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Abstract— In order to map the migration and introduction
of farming into Europe during the seventh and sixth millennia
Before Common Era, archeologists have made a connection
between the study of pottery and farming migration. We are
interested here in the classification of pottery into coiling and spi-
ral types based on their manufacturing techniques. To distinguish
between these two techniques, we look for the lines formed by air
bubbles embedded in the pottery samples. Current methods make
use of bulky systems, such as computerized tomography scanners
or synchrotrons. Microwave acquisition and processing offer an
interesting alternative, due to the possibility to have compact and
portable systems. In this article, we investigate the classification
of pottery based on low-terahertz measurements in the D-band.
We process the measurements with 3-D fast Fourier transform.
The resulting matrix is classified with an artificial neural net-
work, multilayer perceptron, which is optimized with the gray
wolf optimizer, a bioinspired algorithm. The first results show
that the accuracy reaches up to 99% using all the acquired spatial
and frequency measurements. Then, we optimize the millimeter-
wave (mm-Wave) measurement system with a critical criterion
on accuracy in two different scenarios. In the first scenario,
we reduce the spatial acquisition but maintain the wideband
operation and the results show that the accuracy is between 85%
and 96%. In the second one, we reduce the spatial acquisition
and use a single frequency. For this second scenario, we achieve
a classification accuracy, which is between 77% and 100%.

Index Terms— 3-D fast Fourier transform (3-D FFT), arti-
ficial neural network (ANN), bioinspired optimization algo-
rithm, computerized tomography (CT) scan imaging, gray wolf
optimizer (GWO), low-terahertz (low-THz) imaging, low-THz
measurements.

I. INTRODUCTION

ARCHAEOLOGY responds to the fundamental need of
human beings to understand their origins, their traditions,

and their culture. The invention of writing, between the third
and fourth millennia Before Common Era (BCE), was a fan-
tastic breakthrough that enabled information to be transmitted
to future generations. However, long before writing, rock art

Manuscript received 7 July 2021; revised 7 June 2022; accepted
15 June 2022. Date of publication 8 July 2022; date of current version
8 September 2022. (Corresponding author: Flora Zidane.)

Flora Zidane, Jérôme Lanteri, Laurent Brochier, and Claire Migliaccio
are with Université Côte d’Azur, CNRS, LEAT, UMR 7248, 06903 Sophia
Antipolis, France (e-mail: flora.zidane@univ-cotedazur.fr).

Vanna Lisa Coli and Didier Binder are with Université Cote d’Azur, CNRS,
CEPAM, UMR 7264, 06300 Nice, France.

Julien Marot is with Aix Marseille Université, CNRS, Institut Fresnel, UMR
6133, 13013 Marseille, France.

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TAP.2022.3189553.

Digital Object Identifier 10.1109/TAP.2022.3189553

testified to the human will to leave traces of places and ways of
life. Other ways of investigating the evolution of civilizations
and traditions prior to the invention of writing include the
study of architecture and settlement patterns, ceramics and
stone tool technology, food production, and paleogenetics.
We can therefore trace the migration of humans through time
and space. The introduction of farming into Europe during the
seventh and sixth millennia BCE is still poorly understood.
This is a fundamental issue since agriculture is the first step
toward a sedentary lifestyle, which shapes landscapes, cities,
and new social behaviors. Due to the study of large datasets,
archeologists have shown that, after a formative stage in
the Aegean, the introduction of farming into western Europe
followed two paths: the Danube route and the Mediterranean
one. The Central European route is characterized by pottery
manufactured by coiling, whereas the Mediterranean one is
characterized by spiral pottery techniques. In Central Europe,
within the Danubian world, the pottery manufacturing tech-
niques based on coiling display a limited variability, which
points to a large degree of homogeneity of cultural traditions
originating from the Aegean and the Balkans. In contrast,
in the Central and Western Mediterranean, where the Neolithic
dispersal is partly based on early sailing [1], two different
methods of pottery manufacturing were identified: the first,
on the Adriatic side, uses coiling techniques and is similar
to pottery from the Balkans and Central Europe, but the
second, on the Tyrrhenian side, uses spiraled patchwork tech-
niques (SPTs) whose origins are not yet identified [2]. Finding
intact pieces of pottery dating back more than 8000 years
is very rare, almost miraculous. Hence, archeologists have
to work with pottery samples, which we refer to as shards
throughout this article. Unfortunately, the characterization of
fabrication techniques using macro-traces, which are visible on
the fragments, is highly challenging. One way to determine
the manufacturing method of pottery shards is to trace the air
bubbles, known as “pores,” that were embedded in the pottery
during the fabrication process. A linear distribution of pores
corresponds to the superimposition of coils, while a curvilinear
distribution indicates the use of SPT. Thus, we are looking for
small features and require a high-resolution imaging system.
Current methods make use of computerized tomography (CT)
scans [3] or synchrotron imaging [4]. The use of CT scans
in archeology has several applications, including autopsies on
mummies [5], 3-D reconstruction and visualization of material
and human remains [6]–[8], and deciphering the manufactur-
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ing techniques of Neolithic clay artifacts [9]. The strengths of
CT scan imaging are its super-resolution, and low noise and
distortion: even the smallest details can be identified. However,
a CT scan requires a bulky system, which is expensive. As an
alternative to CT scans, microwave systems can be mobile and
compact at a lower cost. Like the CT scan, microwave imaging
is a nondestructive evaluation and testing (NDE-NDT) method
that can penetrate objects without changing any of their
intrinsic properties. In general, microwave imaging is sensitive
to contrasts in dielectric permittivity, so it is relevant to this
application in archeology, where we wish to trace air bubbles
in ceramic materials. The choice of the frequency band is of
primary importance with respect to the intrinsic resolution and
penetration depth: high frequencies provide the highest lateral
resolution but a poorer penetration into the material. We are
looking for tiny, superficial features and therefore choose to
work in the low-terahertz (low-THz) frequency region, more
precisely in the D-band. Detailed information on the nature or
state of the object can be determined by solving an inverse
problem but requires a high computational load. Since we are
looking for a simple answer, that is, whether the manufacturing
technique was coiling or spiral, and not for the exact value of
the permittivity, we process the measured data with machine
learning algorithms (MLAs) instead of solving a complex
inverse problem. We have previously used this approach
in [10], which is a proof of concept of the NDT method to
sort healthy apples from damaged ones using millimeter-wave
(mm-Wave) imaging and support vector machine (SVM) with
94% accuracy. In this previous work, we also show that we
speed up the characterization of the object under test. In [11],
we went further into the matter while sorting mm-Wave images
of fruits (apples and peaches) by using a multiclass SVM to
discriminate the nature and state of fruits with an accuracy of
98%. Although mm-Wave imaging exhibits poor resolution
compared to CT scan imaging, many studies combining a
microwave system with MLA have shown the potential of this
approach for a large set of applications, for instance, in for-
ward/inverse (EM) scattering problems [12]–[15] or for target
detection [16], [17], solving medical issues [18]–[20], antenna
modeling [21], [22], and detection of buried objects [23], [24].
In the last two decades, artificial neural networks (ANNs)
have attracted increasing interest and have been adapted in
various applications, such as antenna design [25], [26], RF and
microwave design [27], microwave transistor noise model-
ing [28], EM-based optimization of microwave circuits [29],
and locating fault elements in antenna arrays [30]. For per-
formance enhancement, recent studies have tended to replace
SVM with ANNs, for example, to classify human activities
(walking, running, and so on) [31], [32] or for microwave
image reconstruction [33], [34], including free-space estima-
tion for self-driving systems using mm-Wave radar [35] and
also security and surveillance solutions through convolutional
neural networks (CNNs) [36], [37].

In this article, we introduce a new imaging modality for
archeological classification of spiral and coiling shards. We are
making use of low-THz measurements and investigate the
optimized MLA solution. The results will be compared with
those of CT scan imaging processed with MLA, which is the

Fig. 1. Example of coiling (left) [39] and home-made spiraled (right)
potteries.

gold standard. Although it is not the primary focus of this
article, we would like to point out that MLA has rarely been
combined with CT scan imaging in the archeological domain,
though ANNs have been used to determine the gender of
skeletal remains [38].

This article is organized as follows. Section II defines the
problem we address. First, we explain how we choose the
shards, introducing the notion of experimental and archeolog-
ical shards, and we describe the measurement system and the
choice of its settings, with a focus on spatial and frequency
diversity. In a second step, we process the measurements
with a 3-D fast Fourier transform (3-D FFT) and show the
preliminary results of classification with SVM. To improve
these results, we switch from SVM to an ANN, as described
in Section III. Although ANNs are very efficient, the number
of possibilities for setting up their intrinsic parameters, such
as the number of neurons in the hidden layer, is quasi-infinite.
Thinking of an exhaustive search of all parameters could
increase drastically the problem’s complexity. To overcome
this issue, we adapt a bioinspired optimization algorithm,
which typically targets this problem. Finally, we present our
complete methodology, which combines a multilayer per-
ceptron (MLP) ANN with the gray wolf optimizer (GWO).
Section IV discusses the results when making use of the
whole diversity of measurements, while Section V presents
the optimization of the low-THz measurement system using a
critical criterion on the fitness. The conclusions are drawn in
Section VI.

The following notations are used throughout this article.
Manifolds are denoted by blackboard bold, A, matrices by
boldface uppercase roman, A. Vectors are denoted by boldface
lowercase roman, a, and scalars by lowercase or uppercase
roman, a, b, or A. The K scalar components of a vector a are
accessed via a1, a2, . . . , aK such that a = [a1, a2, . . . , aK]T.

II. ANALYSIS OF MEASURED DATA

As explained in Section I, the identification of the manu-
facturing technique of pottery shards is of crucial importance
for tracing the introduction of farming into Europe. There are
two manufacturing techniques: the coiling technique, as to be
seen in Fig. 1 on the left, and the spiral technique on the right.
Starting from the pottery pieces, we aim to find out how they
were made, which is typically an inverse problem. Its solution
is trivial in case of Fig. 1, and however, the archeological
samples found on excavation sites are rarely entire pieces but
most frequently small shards. Fig. 2 shows two examples,
the coiling sample found in La Cabre, South of France, and
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Fig. 2. Examples of archeological samples. (a) Coiling shard C . (b) Spiral
shard I .

the spiral one in Abri Pendimoun on the French South-East
coast of the Mediterranean sea. It is noteworthy that the
manufacturing using coiling is easy to recognize on Fig. 2(a),
with its straight lines, whereas the spiral technique cannot
be identified visually. Before sophisticated imaging tech-
niques were available, archeologists addressed this problem by
becoming familiar with the different manufacturing techniques
and gestures used in the Neolithic age, in the hope that they
would leave different prints on the final samples depending
on how they were made. To this end, they made their own
shards, called experimental shards, using the same geological
materials as those found on the excavation sites. This simple
process has been the sole solution for many years, but its
success rate is limited for several reasons, the most obvious
one being the deterioration of real archeological shards that
are several millennia old. One useful stable characteristic over
time is the shape of the lines of air bubbles (pores) that were
formed during the assembling of the pottery. Of course, we are
looking for tiny details, which explains why archeologists are
in need of high-resolution imaging systems, such as the CT
scan. The pores are distinctly visible on a CT scan. However,
CT scanners are bulky and expensive systems and so are
rarely dedicated to a single research department, which limits
their availability for archeological experiments. It is there-
fore of great interest for archeologists to have an alternative
imaging technique. Due to its natural high resolution within
the microwave spectrum, low-THz imaging is a potential
candidate for this application, provided that we define the
relevant measurement and processing schemes as discussed
throughout this article.

Prior to the measurements, we present hereafter the shards
under investigation. The archeologists of the Cultures et
Environnements Préhistoire, Antiquité, Moyen Âge (CEPAM
Laboratory), Université Côte d’Azur, Sophia Antipolis, France,
provided us with the 15 samples in Figs. 3, six of which
were archeological and nine of which were experimental.
All archeological shards were found in La Cabre and Abri
Pendimoun. They include one coiling and five spirals. Among
the nine experimental shards, three are coiling and six are
spiral samples. Table I summarizes the materials of the shards
and Table II lists the relative permittivity (�’) values of the
different materials [40]. A range of values is given instead

Fig. 3. Pictures of the shards sorted by type. (a) Experimental shards.
(b) Archaeological shards.

TABLE I

SHARDS SORTED BY TYPE AND MATERIALS

TABLE II

RELATIVE PERMITTIVITY OF MATERIALS

of a single value for some materials (e.g., clay) because the
permittivity is strongly dependent on the moisture content.
However, considering that the shards are kept in a dry place,
the permittivity is closer to the lower value of each estimated
range. Low-THz imaging is sensitive to the dielectric contrast
in general, and thus, we aim to detect the contrast between
the air bubbles and the geological materials.

A. D-Band Measurement Settings

Measurements were conducted with the 3-D scanner
installed and developed in the Laboratoite d’Electronics
Antennes et Telecommunications (LEAT) for measurements at
mm-Wave and above, used in its monostatic configuration [41].
The complete setup is shown in Fig. 4. The shards were placed
on a Rohacell tower whose relative permittivity is 1.02 at
1 GHz but which is not transparent to low-THz frequencies.
This will be considered when choosing the postprocessing.
The probe antenna is a WR7 standard gain horn that rotates
around the shard with a radius of 585 mm. The system operates
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Fig. 4. Measurement setup.

Fig. 5. Measurement scan and measurement points.

TABLE III

MEASUREMENT SETTINGS

in the far field, which contributes to the ill-posedness of
the inverse problem since we cannot measure the evanescent
waves. To solve this problem, we need to increase the content
of information and therefore introduce spatial and frequency
diversity. We have already worked on W-band measurement
diversity for the detection of defects in fruits [10], [11]. How-
ever, this measurement scheme cannot be strictly transposed
to the present application because we are looking for tinier
features. The pores result from an aggregation of air bubbles.
They are, for instance, negatives of carbonized plants. The
maximum size of a pore can reach up to 1 mm, whereas some
aggregates have a size of few micrometers. We, therefore,
move to a higher frequency band, the D-band, and use the
whole available frequency bandwidth, i.e., 60 GHz, for better
range resolution. Spatial diversity is obtained by moving the
probe antenna above the shard, as shown by the purple area
on the sketch in Fig. 5. Table III sums up the measurement
settings. Angles (θ , ϕ) are the classical spherical coordinates.
Note that Oy is the vertical axis of the measurement setup,
and hence, measurements above the shard are centered around
(θ , ϕ) = (90◦, 90◦). The term “sample” bears several
significations throughout this article.

1) The Shard Sample: A shard sample is a piece of pottery.
We have a total of 15 shard samples. A–D work in pairs
so we have two shard samples in A, B, C, and D. From
E to K, we have one shard sample.

2) The EM-Field Sample: An EM-field sample corresponds
to one spatial measurement point. According to the range
of the scan as shown in Fig. 5 and to the scan step,
we have a total of 5101 spatial measurements points per
shard sample.

The total time for measuring one shard at all frequencies over
an area, whose maximal range variation in (θ , φ) is (20◦, 20◦),
is 2.20 h and 20 min. Since our objective is to build a dataset
for postprocessing, we have to tailor the measured data into
classifier samples according to the following criteria.

1) Every shard sample must have several classifier samples
in the dataset.

2) The classifier samples must reflect the frequency and
spatial diversity of the measurements.

3) Redundancy between the classifier samples is an advan-
tage, in particular for removing the noise and/or
unwanted fixed objects such as the Rohacell tower.

Hence, we split the measurement area into small patches that
will be the classifier samples of the dataset. The values given
in Table III are given as follows: the scan step is 0.2◦ and the
values of θ and ϕ are, respectively, the minimal and maximum
values used in the scan. However, we do not scan continuously
between the minimal and maximal values and the scan that we
do here corresponds to the purple zone in Fig. 5, which is not
a “square” scan. This scan has 5101 measurement points. The
samples of the dataset correspond to a sliding patch of size
10◦ × 10◦, i.e., 51 × 51 measurement points. This patch slides
one measurement point over the diagonal leading to 51 patches
over the purple area in Fig. 5, each of which has measurements
at seven frequencies. Thus, we have 51 × 7 = 357 classifier
samples per shard in the dataset.

The dataset comprises all shard samples measured over
two measurement campaigns staggered in time, which is an
advantage for testing the robustness of the whole process over
time.

1) First Campaign: July 2019—measurements of shards A,
B, C, and D (coiling and spiral).

2) Second Campaign: November 2020—measurements of
shards E, F, G, H, I, J, and K (spiral).

Throughout this article, the training dataset, denoted Xtr,
contains the shard samples of AB, which includes two coiling
and two spiral shards. This choice is the most useful from
the user’s point of view because it includes only experimental
shards, so we completely master the dataset. The cardinality
of any training dataset or test dataset composed of any
combination of shard samples can be easily deduced from the
number of shard samples in the training or test dataset. For
instance, the training dataset “AB,” which includes the pairs of
shard in A and in B, has four shard samples, and the number
of classifier samples is 4 × 357 = 1428. However, one has to
remember that a classifier sample has 51 × 51 measurements
points (complex values of S11) so that the cardinality of the
“AB” training dataset belongs to C1428×51×51.
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Fig. 6. Training dataset AB: comparisons of the three most significant
eigenvectors obtained with the PCA of low-THz measurements preprocessed
with 2-D FFT. (a) With binarization. (b) Without binarization.

B. 3-D FFT: mm-Wave Preprocessing and Corresponding
SVM Classification Results

The gold standard for the classification of archeological
shard samples is the result that we obtained with CT-scan
measurements and the SVM. For the training, we consider
the shard samples of AB, the other shard samples being in the
test dataset. We reached an accuracy of 100% for every tested
shard.

To start with the low-THz measurements, we used the same
process as in [10] and [11], that is, the segmentation with
an Otsu threshold [42] followed by a nonlinear SVM [43].
The classification accuracy drops to 59% and 70%. As the
segmentation “kills” the small items of the images that are
relevant for our application, we therefore decided to suppress
the segmentation stage and process the images obtained after
the 2-D FFT directly. Note that the accuracy is obtained by
calculating the proportion of well-classified samples. More
details are given in Section III-D. To illustrate the distribution
of the classifier samples in the dataset, Fig. 6 shows the
projection of the training dataset AB on the three most signif-
icant eigenvectors after using a principal component analysis
(PCA) [44]. Results with [Fig. 6(a)] and without [Fig. 6(b)]
binarization are shown for comparison purpose. Note that these
three eigenvectors explain 90% of the total variance for the
binarized scenario and 80% otherwise. With segmentation
(i.e., with binarization), the classifier samples are completely

Fig. 7. Training dataset AB: comparisons of the three most significant
eigenvectors obtained with the PCA of low-THz measurements preprocessed
with 3-D FFT. (a) With binarization. (b) Without binarization.

mixed. Without segmentation, the samples of the shards are
still superimposed, but this time they are gathered in distinct
groups [Fig. 6(b)]. To separate them, we apply an FFT along
the first dimension of the training dataset, i.e., along the
1428 classifier samples. Considering the 2-D FFT performed
on the two other dimensions (51 × 51) of the measured data,
the whole process is equivalent to a 3-D Fourier transform.
From a practical point of view, we implement the 3-D FFT as
follows.

1) We gather the measurement points into a 3-D matrix
M ∈ C

1428×51×51.
2) We downsize M ∈ C1428×51×51 to Md ∈ C1428×2601.
3) We compute the 2-D FFT of Md.
4) Md is the new training dataset.

As shown in Fig. 7, which represents the projection of the data
on the three most significant eigenvectors of the new training
dataset, coiling shards (in light and dark green) are separated
from the spiral ones (in light and dark purple) [Fig. 7(b)],
whereas the 3-D Fourier transform is not efficient on the
binarized images [Fig. 7(a)]. These three eigenvectors explain
99% of the total variance for the binarized scenario and 49%
otherwise.

C. Test Dataset

We now precede the test dataset, in which the classifier has
to assign the proper class (positive or negative) to unknown
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TABLE IV

SVM CLASSIFICATION WITH 3-D FFT AND BINARIZATION
OMITTED ON mm-WAVE MEASUREMENTS

classifier samples. To do this, we have to go back to the
interpretation of 3-D FFT and more precisely the FFT along
the dimension of the samples. The latter simplifies the sep-
aration of the coiling from spiral shards, which implicitly
supposes that both types of shards samples are present in the
dataset. The approach we propose and describe hereafter is
inspired by the historical method used by archeologists, whose
experimental shards help identify unknown shards. We ensure
that both categories of shard samples are present in the dataset
by introducing one experimental coiling and one experimental
spiral shard in the test dataset. The experimental shards are
used as a reference, namely, the coiling D and the spiral D, and
ensure the natural separation with FFT along the dimension
of the samples. We recall here that the reference shards are
not labeled, which means that we do not assign them to the
positive or negative class prior to the classification. Finally,
for every test, we built a test dataset with three samples: the
two experimental shards D and the shard samples to be tested.
To the best of our knowledge, this approach inspired by tra-
ditional archeological methods, consisting in using unlabeled
reference samples in the test dataset for classification purposes,
has never been used before. Fig. 8 shows the projection of the
results for shards samples spiral C and spiral E after the 3-D
FFT. As the training dataset which the coiling and the spiral
shards samples are separable, we processed the training dataset
with a linear SVM. At this stage, we consider only shard C ,
including shard D as a reference for the purpose of comparison
with the results obtained in [45]. The results are presented in
Table IV. Note that the accuracy is computed using only the
classifier samples of C shards (the first line of Table IV), as it
is the shard being classified. If we compute the accuracy using
all the samples of the test dataset, i.e., including the samples
of shards D, the accuracy reaches 91% (the second line of
Table IV). By removing the segmentation step and directly
processing the 3-D FFT, we improved the accuracy, though
it remains below the accuracy reached with CT scan images.
Consequently, we propose to replace the SVM with an ANN
of MLP-type MLP, which has been shown to outperform the
SVM for complex datasets [46].

III. ANN CLASSIFICATION: METHODOLOGY

The new methodology falls into three blocks.
1) The low-THz measurements are described in

Section II-A.
2) The 3-D FFT is described in Section II-B.
3) Classification with an MLP ANN and optimization

with the GWO method are defined in
Sections III-A and III-B, respectively.

A. Multilayer Perceptron

The MLP is a widespread ANN architecture for classifica-
tion in use today. The MLP is composed of several layers,

Fig. 8. Test datasets for spiral shard sample of C and E including
the reference shard samples of D for separation purposes: the three most
significant eigenvectors obtained with the PCA of mm-Wave measurements
preprocessed with 3-D FFT.

as shown in Fig. 9. The first layer is called the input layer.
The input layer represents the input feature and the number of
neurons in this layer is equal to the dimension of samples in
the training dataset. The last layer is the output of the network.
The number of neurons in this layer is equal to the number
of classes for a multiclass problem and to one neuron for a
binary problem.

The layer between input and output layers is called the
hidden layer. The hidden layer contains m neurons. The
higher the number of neurons, the more complex the network
becomes. Each neuron in the MLP has two purposes: the
summation and the activation function, also called the transfer
function. The connection is unidirectional and follows the path
from the input to the output layer [47], [48]. To go from
the input layer to the hidden layer, the summation function
adds the weighted inputs of the neuron as given in (1). For
j = 1, . . . , m

Sj =
n∑

i=1

ωi j Ii + β j (1)

where Sj is the output of neuron j , n is the number of input
neurons, ωi j is the weight between input neuron i and hidden
neuron j , Ii is the contribution of input neuron i , and β j is
bias term associated with hidden neuron j .

Equation (1) shows that Sj is a weighted combination of
the input features. The weighting coefficients ωi j are estimated
during a so-called “learning phase,” as described next. Then,
Sj is provided to the activation function. This function plays
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Fig. 9. MLP architecture and parameters.

the role of a threshold, at which the neuron will emit a signal.
There exist several activation functions and the most popular
is sigmoïd, which is a nonlinear activation function, as given
in (2). For j = 1, . . . , m

f A j = 1

1 + e−S j
. (2)

The final output can be calculated as follows:

ŷ = βm+1 +
m∑

j=1

ω j fA j (3)

where m is the number of neurons in the hidden layer and ω j

is the connection weight between the hidden neuron j and the
output neuron; βm+1 is a bias term.

Learning Phase: It determines the weight values for each
neuron in the network in order to bring the output of the
network as close as possible to the desired output. Initially,
the weights are assigned randomly, while the training dataset
of features is in the input layer. The difference between the
desired and the predicted output is calculated at every iteration
and the network readjusts the weights to converge toward
the solution. This is typically an optimization process for
which we use the widespread backpropagation (BP) algorithm
based on the gradient descent algorithm [49]. Note that this
BP algorithm is distinct from the BP commonly used in
electromagnetism, although the terminology is the same.

There is no single MLP architecture that addresses all clas-
sification issues. Instead of searching one by one for the best
MLP architecture, we use an optimization method. Among
the numerous possibilities, we chose the GWO because of its
ability to avoid being trapped in a local minimum. Moreover,
it has demonstrated its efficiency for training the weights of
MLP [50]. Here, we plan to use it for a different purpose,
namely, to optimize the number of neurons in the hidden
layer.

B. Gray Wolf Optimizer

The GWO is a nature-inspired optimizer based on the
observation of the social life of gray wolves in nature [51].
The GWO algorithm simulates the common behavior and
hunting strategies of gray wolves in their environment. It is an
agent-based algorithm where each search agent corresponds to

a wolf. The gray wolves have a strict social hierarchy. There
is one leader which is called “the alpha” α. The second level
in the hierarchy is formed by the beta β wolves, which are
the subordinates of the α. Then, the δ wolves are subordinate
to α and β but superior to the ω wolves, which comprise
the remainder of the wolf pack. Mathematically, α represents
the best solution; β and δ are the second and third best
solutions, respectively, and Q is the total number of wolves,
which are called search agents in the following. The GWO
algorithm mimics the encircling and prey killing mechanisms.
Its mathematical implementation is given as follows.

We assume that P parameters should be estimated:
K1, K2, . . . , K P , where P ≥ 1. The following notations will
be used.

1) P is the number of expected parameters, which are
indexed with i .

2) iter denotes one iteration and Tmax denotes the maximum
allowed number of iterations.

3) f () is the function to be minimized, also called the
criterion. It depends on the P parameters mentioned
above.

4) xq(iter) is a vector corresponding to one search agent
q = 1, . . . , Q, at iteration iter. It takes the form of
a vector with a P-tuple of tested values xq(iter) =
[K1, K2, . . . , K P ]T .

The seminal GWO searches a continuous space. As men-
tioned above, among the search agents, there are three leaders
α, β, and δ. All other agents are the ω wolves. The updated
position is calculated as

xq(iter + 1) = 1

3

(
yα,q(iter) + yβ,q(iter) + yδ,q(iter)

)
. (4)

It results from the equal contribution of the α, β, and δ wolves.
These contributions are computed as follows, for instance,
for α:

yα,q(iter) = xα(iter) − b · dα,q(iter) (5)

with dα,q(iter) = |c · xα(iter) − xq(iter)|.
The vectors b and c are calculated as b = 2a · r1 − a and

c = 2 · r2. In these expressions, the components of vector a
are all equal to a, a scalar value that is a key parameter in the
algorithm. The value of a decreases from 2 to 0 during the
iterations. Vectors r1 and r2 have random components between
0 and 1, generated from a normal distribution.

During the hunt, the wolves first diverge from each other
to search for the prey or, equivalently, to encircle it. Second,
they converge to kill the prey. This is mathematically modeled
through the deterministic vector a. When a > 1, the search
agents are obliged to diverge from the prey: this is the explo-
ration phase. Conversely, when a ≤ 1, the search agents are
obliged to attack toward the prey: this is the exploitation phase.
In the seminal version of GWO [51], the key parameter a
decreased regularly from 2 to 0: a = 2(1−(iter/Tmax)), where
iter is the iteration index and Tmax is the maximum number
of iterations. In more recent works, various expressions have
been proposed for a such as a quadratic [52] or adaptive [53]
function. Whatever the version [52], [53] the exploration phase
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Fig. 10. Training workflow.

lasts until a = 1, then the exploitation phase lasts from
a = 1 to a = 0.

C. Learning and Optimization Steps

Many theoretical and experimental works have shown that a
single hidden layer with a nonlinear activation function is suf-
ficient to approximate a complex nonlinear decision boundary,
which separates between two or more classes [54]. Therefore,
we choose to work with three layers in the MLP architecture,
that is, a single hidden layer. The training dataset is divided
into three subsets, on which we apply a threefold cross vali-
dation in order to avoid overfitting [55]. Two subsets are used
for the training phase and the third one for validation. During
validation, we compute an error as defined in (6). Each of the
three subsets is used once for validation. At the end, we com-
pute the average error, which is called the fitness [see (7)]

errork0 = 1

N

N−1∑

n0=1

(
yn0 �= ŷ

)
(6)

where N is the number of samples

f i tness = 1

k

k∑

k0=1

errork0 (7)

with k = 3 for threefold cross validation.
As mentioned previously, the GWO algorithm is used to

look for the optimal values of the P parameters. In our
application, we can optimize up to four parameters.

1) The angles of measurement, θ and ϕ, which correspond
to the number of measurement points in the sliding
patch, hence the number of neurons in the input layer.

2) The frequency f . The number of frequencies influences
the number of samples per shard.

3) The number of neurons in the hidden layer mopt .

Optimizing each of these parameters is of interest. Decreasing
the number of values of θ , ϕ, and mopt will improve the
classification time, while the optimization of f reduces the
bandwidth, which decreases the system’s complexity.

The training workflow is shown in Fig. 10. We note here that
the training dataset contains the low-THz measurements of the
experimental coils and spiral shards samples AB after being
processing according to Section II-B. The GWO algorithm
terminates when it reaches the maximum number of iterations,

TABLE V

DEFINITION OF THE CONFUSION MATRIX CONTENT

Tmax, defined before running the algorithm. We also define
critical fitness, which is the fitness that we should not exceed.
The choice of the optimal solution is made afterward, when
considering what we call the “choice criteria” in Fig. 10.
The latter is determined by considering the matching of the
fitness computed at iteration iter with the critical fitness and
the values of the parameters at iteration iter that lead to a
minimum number of measurement points and/or frequencies
and/or number of neurons in the hidden layer. At this stage,
we have optimized the MLP. One of the significant advantages
of the GWO is that optimizing one or four parameters does not
increase the complexity of its implementation. However, it will
increase the optimization time, i.e., the time it requires to reach
a given fitness value. In all cases, the optimized MLP is noted
MLP* throughout this article. In the following, we first wish
to approve the proposed methodology to classify unknown
spiral and coiling shards using the full spatial and frequency
diversity, i.e., (θ , ϕ, and f ) unchanged.

D. Evaluation of the Classifier on the Test Dataset

To judge the performance of the MLP*, we make use of the
following metrics: accuracy, sensitivity (SENS), and specificity
(SPEC) [56], extracted from the confusion matrix.

1) Confusion Matrix: Comparison of actual and predicted
class. Table V explains the content of the confusion
matrix for a binary classification problem.

2) Accuracy: It computes the proportion of well-classified
samples (8)

Accuracy = T N + T P

T N + T P + F N + F P
. (8)

3) Sensitivity (SENS): It computes the probability that the
samples are truly positive (9)

SENS = T P

T P + F N
. (9)

4) Specificity (SPEC): It computes the probability that the
samples are truly negative (10)

SPEC = T N

T N + F P
. (10)

IV. RESULTS KEEPING FULL MEASUREMENT DIVERSITY

As explained in Section II-A, the size of the training dataset
AB is Xtr ∈ C1428×2601, which has to be classified into two
classes: the positive class representing the spiral shards and the
negative class the coiling ones. We therefore have one neuron
in the output layer. Here, we optimize only the number of
neurons m in the hidden layer, that is, P = 1. We set the
maximal number of iterations of the GWO to Tmax = 10, the
number of search agents (number of wolves) to Q = 6, and
the search space for m between 2 and 30. The results obtained
by GWO are shown in Fig. 11. The fitness (orange curve)
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Fig. 11. GWO optimization results: fitness (in orange) and number of neurons
(in purple) in the hidden layer.

TABLE VI

EXAMPLE OF RESULT: CONFUSION MATRIX OF COILING C

converges as early as the third iteration, which corresponds to a
fitness of 0.17157 and a number of neurons in the hidden layer
of 2 (purple line). The optimization time is 4 min. Once the
number of neurons of the hidden layer is obtained, we compute
the final weights ωi j and ω j to get the optimal MLP*. This
step takes 5.53 s. After optimization, we launch the test of the
unknown shards. We perform all our classification experiments
on a PC, which is equipped with an Intel Core i9-vPro CPU
@2.3 GHz, 4.8 GHz Turbo, and a “NVIDIA Quadro T2000”
graphics card, including a 4Go GDDR5 and 1024 CUDA
cores. In Table VI, we present the confusion matrix of the
coiling shard under test. Results are presented in Table VII.
The accuracy is improved compared to the results obtained
with the SVM in [45] because the worst value is now above
99%. Moreover, we have reached the same accuracy as the CT
scan, which was our main goal. Although the measurement
time is not really critical to this application since we have no
industrial constraint, it is still interesting to reduce it because it
increases the measurement accuracy due to the decrease of the
shift in phase caused by the drift of the network analyzer [57].
To overcome this issue, we have to minimize the number of
acquisition points, as discussed in Section V.

V. OPTIMIZATION OF THE SYSTEM

We aim to optimize the system toward two scenarios. First,
we reduce the number of spatial measurement points and
keep all frequencies. Second, we set the frequency at the
central value of the D-band and try to reduce the number of
measurement points. Finally, we discuss and compare the two
scenarios.

A. Reduction of the Number of Spatial Acquisitions With
Wideband Operation

So far, the measurement time is 2 h and 20 min for each
shard scanned over the whole D-band with a frequency step
of 10 GHz. As explained in Section II-A, we have 51 sliding
patches of 51 × 51 measurement points each, corresponding to
a total number of points of 132 651. As there is an overlap of
points between the patches, the real number of measurement
points is 5101. Reducing this number will also lower the

TABLE VII

CLASSIFICATION RESULTS FOR ALL SHARDS USING ALL MEASUREMENTS

views and hence increase the ill-posedness of the inverse
problem. Therefore, we have to relax the constraints of the
optimization and decide to set the critical fitness value to 0.2.
Here, we simultaneously optimize the number of points in the
sliding patch and look for the optimal architecture of the MLP
(MLP*), by estimating the optimal number of neurons mopt in
the hidden layer. In order to optimize the number of points per
sliding patch, we define a step that corresponds to the removal
of points in lines and columns in the 51 × 51 matrices. While
seeking an elevated step value, we decrease the number of
values for θ and ϕ.

This will also automatically reduce the number of sliding
patches since we use the same step for the slide and dropping
points inside the patch. The settings of the GWO algorithm
are now given as follows: Tmax = 20 iterations, and we keep
Q = 6 search agents. The step ranges between 0.6◦ and 5◦
and the search space for the number of neurons in the hidden
layer is between 2 and 30.

When these P = 2 parameters are optimized, an agent
q at iteration iter is given as follows: xq(iter) = [Sθ , m]T ,
where Sθ denotes the step between θ (and also ϕ) values. The
cardinality of the training dataset becomes too small to use
K-fold cross validation. To prevent underfitting [55], we used
the GWO algorithm on 90% of the training dataset and the
remaining 10% for the validation. The fitness is computed
with (6) and (7). The number of neurons (purple line) and
the fitness convergence curve (orange line) with respect to the
iterations are shown in Fig. 12(a), and Fig. 12(b) represents
the step values (green line) and the fitness convergence curve
with respect to the iterations. The optimization time is 34.3 s.
Any combination of step values and the number of neurons
yields a fitness, which is lower than the critical value of 0.2
(red line). The GWO optimizer reaches the minimum fitness
at the sixth iteration. At this stage of the optimization process,
xα = [0.6◦, 16]T . In other words, the optimal value of Sθ is
0.6◦ and the optimal value mopt of m is 16. However, this is
not the best solution in terms of acquisition time. Therefore,
we choose the parameters of the third iteration, i.e., the largest
step of 0.6◦ (yielding the smallest number of points in the
patch) and 16 neurons in the hidden layer. This corresponds
to a fitness value of 0.083. The training time of the MLP* is
0.83 s. The optimized number of measurement points drops to
64, which means that, for each shard sample, we measure only
four patches containing 16 measurement points. Removing the
overlap between the points, the number of distinct measure-
ment points is 37, while the accuracy remains above 85% for
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Fig. 12. GWO optimization results: fitness convergence curve in orange,
number of neurons in the hidden layer in purple, and spatial step for wideband
operation in green. The critical fitness is shown in black. (a) Fitness and
number of neurons as a function of iterations. (b) Fitness and step as a function
of iterations.

TABLE VIII

CONFUSION MATRIX OF COILING C

TABLE IX

CLASSIFICATION RESULTS FOR ALL SHARDS WITH 37 SPATIAL

ACQUISITIONS AND SEVEN FREQUENCIES

all shards. As an example, Table VIII shows the confusion
matrix of coiling C . By optimizing the measurement points,
we also optimize the MLP training and test times, together
with the measurement time, which drops dramatically from 2 h
and 20 min to approximately 2 min. This is at the expense of
the accuracy, which moves from 99% to 92%, on average (see
Table IX). We notice that, in Fig. 12, the fitness convergence
curve is oscillatory. This is due to the random aspect of the
fitness function: the initial weights of the neural network are
set randomly, in a different manner for each trial performed
in the optimization process. What happens for instance from
iteration 8 to iteration 9 is that the score of the best search
agent (α) becomes worse, but still the best among all agents.
It is then selected as the ninth value in the convergence
curve.

B. Reduction of the Number of Spatial Acquisitions With
Single-Frequency Operation

In this section, we investigate the ability of the MLP
to classify the coiling and spiral shards with the simulta-
neous reduction of frequency and spatial diversity. As in
Section V-A, we set the crucial fitness to 0.2. In contrast to
Section V, we work at a single frequency, 140 GHz, which is
the central frequency of the D-band. The GWO algorithm is
now implemented as follows: we again set Tmax = 20 iterations
to estimate the step and the number of neurons in the hidden

Fig. 13. GWO optimization results: fitness convergence curve in orange,
number of neurons in the hidden layer in purple, and spatial step for
single-frequency operation (140 GHz) in green. Critical fitness shown in black.
(a) Fitness and number of neurons as a function of iterations. (b) Fitness and
step as a function of iterations.

TABLE X

CLASSIFICATION RESULTS FOR ALL SHARDS WITH 217 SPATIAL

ACQUISITIONS AT 140 GHZ

layer, that is, we optimize P = 2 parameters, with Q =
6 agents. The training dataset should contain sufficient data for
learning. Since we have only one frequency, we need to reduce
the search space of the step to between 0.6◦ and 1.6◦ while
keeping that of the hidden neurons unchanged between 2 and
30. The results of the GWO are shown in Fig 13. We choose
the largest step, which is Sθ = 1.2◦ at the second iteration
corresponding to mopt = 27 neurons in the hidden layer and
a fitness of 0.0. At this iteration, xα = [1.2◦, 27]T . The total
optimization time is 9.95 s. The number of measurement points
drops to 729, that is, nine patches of 81 measurement points.
Removing the overlap, we have 217 unique measurement
points, which corresponds to a measurement time less than
10 min. The MLP* structure has three layers, with 81, 27, and
one neuron in the input, hidden, and output layers, respectively.
The unknown shard classification results are shown in Table X.
All shards samples are within the expected fitness of 0.2 (80%
of accuracy) except for spiral J at 77% (see Table X).

C. Discussion

In this paragraph, we have pushed the system’s parameters
(the number of measurement points and frequencies) to their
limit while keeping at least 80% accuracy. To give a clear
picture of the performance obtained in the classification of
archeological shards with an MLP optimized with the GWO,
we summarize the results of the different studies in Table XI
and illustrate the new measurement scans in Fig. 14. As
expected, any simplification of the system (or degraded sce-
nario) that involves a reduction of the spatial or frequency
diversity decreases the classifier performance. Starting from a
quasi-100% accuracy with dense mapping of the scan area
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Fig. 14. Comparisons between original and optimized scans.

TABLE XI

SUMMARY OF RESULTS

and the frequency, we have shown that it is possible to
maintain at least 80% accuracy with a drastic reduction in
the number of measurement points of the scan (337 times
fewer points) while keeping the wideband. If we work at a
single frequency, the reduction in the number of measurement
points is less substantial (154 times fewer points). Comparing
the mean values and the standard deviations in the three cases,
we observe a remarkable stability with the dense mapping with
a mean accuracy of 99.7% and a standard deviation of 0.4.
The mean values of the accuracy for the degraded scenarios
are very close to each other with 92% and 92.1% for the
wideband and the single frequency, respectively. Conversely,
the classification results of the wideband scenario exhibit a
better stability, with a standard deviation of 4.3 compared
with 8.2 for the single-frequency scenario. In addition to
the accuracy, we have to consider the system’s complexity.
As already noted above, it is not a critical point for our
application, but the method can be generalized to a larger
set of NDE methods for industrial applications, such as food
safety. The system’s complexity becomes a key issue and both
degraded scenarios have their advantages and drawbacks.

1) The Wideband Scenario: With only 37 measurement
points, the system would require 37 antennas (see the
purple points in Fig. 14). Conversely, we need seven
frequencies ranging from 110 to 170 GHz, so the
wideband is a challenge for building a compact trans-
mitter/receiver.

2) The Single-Frequency Scenario: The system would
require 81 antennas (see the green points in Fig. 14),
but the transmitter/receiver would be narrowband.

The time is not really the key issue here, but we cannot afford
10 min or even 2 min in an industrial setting. The antenna

would therefore have to be driven electronically, which makes
the number of antennas the most critical parameter. Consider-
ing this last argument and the better homogeneity of the results
with the wideband scenario, we recommend this configuration.

VI. CONCLUSION

In this article, we have proposed and demonstrated a
new imaging modality for the classification of archeological
pottery shards. We have sorted coiling from spiral shards
with an automatic and nondestructive method based on
low-THz measurements and artificial intelligence. The
difference between the two categories lies in the shape of
the air bubbles embedded in the ceramic materials during
the different manufacturing techniques. The setup operates at
low-THz, i.e., the D-band, because of the small size of the
pores. As very few studies have focused on the automatic
classification of pottery samples, we had to benchmark the
low-THz classification results with those obtained from CT
scan images. Using exactly the same postprocessing with
low-THz and CT scan images, that is, a segmentation with the
Otsu method followed by an SVM classification, we obtain
accuracies of 100% and 59% to 70% for the CT scan and
low-THz imaging systems, respectively. This preliminary
study shows that the following conditions hold.

1) The classification of coiling and spiral pottery shards is
100% successful with CT scans.

2) Once segmented, the training dataset is linearly separa-
ble in the case of the CT scan, unlike the low-THz.

3) The training dataset can be relatively small and can
be composed of experimental shards only, which is a
significant advantage because we completely master the
dataset.

These results are taken as the gold standard that must be
achieved with the low-THz system. To this end, we completely
changed the classification schemes. We processed the measure-
ments with a 3-D FFT, which transformed the dataset, so it
became separable, at least for 50% of its spectral density (the
first three eigenvectors). In order to use an MLP for the clas-
sification, we searched for the optimal parameter values using
a bioinspired algorithm, the GWO. We assessed the proposed
methodology by using the full spatial and frequency diversity,
which corresponds to 35 707 measurement points by cumulat-
ing seven frequencies. The accuracy ranged from 99% to 100%
for the nine shard samples under test. We then optimized the
measurement system based on two scenarios. First, we reduced
the number of spatial acquisitions while keeping the wideband
operation. Second, we worked at a fixed frequency and inves-
tigated the minimal number of acquisitions. In both scenarios,
we set the critical fitness at 20% (80% accuracy), which is the
fitness value that the final classification should not exceed.

1) In the first scenario, the accuracy was between 85% and
96% with 37 measurement points operating on wideband
frequency.

2) In the second scenario, the accuracy was between 77%
and 100% with 217 measurement points operating at a
single frequency.

3) Both scenarios have their advantages and drawbacks,
as discussed in this article, but both of them offer
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substantial time reduction and system simplification
compared to the original one.

In the near future, we may investigate the following.
1) The improvement in accuracy in the case of the reduc-

tion of the spatial and/or frequency diversity by optimiz-
ing the hyperparameters of the MLP in addition to the
number of neurons in the hidden layer.

2) The simplification of the measurement system, namely,
the classification of the shards with amplitude-only
measurements instead of using the amplitude and the
phase as we currently do.
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