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Subspace-Based and DIRECT Algorithms for
Distorted Circular Contour Estimation

Julien Marot and Salah Bourennane

Abstract—Circular features are commonly sought in digital
image processing. The subspace-based line detection (SLIDE)
method proposed to estimate the center and the radius of a single
circle. In this paper, we introduce a novel method for estimating
several radii while extending the circle estimation to retrieve cir-
cular-like distorted contours. Particularly, we develop and validate
a new model for virtual signal generation by simulating a circular
antenna. The circle center is estimated by the SLIDE method. A
variable speed propagation scheme toward the circular antenna
yields a linear phase signal. Therefore, a high-resolution method
provides the radius. Either the gradient method or the more
robust combination of dividing rectangles and spline interpolation
can extend this method extend this method for free form object
segmentation. The retrieval of multiple non concentric circles and
rotated ellipses is also considered. To evaluate the performance
of the proposed methods, we compare them with a least-squares
method, Hough transform, and gradient vector flow. We apply the
proposed method to hand-made images while considering some
real-world images.

Index Terms—Array processing, circular antenna, contour,
image, optimization.

I. INTRODUCTION

IRCULAR features are commonly sought in digital image
Cprocessing. Circle fitting is suitable in several domains
such as quality inspection for food industry, mechanical parts
[1], and particle trajectories [2], [3]. Circle fitting has been ap-
plied in microwave engineering [4] and ball detection for robotic
vision systems [5]. Nearly circular features are sought in char-
acter recognition; [6] and [7] proposed a template-based system
for online character recognition, where the representative tem-
plates are automatically counted. These templates are viewed
as different writing styles for any character. Ordinary or total
least-squares methods for circle fitting seek to minimize the
squares sum of error-of-fit with respect to measures [8]—[11].
Using geometric fitting [8], error distances are defined with the
orthogonal, or shortest, distances from given points to the geo-
metric feature to be fitted. In [10], a least-squares fitting ap-
proach is proposed. It is based on the hypothesis that a set of
circular arcs extracted from the image is related to a set of cir-
cles contained in a model by translation, rotation and scaling.
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[10] presents an analytical solution based on least-squares fit-
ting to obtain an optimal geometric transformation for the align-
ment of the circular arcs with circles. For a single circular arc,
this method is easy to implement. For multiple arcs with dif-
ferent centers, this method relies on the strong hypothesis that
all model circles should be transformed by the same transla-
tion, rotation, and scaling operations to fit the arcs in the image.
One of the major limitations of most of least-squares approaches
is their sensitivity to outliers [10]; [12] and [13] focused on
planar spline interpolation between control-points by quadratic
rational Bézier curves, to retrieve circular arcs. Compared to
[10], this method does not take into account the prior knowl-
edge of models or templates. It is based on interpolation between
control-points. Other methods support circle retrieval, even in
a noisy environment. The generalized Hough transform (GHT)
provides estimation of the circle center coordinates when their
radius is known [14], [15]. Its main drawback is the compu-
tational load, although fast versions have been proposed [16].
Contour-based snakes methods [17], such as the gradient vector
flow (GVF), were largely used [18], [19] to retrieve concavities
and weak edges with blurred boundaries. GVF limitations can
be observed when the expected contour exhibit a high curvature.
Levelset type methods [20], [21] enhance blindly all contours in
images. Levelset does not provide explicitly the characteristics
of contours with particular predefined parameters. Array pro-
cessing methods [22], [23] have been proposed to find some
characteristics of circular contours. The formalism proposed
by Aghajan [22] detects circular or elliptic contours. A prop-
agation phenomenon and the impinging of a wavefront upon
the antenna are simulated through a variable speed propagation
scheme. The center vertical and horizontal coordinates are es-
timated by placing the antenna successively at the top and left
sides of the image; [22] proposed a radius estimation method,
which relies on an approximation. This method can obtain a
subimage from the initial image in such a way the top left corner
is centered on the circle center, that was previously estimated.
In [22], Aghajan showed that a truncation of the Taylor series
of the generated signal leads to the value of the radius of the ex-
pected circle.

In this paper, we propose a new approach for radius esti-
mation, and for the retrieval of distortion between any nearly
circular contour and a circle. The approach uses a circular an-
tenna. Particularly, we adapt an optimization method to retrieve
a nearly circular contour. We consider concentric and non con-
centric features, either nearly circular or nearly oval. In [24] and
[25], we adopted a similar strategy for approximately rectilinear
distorted contours. In [24] and [25], a uniform linear array was
used. It was demonstrated that array processing methods ap-
plied to contour detection are robust to noise impairment and
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yield fast algorithms. As it will be illustrated later, the pro-
posed approach based on circular antenna exhibits the same ro-
bustness and speed properties. Another advantage of the pro-
posed method over the Hough transform method is that the esti-
mates in our approach are inherently continuous, whereas in the
Hough transform method, the resolution is limited by the bin
size chosen for the parameter research interval. The proposed
optimization approach retrieves any pixel shift value, whatever
the curvature of the contour.

The remainder of the paper is organized as follows. In Sec-
tion II, the problem of circle retrieval is highlighted, while ex-
plaining how to generate a signal from the image, upon a cir-
cular antenna. In Section III, a signal model is derived. We will
show that a linear phase signal is obtained when circles are ex-
pected and either variable [26] or constant propagation param-
eter is adopted for signal generation. By using the minimum de-
scription length (MDL) criterion [23], [27], the number of con-
centric features is detected; then a high-resolution method [28]
estimates the possibly close radius values of the expected con-
centric circles. Then, the proposed approach is generalized to
retrieving several circles or ellipses with different centers and
radii. In Section IV, the retrieval of circular contours is extended
to any closed contour fitted by a circle. Optimization methods
are investigated for this purpose. The fast variable step gradient
method and the robust dividing rectangles (DIRECT) method
[29] are accelerated using spline interpolation. In Section V, we
discuss the results obtained by the proposed approach when it
is applied to hand-made and real-world images. The proposed
radius estimation method is compared with least-squares fitting
and Hough transform applied to radius estimation [16]. Our op-
timization method is compared with GVF [18], in particular,
concerning the robustness to noise and contour curvature.

II. PROBLEM STATEMENT AND SIGNAL GENERATION

A. Problem Statement

We highlight the problem of radius estimation, and the dis-
tortions between a closed contour and a circle that fits with this
contour. We propose a circular antenna that enables a particular
signal generation. We emphasize the phase of the generated sig-
nals. The generated signals fit classical array processing and op-
timization methods, contrary to signals derived by the existing
signal generation methods [22]. Fig. 1(a) presents a binary dig-
ital image I as a square matrix of dimensions N x N. Each ele-
ment represents an image pixel. An object in the image is made
of edge pixels with value 1, over a background of zero-valued
pixels. The object is fitted by a circle with radius value r and
center coordinates (l.,m.). Fig. 1(b) shows a subimage ex-
tracted from the original image so that its top left corner is the
center of the circle. This subimage is associated with a set of
polar coordinates (p, §). Each pixel of the expected contour in
the subimage has the following coordinates: 7 + Ap, 6. Ap is
the shift between the contour pixel and the circle one that fits
the contour and which has the same coordinate 6. We seek for
star-shaped contours, that is, contours described by the relation
p = f(0), where f is any function that maps [0, 27] to R..

A traditional circle fitting method is the generalized Hough
transform (GHT) [15], [16]. We employ a variant of Hough
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Fig. 1. (a) Circular-like contour. (b) Bottom right quarter of the contour and
pixel coordinates in the polar system (p, #) having its origin on the center of the
circle. r is the radius of the circle. Ap is the value of the shift between a pixel
of the contour and the pixel of the circle having same coordinate 6.

transform that estimates the radii of concentric circles when
their center is known. Its basis is to count the number of pixels
which are located on a circle for all possible radius values.
The drawback of Hough transform is its elevated computa-
tional load. From this emerges the need for a faster radius
estimation. In [22], [23], and [30], Aghajan et al. replaced
the Hough transform by the much faster subspace-based line
detection (SLIDE) algorithm to retrieve straight lines. Existing
algorithms [24], [25] adapt an optimization method to signals
generated upon a linear antenna composed of one sensor per
row. When the expected contours consist of one pixel per row,
only one unknown parameter of the optimization problem is
included in one component of the generated signal [24], [25].

Contours which are approximately circular are supposed to
be made of more than one pixel per row for some of the rows of
the image and more than one pixel per column for some columns
of the image. Several pixels may lead to only one signal com-
ponent. A linear antenna does not lead to a linear phase signal
when a circular contour is present in the image.

B. Virtual Signal Generation

We set an analogy between the estimation of a circular con-
tour in an image and the estimation of a wavefront in array pro-
cessing. The basic idea is to obtain a linear phase signal from
an image containing a quarter of circle. To achieve this, we use
a circular antenna. The phase of the signals which are virtually
generated on the antenna is constant or varies linearly as a func-
tion of the sensor index. A quarter circle with radius r and a cir-
cular antenna are represented in Fig. 2. The antenna is a quarter
of circle centered on the top left corner, and crossing the bottom
right corner of the subimage. Such an antenna is adapted to the
subimages containing each quarter of the expected contour (see
Fig. 2). In practice, the extracted subimage is possibly rotated so
that its top left corner is the estimated center. The antenna has
radius R, so that R, = v/2N, where N, is the number of rows
or columns in the subimage. When we consider the subimage
which includes the right bottom part of the expected contour, the
following relation holds: Ny = max(N — ., N —m.) where [,
and m,. are the vertical and horizontal coordinates of the center
of the expected contour in a cartesian set centered on the top left
corner of the whole processed image (see Fig. 1). Coordinates
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Fig. 2. Subimage, associated with a circular array composed of S sensors.

l. and m,. are estimated by the method proposed in [22], or the
one that is detailed later in this paper.

Signal generation scheme upon a circular antenna is the fol-
lowing: the directions adopted for signal generation are from the
top left corner of the subimage to the corresponding sensor. The
antenna is composed of S sensors, so there are S signal compo-
nents.

Let us consider D;, the line that makes an angle ; with the
vertical axis and crosses the top left corner of the subimage. The
ith component (¢ = 1,...,5) of the signal z generated out of
the image reads

I,m=N,

Z I(l,m)exp(—jpu\/ 12 + m?). (1)

I,m=1

(I,m)eD;

z(i) =

The integer [ (resp., m) indexes the lines (resp., the columns)
of the image. j stands for v/—1. p is the propagation param-
eter [26]. Each sensor indexed by ¢ is associated with a line D;
having an orientation #; = ((¢ — 1) - 7/2)/S. In (1), the term
(I,m) € D; means that only the image pixels that belong to
D, are considered for the generation of the ¢th signal compo-
nent. Satisfying the constraint (I,m) € D;, that is, choosing
the pixels that belong to the line with orientation 6;, is done in
two steps: let setl be the set of indexes along the vertical axis,
and setm the set of indexes along the horizontal axis. If 6; is
less than or equal to 7/4, setl = [1 : N] and setm = |[[1 :
Ng] - tan(6;)]. if 6; is greater than 7/4, setm = [1 : N,] and
setl = |[1 : Ns]-tan(w/2—6;)]. Symbol |- | means integer part.
The minimum number of sensors that permits a perfect char-
acterization of any possibly distorted contour is the number of
pixels that would be virtually aligned on a circle quarter having
radius \/§NS. Therefore, the minimum number S of sensors is

V2N,.

III. PROPOSED METHOD FOR RADIUS
AND CENTER ESTIMATION

Estimation of Multiple Concentric Circles: Most often, there
exists more than one circle for one center. We demonstrate how
several possibly close radius values can be estimated using a
high-resolution method. We propose an estimation method for
the number d of concentric circles, and each radius value. For
this purpose, we employ a variable speed propagation scheme
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[26]. We set 1 = «(i — 1), for each sensor indexed by i =
1,...,S. From (1), the signal received on each sensor is

d

2(i) =Y exp(—jali— Vrg) +n(i), i=1,...,5 (2
k=1

where r, k = 1,...,d are the values of the radius of each
circle, and n(7) is a noise term due to outliers. All components
z(i) compose the observation vector z. Total least-squares-esti-
mation of parameters by rotational invariance techniques (TLS-
ESPRIT) algorithm requires the estimation of the covariance
matrix of several snapshots. There is no time-dependent sig-
nals. So, the question arises as to how a sample covariance ma-
trix can be formed. This can be done as follows [23]. From the
observation vector, we build K subvectors of length M with
d<M<S—d+1:z = [2(), - ,20+M-1)],
l =1, ---, K. To maximize the number of snapshots [24], the
first component of a snapshot is the second component of the
previous snapshot. This improves the estimation of the covari-
ance matrix that is performed in TLS-ESPRIT algorithm. We
then obtain K = S + 1 — M snapshots. Grouping all subvec-

tors obtained in matrix form, we get Zx = [z1, - - -, 2], where
z1=Ays+n, [=1,--- K. 3)
Ay =Ja(ry),---,a(rq)] is a Vandermonde type matrix of size

M x d: the ith component of a(ry,) is exp(—ja(i — 1)ry,). s is
a length d vector equal to [1,1,...,1]"-superscript 7 denotes
transpose- and n; = [n(l),---,n(l + M — 1)]%.

The signal model of (3) suits TLS-ESPRIT method, a sub-
space-based method that requires the dimension of the signal
subspace, that is, in this problem, the number of concentric cir-
cles. MDL criterion estimates the dimension of the signal sub-
space [23] from the eigenvalues of the covariance matrix. TLS-
ESPRIT is applied on the measurements collected from two
overlapping subarrays, and falls into two parts: the covariance
matrix estimation and the minimization of a total-least-squares
criterion. The radius values are obtained as [28]

fk:__lzm<1n<ﬂ>>, k=1.....d @
(0% |)\k|

where Zrn denotes imaginary part, {\x,k = 1,...,d} are the
eigenvalues of a diagonal unitary matrix. It relates the measure-
ments from the first subarray with the measurements resulting
from the second subarray.

Estimation of Multiple Circles With Different Centers and
Radii: Usually, an image contains several circles which are
possibly not concentric and have different radii (see Fig. 3).
To apply the proposed method, the center coordinates for each
feature are required. To estimate these coordinates, we gen-
erate a signal with constant propagation parameter upon the
image left and top sides. More details regarding signal gen-
eration upon a linear antenna can be found in [23]. The [/th
signal component, generated from the [th row, reads: 2y, (1) =
ZT]X:I 1(l,m)exp(—jum), where p is the propagation param-
eter [23]. The nonzero sections of the signals, as seen at the left
and top sides of the image (see Fig. 3), indicate the presence
of features. Each nonzero section width in the left (respectively,
the top) side signal gives the height (respectively, the width) of
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2 b]:
Fig. 3. Model for an image containing several nearly circular or elliptic fea-
tures. r is the circle radius; ¢ and b are the axial parameters of the ellipse.

the corresponding expected feature. The middle of each nonzero
section in the left (respectively, the top) side signal yields an ap-
proximate value of the center /.. (respectively, m.) coordinate of
each feature. The feature height, width, and center coordinates
permit us to select image regions. Each region contains a con-
tour or a set of concentric contours. The proposed method based
on circular antenna detects the number of concentric features for
each estimated center, in each image region. It yields the values
of the fitting circles radii. Then, an optimization method can be
used to refine the estimation of each contour. Such a method is
applied to the signals generated on our circular antenna is pre-
sented in the next section.

Single Circle Estimation: Using a circular antenna, a
constant parameter propagation scheme yields as well
to the radius of a single circle. Signal components are
z(i) = exp(—jpr) +n(i),i = 1,...,S. The estimated value 7
of ris: # = (1/p) cos™1(z), with z = Re((1/S) Z;q:l z(4)),
where cos™! denotes inverse cosine function and Re denotes
real part. In this algorithm, noise contribution is lowered by
averaging. In the next section, we use the fitting circle or
ellipse provided by the method presented above to retrieve any
distorted contour.

IV. OPTIMIZATION METHOD FOR THE ESTIMATION
OF NEARLY CIRCULAR CONTOURS

The optimization methods proposed in [24] and [25] estimate
the pixel shift values between a straight line and a nearly linear
contour. These methods rely on the assumption that one com-
ponent of the generated signal is associated with only one un-
known pixel shift value in one image row (or column). The pro-
posed circular antenna adapts optimization methods to retrieve
distorted star-shaped contours.

A. Proposed Optimization Method

We employ a circular antenna to retrieve the shift values
between an initialization circle and the expected contour. We
process successively each quarter of the circle, and retrieve the
distortions between one quarter of the initialization circle and
the expected contour part that is located in the same quarter of
the image. As an example, in Fig. 1, the right bottom quarter of
the considered image is represented in Fig. 1(b). An optimiza-
tion method inspired from [24] is defined as follows:

A contour in the considered subimage is described with a set
of polar coordinates by {p(7),0(i),i = 1,...,S}. We estimate
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the .S unknowns p(¢) that characterize the contour, forming a
vector

p(S)]"

The basic idea is to consider that p can be written as p =
[r + Ap(1),7 + Ap(2),...,7 + Ap(S)]T (see Fig. 1), where
r is the radius of a circle that fits the expected contour. The
optimization method that we adapt to this problem estimates
{Ap(i),i=1,...,S}, that is, the shift values between the ini-
tialization circle and the expected contour.

If we take into account the position given by p of all edge
pixels in (1), the components of signal z generated out of the
image containing the expected contour read

p=1[p(1),p(2),..., ®)

2(i) = exp (—jup(i), Vi=1,....5. ©)
We try to recreate the signal z, whose components are defined
by (6), and in which we ignore the S parameters. We start with
an initialization vector p,, characterizing a quarter of circle that
fits the expected distorted contour in the considered subimage.
The S components of p, are equal to 7, the radius value that was
previously estimated: p, = [r,7, . ..,7]T. Then, with k indexing
this recursive algorithm steps, we aim to minimize

(N

J<pk> = “Z — Zestimated for p,, ||2

where ||.|| represents the norm induced by the usual scalar
product of CS. The components Of Zestimatedfor p, are defined
similarly to the components of z [see (6)] as a function of
the components of p,, and the components of p; are ob-
tained from the components of p, by adding a shift: p;, =
[r 4+ Apr(1),7 + Api(2),...,7 + Apr(S)]T. To estimate p,
we use the variable step gradient method. The series vectors are
obtained from the relation V& € N : p, 1 = p. — BV (J(py)),
where [ is the step for the descent. The recurrence loop is

®)

Pi. — Zestimated for P J(pk)

The gradient is estimated using finite differences. When k tends
to infinity, the criterion J tends to zero and p, (i) = r+Ap(i) =
p(i),Vi=1,...,85.

We denote by p the vector including all the estimated values
pr(i),i=1,...,S, with k tending to infinity.

A more elaborated method based on DIRECT algorithm [29]
and spline interpolation can be adopted to reach the global min-
imum of the criterion .J of (7). This method is applied to modify
recursively the signal Zestimated for p, - At €ach step of the re-
cursive algorithm, vector p,, is computed by interpolating be-
tween some “node” values that are retrieved by DIRECT. The
main property of DIRECT is that it obtains the global min-
imum of a function. DIRECT normalizes the research space
in a hypercube and evaluates the solution which is located at
the center of this hypercube. Then, some solutions are evalu-
ated and the hypercube is divided into smaller cubes, supporting
the zones were the evaluations are small. Let O be an integer
smaller than S. A cubic spline f interpolating on the partition
{y(1),...,9(0)} of {1,...,S} that we call “node points,” to
the elements p(1), ..., p(S), is a function for which f(y(k))

’
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tion that consists of O — 1 cubic polynomials f defined on
the ranges [y(k), y(k + 1)]. Furthermore, each f} is joined at
y(k), for k = 2,...,0 — 1, so that p'(y(k)) = f'(y(k))
and p"(y(k)) = f"(y(k)) are continuous. The kth polynomial
curve, f, is defined over the fixed interval [y(k), y(k+1)] and is
a third order polynomial. Then, the interpolation provides an ap-
proximate value of S elements starting from O elements. Spline
interpolation permits to obtain a continuous estimated contour,
and cubic splines [31] provide an acceptable compromise be-
tween computational load and interpolation accuracy. The com-
putational load of DIRECT algorithm grows drastically when
the number of sensors, or equivalently the number of unknown
phase values, increases. We accelerate DIRECT algorithm by
reducing the number of retrieved unknowns. Then, we propose
spline interpolation to obtain the S components of p. We inter-
polate a subset of values of p;,, which are retrieved by DIRECT
algorithm. The more interpolation nodes, the more precise the
estimation, but the slower the algorithm.

p(y(k)) for k = 1,...,0. It is a piecewise polynomial func-

B. Summary of the Proposed Method

The proposed method for distorted contour estimation is sum-

marized as follows.

* Generation of a signal with constant parameter, on a linear
antenna placed at the top of and aside the image.

» Estimation of the centers of the circles or ellipses that fit
the expected contours.

* Variable speed propagation scheme upon the proposed cir-
cular antenna: Estimation of the number of circles by MDL
criterion, estimation of the radius of each circle fitting any
expected contour [see (1) and (2)] or the axial parameters
of the ellipse.

» Estimation of the radial distortions, in a polar system, be-
tween any expected contour and the circle or ellipse that
fits this contour. Either the gradient method or the combi-
nation of DIRECT and spline interpolation may be used to
minimize the criterion J of (7).

V. RESULTS AND DISCUSSION

We compare the proposed methods with a least-squares one,
Hough transform and GVF. The efficiency of the proposed
methods is measured by the mean error ME,, over the coordi-
nates of the pixels of the contour. For the four quarters of an
image, the coordinates of the pixels of the contour are contained
in the vector p defined in (5), and their estimates are contained
in vector p. ME, = (1/8) 3.7, [p(i) — p(i)| where | - | means
absolute value. The proposed circle fitting method is applied
to images having N = 200 columns and rows. The number
of sensors for each image quarter is S = 400, larger than the
minimum acceptable value (see Section II-B). The algorithms
for center and radius estimation are run using a propagation
parameter set at o = 1.35 x 10~ 2. This optimal value is experi-
mentally defined in [26] for almost the same number of sensors.
In [26], a value for the length of each subarray was empirically
found to provide optimal results, namely M = /S = 20. Other
experiments confirmed these values [24], [25]. When a constant
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Fig. 4. (a) Processed, (b) superposition processed, and result obtained after
applying a least-squares method for circle fitting: ME, = 4.5 pixels, (c) su-
perposition processed, and result obtained after applying the Hough transform:
ME, = 0.7 pixel, (d) superposition processed and result obtained after ap-
plying the proposed method: ME, = 0.3 pixel.

parameter signal generation is performed, 1 = 5 x 1073, This
value of 1, avoids phase indetermination [24], [25].

A. Hand-Made Images

We first consider the case where one circle is expected in
a noisy image. Fig. 4 exemplifies the results obtained with a
least-squares fitting method [9], and the proposed circle fitting
method.

Center coordinates are (100, 100); the radius value is
80 pixels. When the image is not noisy, there is no bias over
the estimated parameters, for all methods. Fig. 4(a) contains
1% of noisy pixels with value 1. We performed 100 trials
with the same circle and noise parameters, and different noise
realization for each trial. Least-squares fitting [see Fig. 4(b)]
provides a 7-pixel bias, and a 9-pixel bias, respectively, over
the two center coordinates of the center, and a 1.3 pixel bias
over the radius of the circle. Generalized Hough transform,
with prior knowledge of the radius, provides center coordinates
(100, 100). With the prior knowledge of these center coordinate
values, Hough transform, provides a 0.2 pixel bias over the
radius value [see Fig. 4(c)]. The proposed method leads to
a 0.2 and 0.3 pixel bias over the coordinates of the center,
and a 0.2 pixel bias over the radius value [see Fig. 4(d)]. It is
more robust to noise than the least-squares method, when a
single circle in an impaired image is considered. These results
validate the remarks provided in [10], where the sensitivity of
least-squares-fit of circle to outliers is underlined.

Fig. 4(c) exemplifies the ability of Hough transform to handle
the cases of noisy images. We compared quantitatively and
statistically the proposed method with the Hough transform
method when a single circle is expected, in a noisy image
context. The nonimpaired image contains a circle with radius
80 pixels. We performed 100 trials with different noise realiza-
tions, with 2% of noisy pixels in the image, and obtained mean
error values over the radius which are, respectively, 1.05 pixels
when variable parameter propagation scheme is performed
[see (4)]; 1.20 when constant parameter propagation scheme
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(a)

Fig. 5. (a) Processed, (b) result (superimposed), with the proposed method for
radius estimation or equivalently with Hough transform or a least-squares fitting
method: ME, = 0.1 (resp., 0.3 for Hough transform and 0.4 for the least-
squares fitting method).

is performed and # = (1/p)cos™!(%); and 1.15 pixels when
Hough transform is applied.

Like the proposed method, Hough transform is supposed to
retrieve the radius of two close concentric circles. We consid-
ered the case of an image containing two concentric circles. The
expected radius values are 85 and 90 pixels [see Fig. 5(a)], thus
differing by only 6%. When the proposed method is applied,
MDL criterion detects two circles, the estimated radius values
are 85.1 and 89.9 pixels, and in these conditions the required
computational time is 0.359 s on a 3.0-GHz Pentium 4 PC run-
ning under Windows. The same computer and software are used
throughout all experiments. When Hough transform is run, p
axis is quantized so that the step between two values is 0.3 pixel,
and 6 axis is quantized to S values. Estimated radius values are
84.7 and 90.3 pixels, and the required computational time is
0.51 s. When the least-squares fitting method [11] is used the
estimated radius values are 85.4 and 90.3 pixels [see Fig. 5(b)].
The required computational time is 0.95 s.

In the next experiment, we study the sensitivity of the
proposed optimization methods to initialization. Gradient
algorithm minimizes the criterion of (7). We have been con-
fident that gradient algorithm gives good results for images
containing continuous contours and low-valued noise pixels.
The descent step parameter is updated at each iteration: initial
descent step parameter is Sy = 0.05, the step variation is so
that Br+1 = 1.050,. We consider an image impaired with
5% of noisy pixels with value 0.1, containing one circle with
center coordinates (100, 100) and radius 80. We choose an
initialization circle with center coordinates (70, 70). Hough
transform yields, as could be expected, to a biased radius
value, more precisely 122.1 pixels. Radius value 20 pixels is
used for the initialization. The result circle, obtained after 350
iterations of gradient algorithm, has center coordinates (100,
100) and radius 80: all pixel shifts are canceled. This case is
not easily handled by GVF. To converge in a few seconds,
the GVF method has to be initialized with a contour which is
close to the expected one. Furthermore, the gradient strength
has to be set high enough when the edge map of the image
is derived [18]. Conversely, the proposed signal generation
process transcripts the content of all pixels on one direction
D; (see Fig. 2) and, thus, takes necessarily any feature into
account. In the example of Fig. 6(a), we consider a distorted
and disrupted contour in a noisy environment. We have been
confident that spline interpolation yields a continuous result
contour, and that DIRECT handles the case where noisy pixels
have the same value as the contour pixels. Fig. 6(b) shows
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(d ©)

Fig. 6. Biased center and radius estimation, proposed optimization algorithm
using DIRECT and spline interpolation. (a) Processed (b) initialization by the
least-squares method, (c) initialization by the Hough transform, (d) initialization
by the proposed method, (e) superposition processed and final result, ME, =
0.9 pixel.

the result obtained with least-squares fitting. Fig. 6(b) shows
the result obtained with the Hough transform, used with the
center coordinates provided by the proposed method-signal
generation upon linear antenna. Fig. 6(d) shows the result
obtained with the proposed method for circle fitting. Note that
there is a slight bias on the estimation of the center coordinates
and the radius. We use this result to initialize the optimization
method. Ten iterations of DIRECT are run, with 6 nodes for
spline interpolation. Fig. 6(e) shows that in spite of this bias,
the proposed optimization method yields a continuous result
contour, without focusing on noisy pixels. We now perform a
statistical study on the proposed optimization algorithm using
variable step gradient method. The proposed optimization
method and gradient vector flow [18] are applied to images
containing a distorted circle; [19] presents a statistical study on
noisy images containing a harmonic shape. A standard GVF
method and a generalized version of GVF give satisfactory
results when noise percentage values up to 10% are employed.
Our goal is to demonstrate the sensitivity of the proposed
method compared to GVF, when the considered distortions are
no longer harmonic but irregular. Values of the parameters for
GVF method [19] are the following. For the computation of the
edge map: 100 iterations; pugyr = 0.09 (regularization coeffi-
cient); for the snakes deformation: 100 initialization points and
50 iterations; agyr = 0.2 (tension); Sgvry = 0.03 (rigidity);
Yavr = 1 (regularization coefficient); kgyr = 0.8 (gradient
strength coefficient). We study the robustness of the proposed
method and GVF to both noise impairment and curvature.
Statistical results presented below are obtained with 15 images
containing a different distorted circle, with variable distortion
amplitude. The maximum distortion amplitude and the standard
deviation of the distortions is different for each image. The
least and most distorted contours are drawn in Fig. 7(a) and (b),
respectively. Fig. 7 also presents the results obtained with the
proposed method. Random noise is added to various percentage
values of the image pixels: 0%, 1%, 2%, 4%, 6%, and 8%.
The original non-noisy images have pixel values 1 (expected
contour) or 0 (background). They are impaired with Gaussian
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TABLE I
ME VALUES (IN PIXELS) OBTAINED WITH THE PROPOSED METHOD (A) AND WITH GVF (B), VERSUS
DISTORTION (MAXIMUM AMPLITUDE; STANDARD DEVIATION) AND NOISE PERCENTAGE

| ME values (pixels) [

distortion noise 0% 1% 2% 4% 6% 8% Mean value M E,
(A)](B) (A) | (B) (A) | (B) (A)] (B) (A)] (B) (A) | (B) (A)|(B)
(9.28; 1.66) 1.44|1.40 1831142 | 2.00[1.43 | 2.05[1.44 | 2.08(1.45 | 2.10|1.47 191143
(11.84; 1.97) 1.511.62 1.96[1.64 | 2.06|1.66 | 2.07|1.68 | 2.12(1.69 | 2.23|1.70 1.99 | 1.66
(14.68; 2.42) 1.68 | 1.67 1.9811.69 | 2.09(1.72 | 2.10[1.72 | 2.16|1.73 | 2.27|1.74 2.041.71
(17.76; 2.93) 1.70{1.78 | 2.00|1.85 | 2.11|1.86 | 2.12|1.87 | 2.18|1.88 | 2.28|1.89 2.06|1.85
(18.36; 3.46) 1.7212.07 | 2.02]2.08 | 2.13]2.08 | 2.14[2.08 | 2.19]2.11 2.301(2.12 2.08 2.09
(21.05; 3.07) 1.81{2.10 | 2.17(2.10 | 2.24(2.10 | 2.25]2.11 2261212 | 2.321(2.15 2.17|2.11
(21.55; 3.62) 1.8212.28 | 2.18/2.29 | 226|231 2271232 | 232(2.33 | 2.38(2.34 2201231
(24.88; 4.25) 1.8412.59 | 2.19]2.61 230(2.62 | 2.32(2.63 | 2.55|2.64 | 2.56|2.65 2.29(2.62
(28.34; 5.01) 2.0212.69 | 229(2.71 246|272 | 267|274 | 277|275 | 2.79|2.76 2.5012.72
(31.85; 5.21) 2.183.04 | 237 3.11 2.5203.12 | 2.85(3.14 | 2.89(3.18 | 2.90|3.19 2.6113.13
(35.39; 5.86) 2.19(3.12 | 247(3.16 | 2.60|3.19 | 2.89|3.21 2.90(3.34 | 2.96|3.41 2.66 |3.23
(38.90; 6.61) 2.3013.43 | 2.51(3.51 2.62(3.55 | 295(3.59 | 3.00|3.61 3.01(3.62 2.7313.55
(42.33; 7.42) 2.4213.69 | 2.633.71 2.67(3.82 | 3.00(3.83 | 3.13(3.84 | 3.19|3.85 2.8413.79
(45.63; 8.28) 2.4314.05 | 2.89(4.06 | 296|4.07 | 3.14|4.08 | 3.20|4.09 | 3.34|4.09 2.99 4.07
(48.75; 9.22) 2.77|4.21 3.11(4.22 | 3.16|4.23 | 3.30(4.27 | 3.38|4.28 | 3.43|4.33 3.19(4.25
Mean value M E,, 1.98(2.64 | 2.30(2.67 | 241(2.69 | 2.54|2.71 2.60(2.73 | 2.67|2.75 2.4112.69

(d (e) Q)

Fig. 7. Examples of processed images containing (a) the least and (d) the most
distorted circles; (b), (e) initialization; and (c), (f) estimation using the proposed
method. ME, = 1.4 pixel and 2.7 pixel.
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Fig. 8. Examples of processed images containing (a) the least and (d) the most

distorted circles; (b), (e) initialization; and (c), (f) estimation using GVF algo-
rithm. ME, = 1.4 pixel and 4.1 pixels.

noise having mean my, and standard deviation o, equal, re-
spectively, to 20% and 1% of the value of a pixel that belongs
to the expected contour. For each image quarter, computational
times are, respectively, 0.28 s for signal generation, 0.15 s for
running variable step gradient algorithm —50 iterations are per-

formed, and 12 s for running GVF algorithm. Furthermore, the
proposed method is five times faster than GVF. For each noise
percentage and each contour, 100 trials are performed, with a
different noise realization for each trial. To assess the perfor-
mance of the proposed method, we define the mean error ME

ME = (1/100) 2;0:01 ME,_ , where j indexes the trials and
ME,,J_ is the mean error over all pixels of the contour, obtained
at the jth trial.

Table I presents the ME values for all maximum distortion
amplitude and noise percentage values. Table I presents the
ME values for all images and noise percentage values. The first
column of Table I indicates the couple (maximum distortion
amplitude; standard deviation of the distortions), for all images.
Table I shows that mean error values are between 1.44 and
3.43 pixels for the proposed method and between 1.40 and
4.33 pixels for GVF. The mean values ME,; of the ME values
obtained for each distortion amplitude demonstrate that GVF is
limited by high curvature values. These mean values increase
rapidly when the maximum distortion amplitude increases. The
mean values ME,, of the ME values obtained for each noise
percentage highlight that the proposed method outperforms
GVF for all chosen noise percentage values. The errors obtained
with GVF are the consequence of its inability to progress into
the furthest sections of some concavities, while the proposed
method retrieves the pixel shifts whatever their values are. The
increase in pixel bias come from unexpected fluctuations: noise
corrupts the phase of the generated signals.

Multiple Circles With Different Centers and Radii: We re-
trieve nearly circular features which may be concentric or not,
and which have different radii. GHT handles the case of noncon-
centric circles with same radius: it provides a good estimation
of each circle center, when the radius of the expected circles
is known. We use the proposed method for the characterization
of several contours (see Section III). We perform constant pa-
rameter propagation scheme. Starting from the estimation of the
center of each feature, the method proposed in Section III esti-
mates the number of concentric features and the approximate
radius value of each feature.
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(c)

Fig. 9. Multiple circles: (a) processed (b) signal generated upon the left side of
the image (c) initialization (d) result with gradient method.

Fig. 9(a)—(d) shows an image with multiple circles, the signal
generated upon the left side of the image, the initialization and
the final result obtained by the proposed methods. Starting from
the modulus of the generated signal, we apply hard threshold.
Then we take the derivative of the binary signal obtained. The
points with nonzero derivative indicate successively the begin-
ning and end of each nonzero section of generated signal. All
circles in the image have different radius, and the proposed
method retrieves efficiently the number of concentric circles
-through MDL criterion- and the parameters of all circles. Dis-
tortions are retrieved by the proposed optimization method. In
spite of a bias (3, 2) pixels over estimation of the two center co-
ordinates of the bottom circles couple, the proposed optimiza-
tion method retrieves the expected circles.

Two Circles With Different Centers and Same Radius: We
consider the ambiguous case where an image contains two
circles with center coordinates (l.1,m.1) and (le2,mc2),
and same radius r. Exchanging either horizontal or vertical
coordinates of the centers does not change the modulus of
the generated signals. The phase of the generated signals
overcomes this ambiguity. The signal component at row

lei, 1 =1, 2 indgxing circles 1 and 2 (see Fig. .1), reads
Zlin(lﬂi) = Zr]:zzl I(l> m)eXP(—Jﬂm) = e_]”(md_r)

teIn(meitr) — 21in(le;) = 2e77#™Mei cos(ur). Therefore, the
center horizontal coordinate is obtained by

m 2 cos(pr)

We consider images of Fig. 10, where circle radius is 15
pixels. Circles are only slightly distorted, which leads to the
same length for all signal nonzero sections. For the first (respec-
tively, second) processed image [see Fig. 10(a) and (b)], the first
circle center coordinates are (I.1,m.1) = (30, 35), the second
circle center coordinates are (l.o, m.2) = (135,165) [respec-
tively, (30,165) and (135,35) for the second image]. For both
images, the estimation obtained from the modulus of the gener-
ated signals (see aside and on top of the each image in Fig. 10)
are, for the horizontal coordinates: 165, 35; for the vertical coor-
dinates: 135, 30. The phase of the generated signals associates
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Fig. 10. Two circles with different centers and same radius. (a), (b) Processed
images, modulus of the generated signals. (c), (d) Superposition processed and
result with gradient method.
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Fig. 11. Ellipse (and, respectively, rotated ellipse) fitting: (a), (c) processed;
(b), (d) superposition processed and result obtained after applying the proposed
method for ellipse fitting: ME, = 0.7 (respectively, ME, = 0.6) pixel.

the horizontal coordinates obtained from the signal modulus,
with the vertical coordinates, obtained from the phase [see (9)]:
l.1 = 30 pixels yields m.; = 35.1 (respectively, 165.2 for the
second image), and [., = 135 pixels yields m.> = 35.1. Thus,
each circle is retrieved. Thus, by studying the phase of the gener-
ated signals, we distinguish between the first image and second
one. Running the proposed optimization method yields the re-
sults of Fig. 10(c) and (d).

Rotated Ellipse Retrieval: Let us consider the case of a ver-
tical ellipse or a rotated ellipse [see Fig. 11(a) and (c)]. An
ellipse is characterized by two axial parameters instead of a
constant radius. For the case where an ellipse is expected, the
method proposed in [22] leads to two axial parameters and the
ellipse center. The axes of the ellipse may not be horizontal and
vertical [see Fig. 11(c)]. In this case, we propose the following
procedure. We consider the signals generated on the linear an-
tenna placed at the top and the left side, and more precisely the
nonzero section length of the signals. The image is rotated until
these lengths are the most different from each other. The ellipse
of Fig. 11(c) has center coordinates (100, 100), and axial pa-
rameters 80 and 25 pixels. Its inclination is 47°. We perform
rotations of the image containing the ellipse, with a 1° step be-
tween each rotation, and test the length of the nonzero sections
of the generated signals after each rotation. The estimated value
of the ellipse inclination is 47° and the corresponding estimated
axial parameter values are 80 and 25 pixels. When the ellipse
is distorted, the proposed optimization method is logically ap-
plied.
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B. Real-World Images

The proposed methods summarized in Section IV-B are ap-
plied on real-world images [see Fig. 12(1a)—(3a)]. Real-world
images are supposed to be more difficult to process than hand-
made ones. This is due to the disruptions in the expected con-
tours. Therefore, we use the combination of the robust DIRECT
method and spline interpolation to estimate distortions. First,
we compute the mean of the image three color components.
We apply a Canny edge-enhancing operator. The expected con-
tours are supposed to be centered in the middle of the image.
The centers of the initialization circles are taken as the center
of the image, that is, pixel (100, 100). The initialization circles
number and radius are obtained as follows. We apply variable
speed propagation scheme on the proposed circular antenna.
Then TLS-ESPRIT method yields the radius values. MDL cri-
terion provides the number of expected nearly circular contours.
Together, DIRECT combined with spline interpolation are fast
enough to be compared with gradient vector flow, if a small
number of nodes is chosen for the interpolation. The first pro-
cessed image concerns pie calibration. Fig. 12(1a) gives the
original color image. Fig. 12(1b) gives the result of Canny edge
enhancement, Fig. 12(1c) gives the initialization circle superim-
posed to the processed image. Fig. 12(1d) shows that gradient
provides a contour which is not continuous and whose pixels go
aside the pixels of the expected contour. When gradient method
is employed the mean error value ME,, is 2.0 pixels. Fig. 12(1e)
gives the result using GVF. Mean error value ME,, is 1.6 pixels.
Fig. 12(1f) gives the result obtained by DIRECT combined with
spline interpolation. When this robust optimization method is
used, the mean error value ME, is 0.6 pixel. Parameters used
to run DIRECT and spline interpolation are six interpolation
nodes and five iterations for DIRECT. For this image the re-
quired computational time is 26 s. Then we consider biometrics
[iris fitting, see Fig. 12(2)] and checking mechanical tool size
[see Fig. 12(3)].

Table II gives the mean error values ME,,, for all images. It
shows that for all images, DIRECT combined with spline inter-
polation gives the best result in terms of mean error.

VI. CONCLUSION

This paper investigates the estimation of distorted circular
contours in images by means of array processing and optimiza-
tion methods. We demonstrate the effectiveness and efficiency
of a circular antenna for the generation of linear phase signals
out of images containing circular contours. This enables the
use of high-resolution methods and optimization algorithms in
the estimation of distorted circles in images. A variable speed
propagation scheme and MDL criterion estimate the number
and radii of concentric circles. Using a circular antenna, a con-
stant parameter propagation scheme and optimization methods
extend circle estimation to nearly circular star-shaped contour
retrieval. Gradient algorithm, or DIRECT algorithm combined
with spline interpolation, retrieve the pixel shifts between an ini-
tialization circle and the expected contour. We generalize the
procedure to the estimation of multiple circles with different
centers and radii, and rotated ellipses. We applied the proposed
methods to hand-made and real-world images and compared
the results obtained with those from least-squares fitting, Hough
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Fig. 12. (la)—(3a) Processed image; (1b)—(3b) result of Canny operator;
(1c)—(3c) initialization; (1d)—(3d) result obtained with gradient method;
(le)—(3e) result obtained with GVF; (1f)—(3f) result obtained with DIRECT
combined with spline interpolation.

TABLE II
REAL-WORLD IMAGES: ME VALUES (IN PIXELS)
image (OERCORNC)
Gradient: M E, 09 108 | 0.5
GVF: ME, 1.8 107 |05
DIRECT, spline: ME, | 08 | 0.4 | 0.2

transform and gradient vector flow. The retrieval of one circle
in a noisy image exemplified the robustness to noise of our ap-
proach. By considering concentric circles, we proved the ability
of our approach to distinguish between two close concentric cir-
cles. With an experiment concerning a disrupted contour in a
noisy image, we showed that DIRECT combined with spline in-
terpolation yields a continuous result in difficult conditions. The
proposed signal generation and our optimization method using
gradient outperforms gradient vector flow when contours with
high curvature are retrieved. The generalization of our approach
to multiple non concentric contours and ellipses was illustrated.
The robust optimization method that combines DIRECT with
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spline interpolation was successfully applied to real-world im-
ages and compared with gradient vector flow, leading to low
pixel bias. The results of the experiments show that the proposed
method is fast and promising for feature retrieval. Further work
could consist in retrieving occluded circles and ellipses.
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