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ABSTRACT

This paper deals with nonnegativematrix factorization (NMF)

dedicated to unmixing of hyperspectral images (HSI). We

propose several improvements to better relate the output end-

member spectra to the physical properties of the input data:

firstly, we introduce a regularization term which enforces the

closeness of the output endmembers to automatically selected

reference spectra. Secondly, we account for these reference

spectra and their locations in the initialization matrices. We

exemplify our methods on self-acquired HSIs. The first scene

is compound of leaves at the macroscopic level. In a con-

trolled environment, we extract the spectra of three pigments.

The second scene is acquired from an airplane: we distinguish

between vegetation, water, and soil.

Index Terms— Linear algebra, non-negative matrix fac-

torization, hyperspectral image, remote sensing

1. INTRODUCTION

Spectral unmixing is an essential step in hyperspectral im-

age (HSI) processing. It consists in decomposing a set of

spectra contained in a matrix Y as the following product:

Y = AX+N, whereX is the endmember matrix containing

the ’source’ spectra, A is the mixing matrix containing the

mixing coefficients or contribution of each ’source’ or end-

member, and N stands for the modeling errors. Finding out

an estimate Â of the mixing matrix, with the positivity and

possibly sum-to-one contraints, and an estimate X̂ of the end-

member matrix with the positivity constraint is a low-rank ap-

proximation problem commonly called Nonnegative Matrix

Factorization (NMF) [1, 2, 3, 4, 5].

Relation to prior work in the field

NMF has been applied to HSI data characterization, and ex-

hibited some advantages with respect to existing endmember

extraction methods such as vertex component analysis (VCA)

[6]. The interest of VCA was illustrated in the frame of plant

analysis in [7]. It turned out that, contrary to NMF, VCA does

not ensure the positivity of the mixing coefficients. NMF has

been extensively improved for the past few years [2, 4, 1] In

[5], spectral unmixing is related to signal processing -in par-

ticular convex geometry concepts- and optimization. But de-

spite its advantages, it still exhibits some drawbacks: firstly, it

is sensitive to initialization [8]; secondly, there exist an infin-

ity of solutions forA andX, and not all of them bear a phys-

ical significance. Hence, our problematic is two-fold: how

to find an appropriate initialization for the endmember matrix

and for the mixing matrix ? How can we approach a solution

with a physical significance ?

Firstly, we propose to use the purest spectra in the scene, se-

lected by a geometrical criterion [6], as a subset of initial-

ization endmembers. As sources are often mostly grouped in

separate regions [1, 9, 10], we propose a sparse and positive

initialization of the mixing matrix, which accounts for the lo-

cation of initialization spectra.

Secondly, we propose use the pure spectra as references in

the criterion which is minimized to perform NMF. We ex-

pect that, as they are selected among the spectral pixels of

the HSI, aiming at the closeness to these pure spectra will

encourage the physical significance of the endmembers pro-

vided by NMF. That is why, for the first time to the best of our

knowledge, we introduce these spectra in the criterion which

is minimized for the purpose of factorization.

In Section 2, we present the notations which hold throughout

the paper, and we show how a HSI is handled to get a set of

one-dimensional spectra. The linear mixing model above is

then detailed. In Section 3, we propose an innovative initial-

ization for the mixing and endmember matrices, and a new

criterion to perform NMF while ensuring the physical signif-

icance of the estimated endmember spectra. In Section 4, we

detail our implementation of NMF. Section 5 presents the re-

sults obtained: firstly, we extract pigment spectra from a leaf

reflectance; secondly, we distinguish between vegetated ar-

eas, soil and water in an aerial HSI.



2. NOTATIONS AND DATA MODEL

In the rest of the paper, x denotes a scalar, x denotes a 1-

dimensional vector,X denotes a 2-dimensional matrix,X de-

notes a multidimensional array, also called ”tensor” [11]. For

any vector x, xT stands for transpose.

To set the link between algebraic methods and HSIs, a HSI is

considered from a mathematical point of view as a tensor of

order 3 T ∈ R
I1×I2×L, where I1 is the number of rows, I2 is

the number of columns, and L is the number of channels. In

the following, we select a subset of S ≤ I1I2 spectral pixels
of T and set them row-wise in a matrixY of size S × L.
Let’s consider one row of matrix Y, a spectral pixel denoted

by yi, which is a vector of size 1×L. The model that we adopt
for yi is the linear combination of J endmembers denoted by

xj (j = 1, . . . , J). Vector yi, i = 1, . . . , S is expressed as:

yi =

J
∑

j=1

aijxj + ni (1)

where x1,x2, . . . ,xJ are the endmember spectra, and

ai1, ai2, . . . , aiJ stand for the abundances of each endmember
in the pixel vector yi.

The term ni stands for an additive residual term accounting

for the measurement noise and modeling error.

The endmember spectra are supposed to be positive-valued.

The abundances aij , j = 1, . . . , J are such that:

0 ≤ aij ≤ 1, ∀ i = 1, . . . , S (2)

J
∑

j=1

aij = 1 ∀ i = 1, . . . , S (3)

Let ai = [ai1, ai2, . . . , aij , . . . , aiJ ] be the row vector con-

taining the abundance values associated with yi. We define

the abundance, or mixing matrix as A, whose rows are the

abundance vectors ai, i = 1, . . . , S associated with the rows

of matrix Y. We define the endmember matrix as X, whose

rows are the J endmember spectra. With this formalism, and

referring to Eq. (1), we retrieve the linear mixing model pre-

sented in the introduction. This data model is an agreement

with the one in [2].

3. NEW CRITERION AND INITIALIZATION

MATRICES FOR NMF

The basic NMF optimized function ensures that the two con-

straints A and X are both nonnegatives. Since the NMF so-

lution is not unique, some prior knowledge on HSIs can be

introduced to solve this problem .

In this section, Accordance with valid knowledge of the data,

we add constraints (itemized in section 4) to improve the re-

sult of deconvolution, using the pure spectrum provided by an

innovative initialization.

3.1. Minimized criterion

To get an estimate of the endmember matrix and the mix-

ing matrix, we seek to minimize the criterion D(Y||A,X):

Â, X̂ = argmin
(A,X)

D(Y||A,X). In the simplest versions of

the NMF, assuming that the modeling errorN is independent

identically distributed, the problem of estimating A and X is

formulated as the maximization of a likelihood function (see

[2], chapter 3), or equivalently, the minimization of the cri-

terion DF (Y||A,X) = ||Y − AX||2F , where || · ||F denotes

Frobenius norm. In real-world data, the actual mixing matrix

is rather sparse, owing to the spatial repartition of the ma-

terials in the scene: they are often grouped in regions. As

advised in [1], to induce sparsity in the mixing matrix, we

add an l1-norm regularization term. In addition to this term

which is related to the spatial properties of the data, we also

propose a regularization term which is related to the shape

of the spectra: it enforces the endmembers to approach a set

of so-called ’pure’ spectra selected from the spectral pixels

of the HSI. This selection can be performed by vertex com-

ponent analysis, pixel purity index, or N-Finder methods [6].

We choose vertex component analysis because of its low com-

plexity [6]. Adding the spatial and the spectral regularization

terms yields:

D(Y||A,X) = ||Y−AX||2F +α||A||1+β||X−Xpure||
2
F (4)

where matrix Xpure’s rows are the J pure spectra, and α and

β are regularization coefficients.

3.2. Initialization matrices

3.2.1. Endmember matrix

Let J ′ ≤ J be the number of spectra, among the rows of

matrix Y, which are assumed to result from a pure material.

Typically, one of these spectra can be issued from the light

reflected by a pure metal, or by a green section of a leaf sup-

posed to contain only chlorophyll. We choose the first J ′ pure

spectra provided by VCA in subsection 3.1. LetX1Init
be the

matrix whose rows contain these spectra. The initialization

endmember matrix is defined as:

XInit =

[

X1Init

X2Init

]

(5)

where X2Init
is a random matrix compound of J − J ′

rows and L columns. Then, as explained in Section 4, we

scale each row ofXInit to unit ℓ2 norm because we choose a

hierarchical alternating least squares (HALS) algorithm.

3.2.2. Abundance matrix

Let k1, ..., kJ′ be the subset of row indices associated with

the initialization pure spectra
{

yk1
, ...,ykJ′

}

in Y. The co-

efficients {aij}, for i = 1, ..., S, are initialized as follows:



for j ≤ J ′, aij = 1 if i = kj ; and aij = 0 if i 6= kj
for j > J ′, aij = 0 if i = kj ; and aij = λ if i 6= kj ;
where, apart from λ < 1, we impose a sparsity constraint:

λ ≈ 1 for one value of i, and λ ≈ 0 for all other values of i.
Then, we scale each row of A to unit sum. It is worth notic-

ing that a factor 1 is set for the location of each spectrum of

X1Init
. For example, with J = 5 and J ′ = 3:

A =

















1 0 0 0 0
0.01 0.95 0.02 0.01 0.01
· · · · · · · · · · · · · · ·
0.03 0.93 0.01 0.02 0.01
0 1 0 0 0
0 0 1 0 0

















(6)

In Eq. (6), we choose solely coefficients which are close to 0

or close to 1, to respect the sparsity constraint.

The criterion presented in this section is minimized start-

ing with the initialization matrices above, with the algorithm

whose implementation is detailed in Section 4.

4. SPARSE HALS-NMF IMPLEMENTATION

In this section, we present explanations of the criteria, taking

into account the physical realities, proposed in the previous

section and the implemented algorithm.

We propose a hierarchical implementation of the com-

bined generalized alternating least squares algorithm pro-

posed in [2] (chapter 4). With a HALS scheme, we encourage

the sparsity of the mixing matrix and the smoothness of the

endmember spectra [2].

Also, the HALS convergence speed outperforms the one of

projected gradient [3]. However it is sensitive to the scaling

of the initial matrices [9]. For example, as explained in [9],

if the magnitude of the coefficients in the initial A and X

are not of the same order of magnitude as the values in Y,

this will lead to rank deficient approximations and numerical

problems. Hence the scaling of X, proposed in its initializa-

tion (see Section 3).

The update rules derived from Eq. (4) are as follows:

X⇐
ATY+ βXpure

||A||2F + β
(7)

A⇐
YXT − α

2 1

||X||2F
(8)

where 1 denotes a matrix with 1-valued coefficients.

Let ξ be a scalar whose magnitude is smaller than any

other value in the considered problem. We ensure the non-

negativity of any data ’d’ while performing the following

operation: d ← max[ξ, d]. In the following, we denote this
operation as [d]+. The following algorithm is a hierarchical

implementation of the update rules of Eqs. (7) and (8):

Algorithm 1 HALS −NMF

Set convergence parameter tol.

Initialize the criterion C to a large value.

Y is the observation matrix,

Add inY a column of 1’s: Y = [1, Y ].
Initialize X as in Eq. (5) and insert in X a column of 1’s:

X = [1, X].
InitializeA as in Eq. (6).

Set B = XT and Bpure = XT
pure;

while C > tol do

updateB:

W = YTA;

V = ATA;

for j ∈ [1, J [ do
Update rule for bj (see Eq. (9))

end for

Update the columns ofB as b1,b2, . . . ,bJ .

updateA;

P = YB

Q = BTB

for j ∈ [1, J [ do
Update rule for aj (see Eqs. (10) and (11))

end for

Update the columns ofA as a1, a2, . . . , aJ .
SetX = BT ;

Compute C = ||Y− AX||2F .
end while

We use the term hierarchical because the columns bj of

matrix B and aj of matrixA are estimated successively (see

the two ’for’ loops in algorithm 1).

The update rule for bj is as follows:

bj ⇐

[

bj +wj −Bvj + βbpurej

vjj + β

]

+

(9)

where bpurej refers to the columns ofBpure.

The update rule for aj is as follows:

aj ⇐

[

ajqjj + pj −Aqj − α/2

qjj

]

+

; (10)

aj ⇐ aj/‖aj‖2 (11)

The normalization in Eq. (11) helps mitigating the effects

of rotation indeterminacies on matrix A.

In the next section, we exemplify the proposed method on

hypespectral acquisitions of scenes containing vegetation. We

first consider artificial mixtures, and then spectra extracted

from an aerial HSI.



5. RESULTS

This section presents some experiments performed on data to

illustrate the performance of the proposed nonnegativematrix

factorization algorithm.

In the first place, we extract pigment spectra from a leaf

reflectance; afterwards, we distinguish between vegetated ar-

eas, soil and water in an aerial HSI.

To achieve our acquisitions, we have based up on some

facts: In [4], Dobigeon et. al. clearly emphasized the degra-

dation of a mixing model when the wavelengths of interest

cover both visible and infra-red (IR) domains: indeed, the

pigment concentration rules the vegetation reflectance in the

visible domain, whereas the internal structure of the leaf does

it in the IR domain. We acquired HSIs with L=500 to 830

bands, between 400 and 700 to 900 nm: in the visible and the

very near IR domains. Some experiments permitted to rule

the regularization parameters to α = 0.2 and β = 0.6.

5.1. Artificial spectral mixtures
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Fig. 1. HSI data: a) three leaves with homogeneous color con-

taining pure pigments: chlorophyll, carotenoid, anthocyanin;

b) spectra extracted from each leaf.

Figure 1a) presents three leaves with a homogeneous

color. We consider the content of these leaves as being as

pure as possible, to get a first set of three reference spec-

tra. These three spectra distinguish clearly from each other:

the green spectrum of Fig. 1b) is the one of chlorophyll,

also represented in [15], the yellow one is the spectrum of

carotenoid, which bears high values in the yellow and orange

wavelengths, the red spectrum is the one of the anthocyanin.

Indeed the red color of the leaf in Fig. 1a) is characteristic of

this phenolic compound, that young leaves produce to protect

themselves from UV rays.

Starting from these three spectra, we create artificially mixed

spectra. The mixing matrix is chosen as:

A =

































0 1.0000 0
0 0 1.0000

1.0000 0 0
0.7000 0.2000 0.1000
0.6000 0.2500 0.2500
0.2200 0.7000 0.0800
0.1000 0.6500 0.2500
0.1500 0.0100 0.8400
0.0300 0.0200 0.9500
0.9800 0.0100 0.0100

































(12)

The estimated mixing matrix is:

Â =

































0.0000 1.0000 0.0000
0.0252 0.0000 0.9748
0.8143 0.0594 0.1264
0.5688 0.2469 0.1843
0.4460 0.2633 0.2907
0.1755 0.7296 0.0949
0.0838 0.6680 0.2483
0.1427 0.0046 0.8527
0.0485 0.0059 0.9456
0.7979 0.0684 0.1336

































(13)

One column corresponds to one endmember, and one row

to one location in the leaf. Figure 2 shows the mixed and

unmixed spectra. The unmixed spectra are almost perfectly

superimposed to the chosen source spectra. The relative error

between actual and estimated spectra is 3.8%.
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Fig. 2. Mixed and unmixed spectra

5.2. Vegetated area delimitation in aerial HSI

We now process an aerial HSI, that we acquired from an air-

plane at the height of 500 meters. The spatial resolution is as

follows: 1 row accounts for 1 m., and 1 column accounts for

0.25 m. We choose S = I1I2: we process all spectral pixels.
The whole image is provided at [14]. Fig. 3 shows the results

obtained on a sub-image with 160 rows and 500 columns and

L = 830 spectral bands. We fixed the number of endmem-

bers to four. The left column in Fig. 3 presents the four esti-
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Fig. 3. Estimated endmember spectra and abundance map

mated endmembers; the right column displays the abundance

maps from low contribution (blue) to high contribution (red).

The first endmember is similar in shape to the spectrum of

chlorophyll obtained in subsection 5.1. The gap around 760
nm is due to oxygen absorbance. So we can assert that, in

the regions corresponding to abundance values above a cer-

tain threshold, such as 70%, the vegetation dominates. The

second endmember is associated with high abundance values

on the water of the river, and on the dirt roads, from which

we infer that it represents the spectrum of sunlight: it is most

reflected in these regions of the scene. The third endmember

accounts for soil. Some additional results are presented on the

link [17].

6. CONCLUSION

We consider unmixing of hyperspectral pixels by NMF. We

introduce spatial and spectral information in the initialization

mixing and endmember matrices, and in the criterion which is

minimized to perform NMF. For this, we select automatically

with vertex component analysis the purest spectra among the

spectral pixels. Firstly, these pure spectra are used as a subset

of initialization endmembers for NMF. The mixing matrix is

initialized as a sparse matrix, and accounts for the location,

in the HSI, of the initialization endmembers. Secondly, we

use the pure spectra as references in a regularization term of

the criterion minimized for NMF. This term introduces some

spectral prior: it enforces the endmember spectra estimated

by NMF to exhibit some physical significance. Apart from

this term, which is the most novel aspect of this work, we

use a second regularization term which accounts for a spatial

prior knowledge on the processed HSI: the materials in the

scene are often grouped in regions and consequently the mix-

ing matrix should be sparse, which is encouraged through its

l1-norm. We first imaged leaves, and then an aerial partly veg-

etated scene. Considering their shape, the proposed method

permits to better interpret the endmember spectra as a com-

parative implementation of NMF. We could reliably delimi-

tate the vegetated areas in remote sensing context.
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