is commonly used to estimate the subspace ranks. AIC 

estimates the number of sources correctly in an array processing problem [22]. In an array processing context, there are many 

realizations of the same random signal, and the data are rarely noisy, so AIC exhibits a good behavior. Usually, in the frame of 

HSI processing, through a stationarity hypothesis, a covariance matrix is computed from the column vectors of the unfolded 

matrix obtained from the HSI, which are considered as realizations of the same random signal. AIC is applied to the 

eigenvalues of the covariance matrix obtained for each mode of the HSI [9]. However, it has been shown empirically that there 

is no clear domination of a subset of eigenvalues with high magnitude with respect to the others [9], and that AIC tends to 

overestimate the rank values when the data are noisy. 

In [12], the minimization of the least squares criterion is proposed to estimate the rank values, but its relevance and 

optimality are not proven. We look for a method which is robust to noise and takes into account the assumptions about our 

noise model. Maximum likelihood restoration methods have been developed during the last decades for blurred, Poisson noise 

or additive Gaussian noise models [23]. In the case of Gaussian noise, they yield to the minimization of the least squares 

criterion [24]. Among other methods [24], mean square error minimization yielded the Wiener filter [25], and MWF [19], 

which is the core of the methods presented in this paper. For these reasons, and because our model for noise is white Gaussian, 

we propose to minimize a least square error (LSE) criterion to estimate the signal subspace dimensions: 

   (        )  ‖    

    
  ̂   

  (        )‖
 
 (3) 

where ‖  ‖  represents the Frobenius norm, X1 is a gross estimate of the expected tensor X, and  ̂   
   is a coefficient subtensor 

of the final estimate  ̂.  ̂   
   depends on the expected rank values (        ). It is obtained with MWF, possibly including 

fixed point algorithm [26]. 

The criterion   (        )  is a nonlinear function of the parameters          , hence the need for an adequate 

optimization method, which must be global. In [12], a single optimization method, particle swarm optimization, is proposed. 

To the best of our knowledge, no thorough investigation was performed on the comparative performance of optimization 

methods to estimate the signal subspace ranks in a wavelet framework. 

D. Short Literature Review on Global Optimization Methods 

The considered optimization problem is highly non-linear, and we have no insurance that some constraints on the 

minimized function are respected. Therefore, we left aside the deterministic optimization methods such as Dividing Rectangles 

(DIRECT) [27] which assumes that the minimized function is a k-Lipschitzian one. Moreover, as the data considered in this 

work are impaired with random noise, we focused on stochastic optimization methods. These methods introduce randomness 

in the initialization and iterative process of the optimization algorithm. Contrary to well-known deterministic methods such as 

Gradient descent which may converge to a local minimum, this randomness prevents the stochastic optimization method from 

focusing on a local optimum, but also turns it less sensitive to modeling errors. Further in this paper, we provide some details 

on two bio-inspired optimization methods: swarm optimization [16] and genetic algorithms [28]. First, we present Nelder-

Mead [17]. The Nelder- Mead Simplex method [17] is a global optimization method, which is meant to minimize a scalar-

valued nonlinear function of several real variables, without any derivative information. It is known to yield a rapid decrease in 
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cost function values [17]. It has been shown that, in dimension two or more, the Nelder-Mead method may converge to a non-

critical point of the minimized function [29]. In their seminal work concerning particle swarm optimization, Kennedy and 

Eberhart [16, 30] got inspired by [31], where the term ‗particle swarm‘ was chosen to define the members of a population or 

test set. In their paradigm, the population members are mass-less and volume-less. Their evolution is described through 

position, speed, and acceleration parameters [16]. An often cited, now well-known reference [28] introduces genetic 

algorithms in the context of evolutionary computation which implies the evolution of a population of candidates which is 

inspired by Darwin‘s natural selection theory. Another largely cited reference presents basics about genetics, the hierarchical 

genetic algorithm, and applications to H∞ control, neural network, and speech recognition [32]. 

For applications which concern specifically image processing, genetic algorithms are combined with mathematical 

morphology methods [33], watermarking [34], medical imaging [35], or 3D reconstruction [36]. 

As GA requires a large number of function evaluations for convergence, and because PSO may prematurely converge to a 

local minimum, hybrid algorithms were proposed which combine the advantages of both types of methods: genetic algorithms 

were mixed with particle swarm optimization [37-41], or an ant colony algorithm [42]. 

Recently, such a hybrid algorithm was proposed [43], where the evolutionary natures and social interactions of both 

algorithms are combined in the frame of a multibiometric system. 

Nelder-Mead can be a valuable comparative method. However, three parameters should be estimated in the considered 

optimization problem, and Nelder-Mead method could be stacked in a local minimum of the criterion in Eq. (3). Hence, and as 

a balance to subsection D., we will then focus on two types of stochastic bio-inspired optimization methods: genetic algorithm 

(GA) and particle swarm optimization (PSO). Both types of methods provide the global minimum of a scalar function of 

several variables and are gradient-free. 

III. GENETIC ALGORITHM AND PARTICLE SWARM OPTIMIZATION FOR TENSOR RANK ESTIMATION 

GA and PSO are population-based iterative algorithms. They start with an initial random set of Q rank triplets called 

population. In the following, this population is denoted by   
                    . Each vector               

  is 

modified throughout the iterations. Vector    is called a chromosome while dealing with a genetic algorithm, and a particle 

while dealing with swarm optimization. 

A. Principles of Genetic Algorithms 

The genetic algorithm is a method for solving both constrained and unconstrained optimization problems that is based on 

natural selection, the process that drives biological evolution. It is based on ‗survival of the fittest‘ theory of Charles Darwin 

[44]. It was introduced by Holland in 1975 [45]. 

This algorithm is interesting because it‘s very robust in nature and capable of optimizing complex results, including when a 

great number of unknown values are expected. 

Each individual   
                    in the population is called a chromosome, representing a solution to problem at 

hand. The chromosomes evolve through successive iterations, called generations. During each generation, the chromosomes 

  
          are evaluated using the fitness function   (  

         ), directly adapted from Eq. (3): 

   (  
         )  ‖    

    
  ̂   

  (  
         )‖

 
 (4) 

The genetic algorithm uses three main types of rules at each step to create the next generation from the current population 

[46]: 

• Selection rules select the individuals, called parents, that are best adapted to their environment and contribute to the 

population at the next generation. 

• Crossover is a genetic operator that recombines two chromosomes (a pair of individuals) to produce a new chromosome 

(called an offspring). 

The new chromosome may be better than both of the parents if it takes the best characteristics from each of the parents. 

Crossover occurs during evolution according to a user-definable crossover probability. 

• Mutation promotes diversity in population characteristics, to prevent the algorithm from being trapped in local minima 

[43]. 

The five main steps of a GA algorithm [28] are described in Algorithm 1. 
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Algorithm 1 Pseudo-code: Genetic Algorithm for multiple rank estimation 

Inputs: fitness function of Eq. (4), tensor gross estimate X 1, small factor   set by the user, to stop the algorithm. 

1 .  Set iteration number       , and maximum number of iterations        . 

2. Create an initial population composed of Q random chromosomes with all required rank values    
         (    ), 

         . This initial population takes the form of a matrix with   rows and 3 columns. 

3. Evaluate fitness function value of Eq. (3) for each chromosome    
         (    ) in the population 

4. Generate the new population: 

(a) Selection: Choose new parents through fitness function value. 

(b) Crossover: Pair probabilistically the parents to create the offsprings with crossover fraction    . 

(c) Mutation: Modify slightly some components, chosen randomly, of each offspring. We now afford the population 

  
         (      ),           . 

5. Replace the current population with the new one, obtained at step 4. 

6. Increase     ; if             , or     
         (    )    

         (      )     go to step 3. 

Output: estimated rank values    ̂    ̂    ̂. 

Here are some details for GA algorithm: 

At each iteration     ,   
         (    ) is the current chromosome  . 

At step 2, the initial population is stored in a  x3 matrix. Each row of the matrix is 1x3 vector with three random values. 

The     component of this vector is a random value between 1 and 
   

   
  Therefore, the     row of the matrix is   

         ( ). 

In the following, we exemplify the step 4 of Algorithm 1, with two chromosomes with index   and   : 

At step 4, after selection, we assume that we afford, among the selected chromosomes,   
         (    )             and 

 
  
         (    )                . 

At the iteration       , crossover provides the new offsprings. Whatever  , either    or      is chosen, randomly, as the 

    component of   
         (      )  and  

  
         (      ) . For instance:   

         (      )                 and 

 
  
         (      )                . 

Then after mutation, these offsprings are slightly modified:   
         (      )                          and 

 
  
         (      )      

                      , where, whatever  ,     and     are random values which are small 

compared     and     . 

For the practical implementation of Algorithm 1, we have selected a globally convergent Lagrangian algorithm which 

permits to define lower and upper bounds on the estimated values    ̂    ̂    ̂ [15]. Our motivation is the following: in the 

fitness function of Eq. (4), the values of    ,    ,     cannot be less than 1, and greater than the size of the wavelet packet 

coefficient  ̂   
    

 along each mode  : 0 <     ≤ 
   

   
, where   is equal to either    , or  . 

B. Principles of Particle Swarm Optimization Algorithm 

The basic PSO algorithm [16] is inspired by the behavior of fish or bird swarms. The basic principles of PSO algorithm are 

to simulate the communication between animals of a swarm, which aim at locating food for instance. PSO updates the 

behavior of such individuals of the swarm, called particles, through time. As shown in Algorithm 2, it is implemented as an 

iterative algorithm which, for the current iteration number     , computes two characteristics of the particles: velocity, and 

position. 

Algorithm 2 Pseudo-code: Particle Swarm Optimization for multiple rank estimation 

Inputs: fitness function of Eq. (4), tensor gross estimate X1, small factor   set by the user, to stop the algorithm. 

1. Set iteration number        , create an initial population composed of Q random particles with all required rank 

values   
         (    ),          . This initial population takes the form of a matrix with   rows and 3 columns. 

2. Evaluate fitness function value of each particle    
         (    ),          . 

3. Update the local best particles   
         (         ), and the global best particle          , 



Journal of Remote Sensing Technology  2016, Vol. 4 Iss. 1, PP. 90-114 

- 95 - 

DOI: 10.18005/JRST0401008 

4. Repeat steps for each particle          : 

(a) Compute velocity   
        (      ) 

(b) Compute position   
        (      ) 

5. Exchange current population with the new one, obtained at step 4. 

6. If             , or     
         (    )    

         (      )     increase   , and go to step 2. 

Output: estimated rank values    ̂    ̂    ̂ 

Here are some details for PSO algorithm: 

At each iteration     ,   
         (    ) is the current position of particle  , and   

        (    ) is its velocity. 

At step 1, the initial population is stored in a  x3 matrix. Each row of the matrix is a 1x3 vector with three random values. 

The     coefficient of this vector is a random values between 1 and 
   

   
 Therefore, at iteration 1, the     row of the matrix is 

  
         ( ). 

In the following, we exemplify the step 4. of Algorithm 2, with one particle with index  . This particle is expressed as 

  
         (    )            . In Eqs. (5) and (6), we show how to get an updated particle, at iteration       . 

At step 4(a), the velocity is computed as follows: 

 
  

        (      )     
        (    )        (  

            
        (    )) 

        ( 
            

        (    )) 
(5) 

At step 4(b), the position at        is computed as the summation of the position at iteration      and the velocity at 

iteration        . 

   
        (      )    

        (    )    
        (      ) (6) 

In Eqs. (5) and (6), the arithmetic operations are computed component-wise. For a given particle  , the velocity is 

influenced by two contributions: the cognitive one and the social one. The cognitive contribution is due to the personal best 

location of the particle over all iterations. It is denoted by   
          in Eq. (5). Social contribution represents global best 

location over all particles in the swarm and all iterations. It is denoted by            in Eq. (5). 

In Eq. (5),    is the inertia weight,     and     are the acceleration constants encouraging a local and a global search 

respectively. The probabilistic aspect of the transition between two iterations of Algorithm 2 is due to     and    , which, for 

each particle   and each iteration     , are two numbers generated randomly between 0 and 1. A large inertia weight ( ) 

facilitates a global search while a small inertia weight facilitates a local search. We look forward to encourage a global search 

for the first iterations, and a local search for the last iterations. Therefore, we fix an initial value       and a final value        

                             . At the iteration   er, the weighting coefficient is computed as:         
(             )     

       
, 

where         is the final iteration number. When this last iteration number is attained, or when the Frobenius norm of the 

difference between estimated vectors at iteration      and        is less than a fixed threshold   (see step 6 of Algorithm 2), 

the position vector            is a row vector containing 3 components which are the final estimated values    ̂    ̂    ̂, of the 

signal subspace ranks. 

C. Comparative Discussion: GA and PSO 

From Algorithms 1 and 2, we can learn that GA and PSO share many common points: they search a population of points in 

parallel, not a single point; they do not require derivative information or other auxiliary knowledge, only the objective function. 

They use probabilistic transition rules between one iteration to the next, not deterministic ones. This probabilistic aspect is due 

to the probabilistic crossover and mutation at steps 4(b) and 4(c) in Algorithm 1 (GA). The role of mutation is often seen as 

providing a guarantee that the probability of searching any given triplet of rank values will never be zero. The crossover 

routines recombine pairs of individuals with given probability to produce offspring. In Algorithm 2 (PSO), the probabilistic 

aspect is due to random parameters     and     (see Eq. (5) and step 4(b) of Algorithm 2). The role of these parameters is to 

enable the scan of the whole research space and to avoid the algorithm to be trapped in a local minimum. 

Different terms are used for similar features in both types of algorithms: both methods start with a population of randomly 

generated candidate solutions, called individuals or phenotypes in GA, and particles in PSO. The population is evolved toward 

better solutions, regarding a fitness function. Each candidate solution has a set of properties, called chromosomes or genotype 

in GA, position, and velocity in particle swarm optimization. 
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Both update the population and search for the optimum with random techniques. Both systems do not guarantee success. 

GA and PSO are different mainly in the way the information is shared between candidate solutions. In a nutshell, advantages 

and drawbacks of both methods are as follows: In GA, candidate solutions with much diversity are created. Every chromosome 

shares information with at least another chromosome, or mutates. The reproductive success varies with fitness, but the best 

solution at a given iteration is not preserved. Hence, a large number of iterations are generally required for convergence [43]. 

In PSO, particles do not undergo crossover and mutation: they update themselves with the internal velocity, which depends 

on local   
          and global             best candidates selected at the previous iteration (see Eqs. (5) and (6)). There exists a 

single particle            which has an influence on the behavior of the other candidate solutions. Hence, PSO includes a 

‗memory‘ feature: over all iterations, the personal best of each particle and the overall best are taken into account to compute 

velocity. So, the evolution only looks for the best solution at a given iteration. In PSO, there is no selection operator, and the 

higher the number of particles, the higher the computational load. However, compared with GA, and even if the number of 

particles remains the same throughout the evolution, the particles tend to converge faster to the final solution. 

In the considered problem, we look for only three parameters which are the signal subspace ranks. Hence, and as a balance 

to section III., we infer that PSO should be faster than GA or any hybrid algorithm. In the next section, we insert the 

optimization algorithm in a tensor-wavelet framework. 

IV. UNSUPERVISED MULTIWAY WIENER FILTERING IN WAVELET FRAMEWORK 

In this section, we show how to obtain an unsupervised MWF-MWPT algorithm. We estimate the multiple signal subspace 

dimensions automatically. We also propose a method to set the number of wavelet packet decomposition levels for each mode, 

and we refine the reference tensor with a recursive algorithm. 

A. Automatic Estimation of Multiple Ranks in Wavelet Framework 

It is necessary to adapt a global optimization method for multiple rank estimations when MWF is inserted in the wavelet 

framework [4]. Indeed, even if we restrict the study to third-order tensors such as color, multispectral or hyperspectral images, 

the number of required rank values may be so elevated that they cannot be fixed manually: One triplet of rank values must be 

estimated for each wavelet packet coefficient. There exists     coefficients for mode   ,        . Each wavelet packet 

coefficient such as      
  is a tensor of order   [4], so   rank values must be estimated for each wavelet packet coefficient. When 

the decomposition is performed, the number of coefficients is equal to ∏     
   . In total, the number of rank values to be 

estimated in the whole algorithm is given by  ∏     
   . This number is possibly elevated. Therefore, it is of great interest to 

estimate the rank values automatically. 

We wish to minimize all terms of the summation in Eq. (2), knowing that the noise-free tensor X is not available. For this 

we propose Algorithm 3, multidimensional wavelet packet transform and multiway Wiener filtering with rank estimation 

(MWPTMWF-RE). 

Algorithm 3 MWPT-MWF-RE 

Input: Noisy tensor R, gross estimate X1 of R obtained by MWF with fixed rank values. 

1. Compute the wavelet packet decomposition of the noisy tensor R and of the gross estimate X1: 

  
               ,   

    
                 

2. Extract the wavelet packet coefficients [4]:      
    

      
     

     
, and 

    

    
   

    
     

     
     

 

3. Perform rank estimation and denoising for each wavelet packet coefficients      
 : 

(a) Subsample      
  and     

    
 by factors S1, S2, and S3 along the first, second and third mode respectively to get a 

smaller version      
   and     

     
. 

(b) Estimate with a global optimization method the optimal rank values    ̂    ̂    ̂ in terms of the criterion: 

  (        )  ‖    

     
  ̂   

   (        )‖
 
 

In the equation above,  ̂   
   

 is obtained from      
   with MWF:  ̂   

   
      

                    , where 

         , and      depend on      , and    respectively. 

(c) Multiply the rank values obtained at step (b) by S1, S2, and S3 respectively:     ̂        ̂    ̂         ̂ , and 

   ̂        ̂. 

(d) Apply MWF to each coefficient subtensor      
 , with the optimal rank values: 

 ̂   
        

                   , where          , and      depend on    ̂    ̂        ̂ respectively 
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4. Concatenate all coefficients  ̂   
   to afford the wavelet packet decomposition  ̂ 

   as a whole [4]. 

5. Retrieve the final estimated tensor by inverse wavelet packet transform:  ̂   ̂ 
      

     
     

 . 

Output: Denoised tensor  ̂. 

In Algorithm 3,                denote the  -mode filters of MWF, which depend on rank values          [19]:     
  

denote the wavelet packet coefficients of R. Note that, for computational load purposes, different versions of MWF may be 

used in the algorithm. Here are some details about the key steps of Algorithm 3: 

At step 1, we compute wavelet packet decomposition of the processed tensor R, to get   
 , and the wavelet decomposition 

of the gross estimate X 1 to get   

    
. 

At step 2, we extract all the coefficients out of the whole decomposition: we get coefficients      
  and     

    
. This process is 

described in detail in [4]. 

At step 3, we firstly estimate the best rank values, and secondly use these rank values to denoise the coefficients with MWF. 

To reduce the computational load of step 3(b), the estimation of the best rank values is performed on subsampled versions 

of      
  and     

    
. The subsampling is made at step 3(a). In step 3(b), we seek for the best rank values, without expecting the 

best estimates of the singular vectors used in MWF. That is why, still to reduce the computational load, a fast version using 

fixed-point algorithm and inverse power method [26] may be used if significant data are processed with low SNR values. At 

step 3(c) we multiply the rank values which were obtained by the subsampling factors. Then, we perform denoising at step 3(d). 

At step 3(d), the singular vectors used in the Wiener filters along each mode are computed through singular value 

decomposition, and are then optimal in the least squares sense [47]. 

At step 4 a simple concatenation of the wavelet packet coefficients is performed. The whole set of coefficients is expressed 

in a synthetic way as  ̂ 
  , which is by definition the wavelet packet decomposition of the denoised tensor. 

At step 5 the denoised tensor is provided by inverse wavelet packet transform. 

With a global optimization method, Algorithm 3 is supposed to converge asymptotically towards the best set of rank values, 

and therefore the best possible estimate  ̂ at step 5 and as the final output of the algorithm. In practice, the total number of 

iterations, that is, the parameter        , is fixed automatically: whatever the optimization algorithm which is considered, the 

algorithm stops if the maximum a priori fixed number of iteration is attained or if the estimated values do not vary from one 

iteration to the next. 

B. Estimation of the Number of Decomposition Levels 

At step 1 of Algorithm 3, the number of wavelet packet decomposition levels for each mode, contained in vector   
          

 , is a required input for the computation of the wavelet packet coefficients. In [4], these values are chosen 

empirically. We propose an algorithm to estimate vector  . To reduce the range of acceptable values, we first notice that, up 

to now, the interest of performing decomposition along the wavelength mode has not been emphasized when 

multidimensional images are processed with MWPT-MWF. That is,    is always fixed to 0. Secondly, without loss of 

generality, there is no prior assumption concerning the structure of the images. That is, we assume there is no feature which 

is expressly related to rows or columns. So, the row and column dimensions are processed in the same manner, and the 

number of decomposition levels is equal for each dimension:      . Thirdly, it has been shown empirically in [4] that there 

is no interest to perform wavelet packet decomposition with more than three levels. From the considerations above, we 

restrict the set of candidate instances for   to         ,          , and         . 

To make our choice between these three possibilities, we propose Algorithm 4 below. In Algorithm 4, at step 1, subsampling 

is applied to yield a faster process. At step 2(a), we notice that, for each mode   where   is equal to      or  , the value of the 

signal subspace dimension is    
  

        
. It is fixed to half the size of the processed wavelet packet coefficient. Notice that 

we do not choose optimal values of    in any sense at step 2(a). Indeed, we do not seek for the best denoised tensor at this step, 

but for the best number of decomposition levels. 

Algorithm 4 Estimation of the number of decomposition levels 

Input: noisy tensor R. of size         , gross estimate X 1 of R obtained by MWF with fixed rank values     
  

 
,    

  

 
, 

   
  

 
, set of candidate vectors  . 

1. Apply subsampling by factors   ,    and    along modes 1, 2 and 3, to tensor R and tensor X1, 

2. For each candidate vector              
 : 

(a) apply Algorithm 3 with fixed values of the signal subspace dimensions for each decomposition level: 
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,     

  

        
,     

  

        
, that is, half of the size of the coefficients. 

(b) retrieve the error between the estimate obtained with Algorithm 3 at step 2. (a) and the subsampled version of X1. 

3. Select the vector   for which the error is minimum. 

Output: optimal vector   in terms of least squares error. 

Still, the reference tensor which is used in Eq. (3) is obtained in a supervised way: with MWF with manually fixed ranks. 

In the next subsection, we propose a method to reduce the dependence of the algorithm, and to get a better reference tensor. 

C. Iterative Algorithm for the Estimation of the Reference Tensor 

In Eqs. (3) and (4), a reference tensor is required, which should ideally be the expected tensor itself. As we do not afford 

it, we propose an iterative algorithm: we first provide a gross estimate obtained with MWF, and refine in an iterative manner 

this reference tensor. At iteration 1 the reference tensor is the gross estimate   . At iteration     the reference tensor is  ̂   , 

the result of denoising obtained at the previous iteration    . This process is repeated iteratively. The algorithm stops when 

the estimate at iteration   differs from the estimate at iteration     by a small factor  . 

In Fig. 1, we present the flowchart of the overall algorithm, with iterative estimation of the reference tensor and estimation 

of the ranks with a global optimization method. This overall algorithm is described in detail in Algorithm 5 below. 

 

Fig. 1 Rank estimation with global optimization method in wavelet packet transform domain: iterative process 

The chart in Fig. 1 corresponds to the algorithms presented above in the paper as follows: 

Algorithm 5 Overall algorithm 

Input: noisy tensor R. of size          

1. Obtain the gross estimate X 1 of R by MWF with fixed rank values. Apply Algorithm 4 to select the best vector   with 

values of the number of decomposition levels for each mode 

2. Set iteration    ; choose a small factor  . 

a) Apply Algorithm 3 (MWPT-MWF-RE) with X1 obtained at step 1, as gross estimate. Algorithm 3 provides  ̂  

using the optimization method described in Algorithm 1 or Algorithm 2 for instance. 

b) Increase the iteration index:      ; Set the gross estimate as  ̂   , the tensor estimated at step 3. a). 

c) Apply Algorithm 3 (MWPT-MWF-RE) with  ̂    obtained at step 3. a), as gross estimate. Algorithm 3 provides 

 ̂ . 

d) Compute the error   ‖ ̂   ̂   ‖
 
. 

e) If    , go to step 3. b). Otherwise, set  ̂   ̂ . 

Output: Denoised tensor  ̂. 

If Algorithm 5 is stopped at iteration    , that is, at step 3. a), it is equivalent to selection of the best vector   followed by 

Algorithm 3. In the rest of the paper, we denote Algorithm 3 as MM-GA, or MM-PSO depending on the optimization method 
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which is chosen. We denote Algorithm 5 as MM-Iterative. MM stands for MWPT-MWF. 

V. RESULTS 

A. Experimental Setup 

In this section, we evaluate the performances of the proposed methods on RGB and multispectral images. We consider 

images where the relevant features are localized in some regions of the image. From the presence of such small local features 

we expect methods based on wavelet packet decomposition to provide good results, as wavelet packet decomposition permits 

to separate the processing of high frequency and low frequency features. 

In the recent state-of-the-art about HSI denoising [13, 48], the authors emphasize the quality of the recent HSI sensors: 

since in most bands noise is nearly invisible for human eyes, the authors impair the images with synthetic data. In this paper, 

we focus on a specific application fluorescence imaging of plant leaves [49]. In the context of fluorescence imagery, the noise 

magnitude is inherently rather elevated, compared to the applications considered elsewhere. Indeed, the emitted fluorescence 

light has a much lower magnitude than the excitation light provided by a monochromator. 

Consequently, we will firstly present some quantitative results obtained from artificially impaired images. These results 

are at first obtained from the RGB Baboon image. Secondly, they are obtained from multispectral aerial images. These 

multispectral images are extracted from hyperspectral images that were obtained with the ROSIS acquisition sensor over the 

urban area of Pavia, northern Italy. Thirdly, we present results obtained from fluorescence images which are inherently noisy. 

We remind that X is the noise-free tensor, R is the noised tensor and  ̂ is the estimated tensor. The processed noised images 

follow the tensor model and are expressed as: R = X + N. 

The results obtained are evaluated in terms of SNR and perceptual image quality. The perceptual image quality is measured 

through mean structural similarity (SSIM) [50] over all spectral bands. 

We remind that            (
‖ ‖ 

‖   ̂‖ )  and      ( ̂  )    (   ̂)    (   ̂)    (   ̂) , where   ,    , and    are 

three terms aiming at image comparison: luminance, contrast, and structure. 

Programmes were written in Matlab®, and executed on a PC running Windows, with a 3GHz double core and 3GB RAM. 

Unless for the last considered application to fluorescence imaging, the images are artificially impaired with white, 

identically distributed random noise with the following input     (     ) values (in dB): 5, 7.5, 10, 12.5, and 15. We 

present both examples for a specific value of       such as 5 dB or 12.5 dB, and statistical results obtained with the values 

of       cited above and 20 noise realizations. 

Values of input     between 5 and 15 dB are realistic for the considered fluorescence images, hence our choice. The 

results are evaluated regarding output     (      ) and output SSIM (       ). In the wavelet packet decomposition, 

following the recommendations in [4] we choose Coiflets as wavelet functions. 

As concerns the number of decomposition levels along each mode, we set the number    for the third mode through the 

following heuristic process: with fixed the number of decomposition levels along the first and two modes to 2, and tried 

several values for   . We noticed that performing decomposition along the wavelength mode does improve the denoising 

results in terms of output    , at least for the considered data. Hence, we set      . We then referred to Algorithm 4 to 

estimate    and    automatically. To run Algorithm 4, we set the subsampling factor S to 4. Unless specified, its yields 

        and as optimal values. An example of the number of signal subspace dimension values to be estimated is as 

follows: if we obtain            , the decomposition yields 16 wavelet packet coefficients, which are    -order tensors. The 

total number of rank values to be estimated is  ∏     
      (        )    . 

We test the proposed methods (Algorithms 3) with either genetic algorithm, particle swarm, or Nelder-Mead optimization 

methods. We also test the iterative method presented in section IV (Algorithms 5). These methods are denoted as MM-GA, 

MM-PSO, or MM-Nelder, for Algorithm 3, and MM-Iterative for Algorithm 5. We selected state-of-the-art comparative 

methods, based on data projection on a signal subspace: AIC estimating the subspace ranks in the wavelet framework 

(proposed in [4]) denoted by MM-AIC, truncation of higher order decomposition denoted by THOSVD [51] and multiway 

Wiener filtering denoted by MWF [8]. We omitted some other methods, based on band-by-band wavelet processing such as 

FoRWaRD [52], or classical linear smoothing filters because they provide either poor SSIM or output SNR values [12]. We 

propose Perona-Malik [18] as a comparative method. When Perona Malik is applied, the image is smoothed through a 

diffusion process, in such a way as to encourage intraregion smoothing rather than interregion smoothing.  The Perona-Malik 

method is denoted as ‗Per-Mal‘ in the tables presented further in the paper. Following the recommendations in [18], the 

parameters are as follows: the number of iterations is 15, the constant integration δt is fixed to its maximum value, 1/7; the 

gradient modulus threshold that controls the conduction is κ = 30; and the conduction coefficient function privileges high 

contrast edges. The tested algorithms require a few parameters which are set once for all processed images: following the 

recommendations in [16] PSO is run with the swarm size is Q = 10 (about three times the number of unknowns which is three) 
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and       . This yields maxit = 100 iterations. The acceleration constants     and     are set to 2 and 3 respectively. We 

run a version of GA using a Lagrangian algorithm [14, 15], with Q = 300 individuals in the initial population. We use the 

fitness function to provide a measure of how individuals have performed in the problem domain. When THOSVD or MWF 

are run, we set the values of signal subspace dimension equal to 60% of the data size along each mode. Unless specified, to 

create the reference tensor we set the values of signal subspace dimension equal to 60% of the data size along each mode. 

When the iterative process described in subsection C. is used, 3 iterations are used to refine the gross tensor estimate. Unless 

specified, the subsampling factors used to obtain a smaller version of the wavelet packet coefficient tensor are set to S1 = S2 

= 4, and S3 = 2 in algorithms 3 and 4. For the RGB display of the multispectral images throughout the section, we select 3 

representative bands. Unless specified, they are in the red (690 nm), green (550 nm), and blue (450 nm) wavelength domains 

respectively. 

B. Baboon RGB Image 256×256×3 

To process this RGB image, the values of signal subspace dimension in the reference tensor are set to 80% along the 

spatial modes, and 100% along the wavelength mode, that is, 3 because only three bands compose this image. The subsampling 

factors are set to S1=S2=4, and S3=1. This image is processed with 2 wavelet packet decomposition levels along the spatial 

modes, leading to wavelet packet coefficients of size        . 

1)  Exemplification with           

Table 1 provides the estimated values for the first computed detail coefficient, and for the approximation coefficient. 

Notice that the spatial ranks are multiples of 4, because S1=S2=4. MM-GA and MM-PSO yield similar spatial rank values, 

whereas AIC tends to underestimate the value of the rank along the first mode (rows), for both approximation and detail 

coefficients. Otherwise, considering the detail coefficient, the maximum value is obtained for rows and columns. This can be 

explained as follows: In the case where salient structures are present in an image, such as horizontal lines or columns, there 

exists a set of columns or rows which are mutually proportional, and the rank of such images is rather low. When we consider 

the estimated rank values for detail coefficient (see Table 1), we notice that the rank values are elevated (64 for all but one 

value). This is because there is no salient structure in the detail coefficients in the case of this image: it rather contains noise. 

TABLE 1 BABOON RGB IMAGE 256×256×3: ESTIMATED RANKS VALUES FOR THE FIRST DETAIL COEFFICIENT AND THE APPROXIMATION COEFFICIENT 

Coefficient 
Method 

MM-GA MM-PSO MM-AIC 

Approximation (54, 64, 2) (52, 56, 3) (12, 64, 3) 

Detail (64, 64, 2) (64, 64, 2) (16, 64, 3) 

Fig. 2 presents the results obtained with the proposed and comparative methods on the Baboon image. It can be noticed that 

Perona-Malik yields a blurred image, that the image provided by MM-AIC is rather blurred along rows. When MM-Iterative is 

applied, the result image is slightly more noisy than the result provided by MM-PSO, but the contrast and the contours are 

better preserved. This is done to the cost of a higher computational load (see Table 2). 

     

Noise-free Perona Malik MM-NELDER MM-AIC THOSVD 

     

Noised MM-PSO MM-PSO MM-Iterative MWF 

Fig. 2 Baboon RGB image 256×256×3: Noise-free, noised 5 dB, denoising results 

TABLE 2 BABOON RGB IMAGE 256×256×3: COMPUTATIONAL LOAD ALL METHODS (IN SEC.) 

Per-Mal MM-GA MM-Nelder MM-PSO MM-AIC MM-Iterative THOSVD MWF 

0.931 49.03 11.59 8.931 2.398 24.59 0.143 0.369 

2)  Statistical Results 

The statistical results presented in Table 3, and Table 4 show that, for all input SNR values but 5 dB, the proposed methods 

MM-GA, MM-PSO, and MM-Iterative perform better than Perona-Malik, MM-AIC, MWF or truncation of HOSVD, 

regarding output SNR and SSIM. 
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Firstly, in the case where          , we notice that the output SNR values provided by MM-AIC are significantly 

lower than those obtained with MM-GA or MM-PSO due to the blurred aspect of the result obtained by AIC in Fig. 2, and to 

the underestimation of the rank along rows. For such an image with 3 bands, the comparative Perona-Malik method is valuable 

for the low SNR value of 5dB but the output SNR is almost the same whatever the input SNR. Secondly, if we consider the 

proposed methods, and for any value of input SNR, when the iterative method is used, the output SNR and SSIM are slightly 

better than when PSO is used, at the expense of a larger computational load: 8.931 sec. for MM-PSO, 24.59 sec. for MM-

Iterative, and 2.398 sec. for MM-AIC. When this image is considered, MM-GA is significantly slower than MM-PSO. That is 

why PSO is used in the iterative method, and not GA. We wish to confirm this with multispectral images with more bands. 

TABLE 3 BABOON RGB IMAGE 256×256×3:        ALL METHODS 

      5 dB 7,5 dB 10 dB 12,5 dB 15 dB 

       Per-Ma 13.24 13.36 13,40 13,45 13,46 

       MM-GA 12.57 13.87 15,05 16,44 17,64 

       MM-Nealder 9,57 9,92 10,25 10,55 10,78 

       MM-PSO 12.84 14,065 16,43 17,92 19,52 

       MM-AIC 8.81 10,29 12,01 13,96 15,50 

       MM-Iterative 13.30 14,52 16,48 17,98 19,61 

        THOSVD 6.48 8,67 10,96 13,33 15,78 

        MWF 10 12,07 14,14 16,04 17,93 

TABLE 4 BABOON RGB IMAGE 256×256×3: SSIMOUT ALL METHODS 

       0,2530 0,344 0,451 0,561 0,665 

        Per-Ma 0,2500 0,3000 0,3000 0,3100 0,3100 

        MM-GA 0,4671 0,5588 0,6433 0,7313 0,8038 

        MM-Nealder 0,4359 0,5342 0,6200 0,6926 0,7507 

        MM-PSO 0,4161 0,5357 0,6523 0,7330 0,7380 

        MM-AIC 0,2642 0,3544 0,4516 0,5416 0,6082 

        MM-Iterative 0,4302 0,5394 0,6575 0,7332 0,7900 

        THOSVD 0,2946 0,3926 0,4996 0,6058 0,7039 

        MWF 0,3488 0,4469 0,5435 0,6294 0,7116 

C. Multispectral Image PAVIAU Image 512×512×16 

In this subsection we consider a multispectral image, of size 512×512×16. This image is processed with 2 wavelet packet 

decomposition levels along the spatial modes, leading to wavelet packet coefficients of size 128×128×16. Firstly, we 

exemplify the proposed and comparative methods with the case where the input       5 dB. Secondly, we propose an 

exemplification with an input SNR 12.5 dB. Thirdly, we provide statistical results obtained with various values of input SNR. 

1)  Exemplification with           

Some examples of result images obtained when processing the multispectral image PaviaU of size 512×512×16 are 

presented in Figs. 3 and 4 for the case where the input SNR is 5 dB. Fig. 4 is a zoom on the upper right region of the image. 

     

Noise-free Perona Malik MM-Nelder MM-AIC THOSVD 

     

Noised MM-GA MM-PSO MM-Iterative MWF 

Fig. 3 PaviaU image 512 × 512 × 16: Noise-free, noised 5 dB, denoising results 
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Noise-free Perona Malik MM-Nelder MM-AIC THOSVD 

     

Noised MM-GA MM-PSO MM-Iterative MWF 

Fig. 4 PaviaU image 512 × 512 × 16, zoom: Noise-free, noised 5 dB, denoising results 

Table 5, which provides the processing time with an image containing 16 bands, shows that the proposed methods MM-GA, 

MM-PSO, and MM-Iterative are slower than MM-AIC. 

TABLE 5 PAVIAU IMAGE 512 × 512 × 16: COMPUTATIONAL TIME FOR EACH METHOD 

Per-Mal MM-GA MM-Nelder MM-PSO MM-AIC MM-Iterative THOSVD MWF 

17.83 196.5 52.03 48.12 16.22 138.5 2.66 7.16 

Table 6 presents results obtained regarding output SNR from the zoom image in Fig. 4, when a subset of bands is selected 

out of the 16 bands which compose the image. The number of selected bands varies from 12 to 3. The image is still impaired 

with an input SNR of 5 dB. 

TABLE 6 PAVIAU IMAGE, ZOOM, SNRIN 5 DB: SNROUT FOR VARIOUS NUMBER OF BANDS 

Nb Bands        MM-PSO         MM-AIC         MM-Iterative 

12 14.42 13.21 14.22 

10 14.09 11.99 14.61 

8 13.40 12.03 13.73 

6 12.84 9.95 12.95 

4 12.66 7.85 13.16 

3 13.46 7.56 13.47 

The numerical results in Table 6 show that the performances of MM-PSO and MM-Iterative hardly change when the 

number of bands is reduced. Conversely, the output SNR provided by MM-AIC sinks, when the number of bands is reduced 

from 12 to 3. 

2)  Exemplification with              

The example in Fig. 5 concerns a case where the input SNR is 12.5 dB. 

     

Noise-free Perona-Malik MM-Nelder MM-AIC THOSVD 
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Noised MM-GA MM-PSO MM-Iterative MWF 

Fig. 5 PaviaU image 512 × 512 × 16: Noise-free, noised 12.5 dB, denoising results 

3)  Statistical Results 

These result images presented in this subsection yield the following comments: we notice that the result image provided by 

the Perona-Malik method is more blurred than all other result images. As for the methods which are not based on wavelet 

packet decomposition, the truncation of the HOSVD yields an image which is still rather noisy, and the MWF yields a column 

and row artifact and a poor detail preservation. As for the methods which include wavelet packet decomposition, the details are 

slightly better preserved when MM-GA, MM-PSO, and MM-Iterative are used than in the case where MM-AIC is used. 

It is worth noticing that the performance of MM-GA, and MM-PSO are barely the same when the number of bands is 

reduced from 16 to 3. On the contrary, the performance of MM-AIC sinks when the number of bands decreases. This is 

coherent with the result presented in Table 3, for an input SNR of 5 dB, with the Baboon image which is composed of only 3 

bands: MM-GA, and MM-PSO outperform MM-AIC in this case as well. 

The numerical results in Tables 7 and 8 are by the visual aspect of the images obtained with input SNR values 5 and 12.5 

dB: the output SNR and SSIM values are higher when the MWPT-MWF-RE algorithm is used, at the expense of a higher 

computational load. 

TABLE 7 PAVIAU 512 × 512 × 16:        ALL METHODS 

      5 dB 7,5 dB 10 dB 12,5 dB 15 dB 

       Per-Ma 11,97 12,05 12,10 12,13 12,14 

       MM-GA 15,38 17,41 18,91 20,54 21,82 

       MM-Nealder 13,89 14,77 15,39 15,84 16,17 

       MM-PSO 16,48 17,86 19,10 20,58 22,24 

       MM-AIC 16,23 17,26 18,92 20,52 22,15 

       MM-Iterative 16,40 18,00 19,24 20,79 22,29 

        THOSVD 7,17 9,42 11,73 14,09 16,49 

        MWF 13,47 15,00 16,57 18,18 19,84 

TABLE 8 PAVIAU 512 × 512 × 16:         ALL METHODS 

       0,48 0,55 0,65 0,74 0,80 

        Per-Ma 0,6539 0,6713 0,6918 0,7040 0,7076 

        MM-GA 0,7772 0,8219 0,8823 0,9253 0,9424 

        MM-Nealder 0,7149 0,7449 0,7554 0,7664 0,7820 

        MM-PSO 0,8149 0,8602 0,9047 0,9264 0,9499 

        MM-AIC 0,8021 0,8687 0,8970 0,9396 0,9530 

        MM-Iterative 0,8280 0,8398 0,9073 0,9360 0,9439 

        THOSVD 0,6477 0,7406 0,8179 0,8774 0,9215 

        MWF 0,6642 0,7397 0,7915 0,8637 0,8988 

From these remarks, we infer that the proposed methods MM-PSO or MM-Iterative are preferable in applications where the 

processed multispectral image is composed of a low number of bands and the input SNR are rather low. 

D. Multispectral Image PAVIAU Image 128×128×16 

In this subsection, we consider a multispectral image, of size 128×128×16. This image is processed with 2 wavelet packet 

decomposition levels along the spatial modes, leading to wavelet packet coefficients of size 32×32×16. This image is 

processed with subsampling parameters S1 = S2 = S3 = 1. 

1)  Exemplification with              

The results obtained are exemplified in Fig. 6, where the image is impaired with             . 
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Noise-free Perona-Malik MM-Nelder MM-AIC THOSVD 

     

Noised MM-GA MM-PSO MM-Iterative MWF 

Fig. 6 PaviaU image 128 × 128 × 16: Noise-free, noised 12.5 dB, denoising result 

2)  Statistical Results 

As shown in Tables 9 and 10, for all input SNR values, the iterative method provides the best values of output SNR and 

output SSIM. As shown in Table 11, its computational load is about 20 sec., higher than methods which are not based on 

multiway Wiener filtering of wavelet packet coefficients, but still 2 times lower than in the case where MM-GA is used. The 

interest of using PSO in the iterative method is to reach a good compromise between the improvement of the image quality, 

and the computational load. The MM-Nelder method yields output SNR and SSIM values which are lower than MM-GA or 

MM-PSO. This can be due to the fact that, as three unknowns are expected, Nelder optimization method converges towards 

non-critical points. In the following, we will focus on MM-GA, MM-PSO, MM-AIC, and MM-Iterative methods. 

TABLE 9 PAVIAU IMAGE 128 × 128 × 16:        ALL METHODS 

      5 dB 7,5 dB 10 dB 12,5 dB 15 dB 

       Per-Ma 8,66 8,69 8,72 8,73 8,74 

       MM-GA 12,24 14,29 15,51 16,71 18,97 

       MM-Nealder 10,60 11,20 11,75 12,03 12,24 

       MM-PSO 12,65 14,36 15,40 17,44 18,95 

       MM-AIC 13,40 15,13 17,01 18,92 20,91 

       MM-Iterative 13,77 15,45 17,33 18,99 20,94 

        THOSVD 6,10 8,32 10,61 12,93 15,31 

        MWF 5,10 7,59 10,10 12,59 15,10 

TABLE 10 PAVIAU IMAGE 128 × 128 × 16:         ALL METHODS 

       0,35 0,47 0,58 0,66 0,76 

        Per-Ma 0,3015 0,3017 0,3171 0,3223 0,3237 

        MM-GA 0,5959 0,7171 0,7741 0,8321 0,8891 

        MM-Nealder 0,5179 0,5770 0,5988 0,6108 0,6351 

        MM-PSO 0,6201 0,7233 0,7835 0,8391 0,8803 

        MM-AIC 0,5773 0,7206 0,7612 0,8578 0,9077 

        MM-Iterative 0,6603 0,7524 0,7978 0,8591 0,9150 

        THOSVD 0,4508 0,5702 0,6697 0,7656 0,8389 

        MWF 0,3554 0,4707 0,5822 0,6660 0,7621 

TABLE 11 PAVIAU IMAGE 128 × 128 × 16: COMPUTATIONAL LOAD ALL METHODS (IN SEC.) 

Per-Mal MM-GA MM-Nelder MM-PSO MM-AIC MM-Iterative THOSVD MWF 

1.446 39.94 10.11 6.880 1.530 20.54 8.99 10−2 1.648 10−1 

E. Subsampling and Rank Estimation 

The purpose of this subsection is to evaluate the effect of subsampling on the estimation of the rank values. The 

multispectral image in Fig. 6 is a smaller version of the image in Fig. 5, with the same SNR of 12.5 dB. It has been obtained by 

subsampling along spatial modes by a factor 4, and keeping the same number of bands. We expect to obtain subspace rank 
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values which are four times smaller than for the large image. Table 12 presents the values of signal subspace dimensions 

obtained from the image in Fig. 5, and Table 13 presents the values of signal subspace dimensions obtained from the image in 

Fig. 6. 

TABLE 12 PAVIAU 512 × 512 × 16: ESTIMATED RANKS VALUES FOR THE FIRST DETAIL COEFFICIENT AND THE APPROXIMATION COEFFICIENT 

Coefficient 
Method 

MM-GA MM-PSO MM-AIC 

Approximation (116, 116, 14) (113, 114, 14) (43, 43, 6) 

Detail (78, 68, 12) (73, 72, 12) (1, 128, 16) 

TABLE 13 PAVIAU IMAGE 128 × 128 × 16: ESTIMATED RANKS VALUES FOR THE FIRST DETAIL COEFFICIENT AND THE APPROXIMATION COEFFICIENT 

Coefficient 
Method 

MM-GA MM-PSO MM-AIC 

Approximation (29, 29, 15) (28, 30, 14) (32, 32, 13) 

Detail (15, 20, 9) (20, 20, 2) (32, 32, 9) 

Firstly, here is a comparative study of the rank values obtained with the large and with the smaller image: When GA or 

PSO are used, comparing the values in Tables 12 and 13 yields the following comments: when considering the approximation 

coefficients, the values along rows and columns of signal subspace dimension are 3.8 to 4.1 times higher. For the detail 

coefficients, the ratio between dimension values is slightly farther from 4. This is coherent with the subsampling factor 

between the large and the small image, equal to 4. The slight bias with respect to the subsampling factor may be due to the fact 

that a different noise realization impairs the image. Additionally, we performed similar tests with the iterative method. When it 

is used, the estimated rank values increase throughout the iterations and reach almost always the size of the wavelet packet 

coefficient along each mode at the last iteration. Indeed, the noise magnitude of the processed image shrinks throughout the 

iterations, hence the increase in the values of signal subspace dimension. These results assess, at least for the considered 

images and subsampling factors, the relevance of step 3a in Algorithm 3. 

Secondly, here are comments which aim at comparing the rank values in either approximation or detail coefficients: When 

referring to the results presented in Table 12 and 13, we notice that AIC always provides the maximum possible value, except 

once: the least possible value, that is, 1, is provided for a detail coefficient of the image in Fig. 4. The interest of this method is 

therefore limited in this case. When GA or PSO are used, the rank values for the approximation coefficient is more elevated 

than the rank values for the detail coefficient. This is due to the ability of wavelet packet decomposition to concentrate the high 

frequency components, that is, the noise, in the detail coefficients. The noise magnitude is less elevated in the approximation 

coefficient, and a larger proportion of singular vectors are considered as forming part of the signal subspace. So the value of 

the signal subspace dimension is more elevated for the approximation coefficient than for the detail coefficient. 

F. Multispectral Image PAVIAU Image 128×128×32 

The results presented above have shown the interest of using MM-PSO or MM-Iterative to reach elevated output SNR 

values when the number of bands in the processed multispectral image is rather low. As their computational load is more 

elevated than MM-AIC, we wish to provide an alternative for the case where the multispectral image is composed of a high 

number of bands. We aim at demonstrating the interest of fixed point algorithm when the processed image is large, and 

impaired with a low input SNR of 5 dB. The visual results obtained are presented in Fig. 7: we display the noise-free image, 

the noised image impaired with a 5 dB white Gaussian noise, and the denoising results obtained with MM-PSO and MWF 

using either singular value decomposition (SVD) or fixed point (FP) algorithm. 

   

Noise-free MM-PSO-SVD MWF-SVD 

   

Noised MM-PSO-FP MWF-FP 

Fig. 7 PaviaU image 128 × 128 × 32: Noise-free, noised 5 dB, results with PSO and MWF with either SVD or Fixed Point 
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Table 14 provides the rank values estimated by GA, PSO and AIC. It shows that, compared to the case when the inputSNR 

is 12.5 dB (see Table 13), the estimated rank values are smaller, even much smaller for the detail coefficients. Table 15 

presents the computational loads obtained with GA, PSO, the iterative method, and MWF when either SVD, or FP, are used. 

The computational time required by AIC in the same conditions is 2.77 sec. 

TABLE 14 PAVIAU IMAGE 128 × 128 × 32: ESTIMATED RANKS VALUES FOR THE FIRST DETAIL COEFFICIENT AND THE APPROXIMATION COEFFICIENT 

Coefficient 
Method 

MM-GA MM-PSO MM-AIC 

Approximation (26, 26, 18) (16, 17, 11) (24, 32, 15) 

Detail (4, 4, 4) (13, 8, 5) (1, 32, 12) 

TABLE 15 PAVIAU MULTISPECTRAL IMAGE 128×128×32: COMPUTATIONAL TIME FOR EACH METHOD WITH EITHER SVD OR FIXED POINT 

 MM-GA MM-PSO MM-Iterative MWF 

SVD 262.16 54.47 259.48 0.29 

FP 258.92 29.55 129.76 0.23 

Table 16 presents output SNR and SSIM values obtained with MM-PSO when either SVD, or FP, are used, and with MM-

AIC. 

TABLE 16 PAVIAU IMAGE 128 × 128 × 16, NOISED 5 DB:        AND         OBTAINED BY MM-PSO-SVD, MM-PSO-FP, MM-AIC 

 MM-PSO-SVD MM-PSO-FP MM-AIC 

       13.14 12.58 12.17 

        0.62 0.56 0.58 

In the conditions presented above, we notice that for this image fixed point algorithm divides the computational load by 

almost 2 when MM-PSO is used (see Table 15), at the expense of slightly smaller output SNR and SSIM values (see Table 16). 

From Fig. 7, we infer that using FP instead of SVD degrades the details. The output SNR value is still higher than when MM-

AIC is used. 

G. Performance and Number of Bands 

In this section, we study the performance of MM-AIC and MM-PSO for multispectral images with various values for the 

number of bands. For this, we have selected CAVE database of multispectral images [53]. This database is composed of 

images of size 512x512x31. That is, they contain 31 bands, regularly obtained from the wavelength range 400 to 700 nm, with 

a 10 nm step between each band. 

We considered the image called ―jelly beans‖ because it contains lots of small features and details to be preserved. We 

exemplify the MM-AIC and MM-PSO with two images impaired with random noise in such a way that           . The 

first (resp. second) image contains 5 (resp. 31) bands regularly spaced between 400 and 700 nm. 

1)  Exemplification with             and 5 Bands 

The image presented in Fig. 8 contains 5 bands. The MM-AIC method provided              , and the MM-PSO 

method provided              . 

  

Noise-free MM-AIC 
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Noised MM-PSO 

Fig. 8 ―Jelly bean‖ multispectral image, 5 bands: noise-free and noised images; result obtained by MM-AIC and MM-PSO 

2)  Exemplification with            and 31 Bands 

The image presented in Fig. 9 contains 5 bands. The MM-AIC method provided               , and the MM-PSO 

method provided               . 

  

Noise-free MM-AIC 

  

Noised MM-PSO 

Fig. 9 ―Jelly bean‖ multispectral image, 31 bands: noise-free and noised images; result obtained by MM-AIC and MM-PSO 

As comments to Figs. 8 and 9, we first can notice that the higher the number of bands, the better the aspect of the denoised 

image, with either MM-AIC and MM-PSO. Secondly, we notice that the result obtained by MM-PSO in terms of output SNR 

is better than the result obtained with MM-AIC. The difference is slightly higher (3,8 dB) when a low number of bands (5) is 

processed. When the whole ―jelly beans‖ image is processed, with all 31 bands, the difference is 2,8 dB. As stated in section C 

for another multispectral image, the proposed MM-PSO method behaves better than MM-AIC for multispectral images with a 

low number of bands. Indeed, AIC is a statistical criterion whose performances are undoubtedly improved when a large 

amount of data are available. 

3)  Results for Various Values of Input SNR and Number of Bands 

We now present results obtained with the following values of input SNR: 0, 2.5, 5, 7.5, 10, 12.5, and 15 dB, and the 

following values for the number of bands: 3, 4, 5, 6, 10, 12, 16, 20, and 31. These bands are selected out of the 31 bands of the 

―Jelly bean‖ multispectral image [53], and regularly spaced between 400 and 700 nm. For instance, when 3 bands are selected, 

they correspond to 400 nm, 550 nm, and 700 nm. When 31 bands are selected, all bands between 400 and 700 nm with a 10 

nm spacing are included in the processed image. 

Fig. 10 presents the results obtained in terms of output SNR for all couples of input SNR and number of bands: Fig. 10 a) 
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shows the results obtained with MM-PSO, Fig. 10 b) the results obtained with MM-AIC, and Fig. 10 c) shows the difference 

between the values obtained with MM-PSO and MM-AIC. For both methods, the larger the number of bands, the better the 

result obtained. 

 
a) 

 
b) 

 
c) 

Fig. 10 Output SNR for various values of input SNR and number of bands: a) MM-PSO, b)MM-AIC; c) Difference MM-PSO - MM-AIC 
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We notice that the difference is always positive, which means that the performance of MM-PSO is better in all cases. The 

largest difference is obtained for input SNR values between 7.5 and 15 dB, and for the number of bands between 6 and 25. 

H. Plant Leaf Fluorescence Image 

We now consider plant leaf images. While illuminated with a 400 nm light source, a plant leaf emits fluorescence light of 

little energy, in a wavelength range between 600 and 800 nm. Because of the low brightness of the light emitted through the 

fluorescence phenomenon, the gain of the imaging sensors are pushed to a high value, and the exposure time must be elevated 

to capture this phenomenon. The electronic noise is then of large magnitude, and the acquired images are noisy. 

The image acquisition setup that was used is as follows: a hyperspectral camera HySpex VNIR-1600 (Norsk Elektro 

Optikk, Norway) acquired successive lines of 1600 pixels and 160 spectral bands ranging from 415 to 994 nm with a 3.7 nm 

spectral sampling interval. The lighting was provided by halogen source positioned close to the cameras. The illumination 

zenith angles were set to      . A monochromator is placed in the incoming halogen irradiance between the leaf and the 

Halogen. This monochromator permits to select the wavelength which induces the fluorescence phenomenon. Fig. 11 presents, 

for a relevant pixel of the acquired scene, the spectrum acquired by the camera. It focuses on the relevant part of the spectrum, 

corresponding to the fluorescence light, located between 600 and 800 nm. 

 

Fig. 11 Leaf fluorescence, wavelength range of interest 

If the time allowed for the acquisition of each frame is lowered, the electronic noise increases with respect to the relevant 

part of the data. The signal to noise ratio sinks, hence the interest of denoising. 

Fig. 12 shows the image obtained in the best conditions, with an elevated power for the incident light, and 50 ms of 

exposure time. We display a subimage of size 256 × 256 in Fig. 12 a), and two other subimages of size 128 × 128 and 64 × 64 

in Figs. 12 b) and 12 c). 

   

a) b) c) 

Fig. 12 Leaf fluorescence image: a) large image; b) zoom 1; c) zoom 2 

Figs. 13, 14, 15, and 16 correspond to different values of exposure time between 50 ms and 250 ms, and incident power of 

the excitation light, for the same leaf. For a lower power of the excitation light, the setup is cheaper, but the noise level is 

higher. 
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a) b) c) 

Fig. 13 Leaf fluorescence image: a) raw acquisition, SNR 0.5 dB; b) MM-PSO; c) MM-Iterative 

   

   

   

a) b) c) 

Fig. 14 Leaf fluorescence image: a) raw acquisition, SNR 5.6 dB; b) MM-PSO; c) MM-Iterative 
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a) b) c) 

Fig. 15 Leaf fluorescence image: a) raw acquisition, SNR 10.2 dB; b) MM-PSO; c) MM-Iterative 

   

   

   

a) b) c) 

Fig. 16 Leaf fluorescence image: a) raw acquisition, SNR 15.5 dB; b) MM-PSO; c) MM-Iterative 

To process these images, we select 16 wavelengths between 677 nm and 740 nm. For the representation of the acquired and 

processed images, we select 677, 681, and 726 nm for the R, G, and B bands. 

To evaluate the denoising results quantitatively, we consider the images in Fig. 12 as noise-free. With respect to these 

images, the SNR of the raw images in Figs. 13, 14, 15, and 16 is 0.5, 5.6, 10.2, and 15.5 dB. The MM-PSO method yields 4.0, 

8.5, 12.5, and 15.1 dB as output SNR. The MM-iterative method yields 3.6, 8.3, 12.6, and 16.3 as output SNR. The 

computational time for the largest image of size 256 × 256 × 16 is of 13.8 sec for MM-PSO, and 33.6 sec for MM-Iterative. As 

for comparison, with an exposure time of 50 ms, the acquisition time required for such an image is of several minutes. 

We can notice that the results obtained with MM-PSO are more blurred and noisy than when MM-Iterative is applied. Indeed, 

MWF provides the first gross estimate. It is blurred, with low noise magnitude. When MM-PSO is run once, a denoised image 

is obtained where the contours are better preserved. It is used a refined reference in MM-Iterative. To get close to this new 

reference, the PSO algorithm converges to triplet of rank values    ,     , and     which are more elevated than when MM-

PSO is used. That is why the result of MM-Iterative appears more noisy but less blurred than the result of MM-PSO. 

From a qualitative point of view, our methods for denoising and detail preservation remove part of the noise while 

preserving the contours, that is, the frontier between ribs and limb of the leaf. 
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VI. DISCUSSION 

While comparing the results obtained with the ‗Baboon‘ RGB image and the multispectral images of various sizes, we 

notice that the denoising performance is best when the largest image is considered. When the proposed MM-Iterative method 

is used, on the large image of Fig. 3, the SNR improvement is as follows: an input SNR of 5 (resp. 15) dB yields an output 

SNR of 16 (resp. 22) dB. When the four times smaller multispectral image of Fig. 6 is processed with MM-Iterative, the ranks 

are estimated in proportion, four times smaller as for the larger image. However, the SNR improvement is lower: an input SNR 

of 5 (resp. 15) dB yields an output SNR of 14 (resp. 21) dB. We compared the results obtained with the Perona-Malik method 

[18], which is not based on a projection onto the signal subspace. We notice that Perona-Malik is relevant only for low input 

SNR values: it induces an image smoothing which degrades too much the contours. 

As a partial conclusion from these results, we can infer that, when a large image is processed, it is relevant to estimate the 

values of signal subspace dimension on a subsampled version of the wavelet packet coefficients. This means that parameters 

S1, S2, S3 in Algorithms 3 and 4 are larger than 1. In this way, the rank values are estimated on data with small size values. 

After the estimation on these small data, the ranks which are thereby obtained are multiplied by factors S1, S2, and S3, and 

these last rank values are used to perform denoising. This yields a smaller computational load while preserving the denoising 

results obtained eventually from the original (not subsampled) wavelet packet coefficients. Compared to MM-AIC, the 

advantage of MM-PSO and MM-Iterative is that their performances do not degrade that much when the number of bands in the 

processed multispectral image decreases. 

To reduce the computational load, the fixed point algorithm may also be used, when the noise impairing the image is of 

high magnitude, and the number of bands is elevated: as shown in the experiment performed with the image in Fig. 7, a low 

SNR value yields small values of signal subspace dimension. This shows the interest of fixed point algorithm: it estimates only 

the singular vectors which belong to the signal subspace, whereas the classical singular value decomposition estimates all 

singular vectors exhaustively. From additional experiments we have made, we could conclude that a drawback of this method 

is that it should be restricted to low SNR conditions, and that the output SNR may be slightly lower than in the case where 

SVD is used. 

As concerns the acquisition and processing of fluorescent plant leaves, the SNR is increased by about 4 dB for low input 

SNR values (0, 5, 10) and the method breaks down when the input SNR is 15 dB. As further work, the noise statistics of such 

images should be further analyzed. With the proposed application to the denoising of fluorescence images acquired from plant 

leaves, we make life science and tensor signal processing closer to each other. The strength of the proposed strategy is that it 

can be easily adapted to any other image denoising algorithm depending on a set of parameters to be tuned. In the case of the 

considered methods based on wavelet packet decomposition and subspace projection, and when multispectral images are 

processed, it is particularly interesting to work on a subsampled version of the processed image to estimate adequate 

parameters for denoising. Moreover, the proposed optimization methods can be adapted to any method depending on several 

parameters. With the proposed optimization strategy, a multi-dimensional space can be searched, yielding optimal multiplets of 

parameters in the sense of the criterion chosen by the user. 

VII. CONCLUSION 

In this paper, an algorithm named MWPT-MWF-RE has been proposed to estimate multiple values of signal subspace 

dimension, to apply multiway Wiener filtering in a wavelet packet framework. The final purpose of this method is to remove 

noise from multidimensional images. 

The main advances brought by our paper are as follows: Firstly, we propose a criterion depending on signal subspace ranks, 

and adapt an optimization algorithm to minimize this criterion. Mainly, two bio-inspired optimization algorithms are compared: 

a genetic algorithm (GA) and particle swarm optimization (PSO). As PSO offers the best compromise between computational 

load and denoising quality, we insert it in an iterative algorithm. In the iterative algorithm, the raw estimate required in the 

criterion to be minimized is the estimate provided by MM-PSO obtained at the previous step. 

Still, the number of decomposition levels should be estimated, and the computational load of the overall algorithm should 

be reduced. That is why, secondly, we propose to estimate the number of decomposition levels and the adequate values of 

signal subspace ranks on a subsampled version of the data: we performed tests on various types of images and concluded that, 

at least for the considered data, the values of the optimal signal subspace dimension in terms of denoising accuracy are divided 

by the subsampling factor when such a subsampling is applied to the image. Thirdly, we evaluate the performance of the 

proposed MWPT-MWF-RE algorithm on various multidimensional images: the RGB Baboon image, and various multispectral 

images extracted from the well-known Pavia University hyperspectral image. We considered an application of plant 

fluorescence imaging. The emitted light in this context is of very low intensity, yielding images which are impaired with rather 

low SNR values. A comparative study was performed involving three main types of algorithms: firstly, the diffusion-based 

Perona-Malik method; secondly, the truncation of HOSVD and MWF; thirdly, a method based on wavelet packet 

decomposition and MWF, where the dimensions of signal subspace are estimated with AIC. From the analysis and the 

comparative study of other similar methods, it can be concluded that an iterative algorithm with automatic rank estimation with 

particle swarm optimization offers a good compromise between computational load, SNR, and SSIM improvement. The 
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proposed method performs best, compared to AIC, when the noise magnitude is elevated and the number of bands is between 6 

and 25. 

As further works, we could adopt the proposed optimization strategy to any other denoising methods which require the 

tuning of parameters, but also to classification methods, such as for the choice of optimal kernel parameters for support vector 

machine. 
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