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ABSTRACT

To monitor biological systems, aside destructive testing
which have been developed in chemistry and chromatogra-
phy, hyperspectral image acquisition and processing exhibit
the great advantage of being non-destructive. In this paper,
a hyperspectral image acquisition setup is proposed, to get
detailed information on the reflectance of leaves. We aim
at giving information about the repartition of pigments on a
leaf, by proposing a hyperspectral image acquisition setup,
and adapting an algebraic method, vertex component analy-
sis, which selects, among a set of input spectra, the marker
spectra which best yield all input spectra by linear combi-
nation. A matrix inversion yields the contribution of the
marker spectra for any spectrum. We acquired the image of
leaves and estimated pigment concentrations with the help of
a reflectance index.

Index Terms— Remote sensing; Hyperspectral imaging;
Linear algebra; Feature extraction; Spectrum.

1. INTRODUCTION

This paper is concerned with the impact of a technological ad-
vance, namely hyperspectral imaging, on environment moni-
toring. We propose prospects for the adaptation of hyperspec-
tral image (HSI) acquisition and processing to plant growth
surveillance. Color images have led to numerous studies, for
denoising and segmentation purposes for instance, but a new
trend consists in acquiring and exploiting hyperspectral im-
ages. A hyperspectral image comes from the observation of a
scene at several wavelengths separated by a few nanometers
or less. By exploiting a hyperspectral image, it is possible to
study a material owing to this principle: each material is char-
acterized by a spectral reflectivity, also called spectral signa-
ture. Recent works have shown the interest of hyperspectral
data in various fields, including planetology [1] and botany
[2]. In this study we focus on hyperspectral imagery applied
to non destructive control of plants.
In [2, 3] hyperspectral imagery permits to detect anomalies
on sugar beet leaves, and in [4] some indices are calculated
to determine, in the leaf, the proportion of pigments such as

chlorophyll, carotenoid, and anthocyanin. Chlorophyll indi-
cates the potential productivity of a culture or the biomass
of the forest. In [5], through chlorophyll fluorescence visu-
alization, but also by computing a ratio between spectral re-
flectance values, multispectral imaging permits to evaluate the
photosynthetic activity. Carotenoid takes part actively in the
good functioning of the plant by protecting it from an excess
of light and heat, and also informs about the growing condi-
tions of the vegetation; anthocyanin, takes part to plants col-
oration, and has an array of health-promoting benefits for the
plant itself, but also for human beings when adequately in-
gested [6]. Anthocyanins form part of a wider family: the
phenolic compounds. Some phenolic compounds are pro-
duced when a plant reacts to a stress [7]. The importance
of these three types of pigments in plant physiology proves
the interest to quantify these pigments.
Chemical methods mostly lead to the plant destruction [2, 4],
and are labour intensive and time consuming [5]. Hence, mul-
tispectral [4] and hyperspectral [2, 5] imaging in narrow spec-
tral bands, are presented as a convincing method to extract in-
formation regarding concentrations of specific compounds in
plants. To estimate the relative proportion of each pigment in
a leaf, usually, indices such as NDVI (normalized difference
vegetation index) are used. NDVI is adapted to quantify the
proportion of sane vegetation in a remote-sensing context but
to our knowledge, it is not meant to distinguish chlorophyll
from other pigments and provide its concentration pixel-wise.
In [4], hyperspectral imaging techniques are used to identify
Arabidopsis mutants with altered leaf pigment status. The
authors aim at visualizing individual concentrations and com-
positional parameters of leaf pigments based on reflectance
indices (RIs) developed for Chls a and b, carotenoids and an-
thocyanins. The interest of studying the phenotypes of plants,
through their reflectance spectrum, is emphasized. Their ap-
proach based on reflectance indices is very valuable, however,
it does not lead to a comprehensive use of the hyperspectral
data, because a few wavelengths are selected to compute the
RIs. The reflectance values at other wavelengths are not ex-
ploited.
Referring to [2], there is a great interest to study a leaf at
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high resolution and macroscopic level. Based on their experi-
ments, the authors provide some rules to handle with a hyper-
spectral acquisition system in the context of nondestructive
plant control. They notice that near-range systems are prefer-
able to far-range acquisition systems for the detection of dis-
ease symptoms on the leaf or plant scale; that the portion of
a signal from a diseased tissue in a mixed signal depends on
disease severity [2]. Especially at low disease severities, spec-
tra are based on high percentage from healthy tissue, and only
a low portion of symptomatic tissue may cause change in the
spectrum [2]. Although this is an issue of great interest, to our
knowledge, no method was applied to quantify various types
of substances at the local level. Instead of it, in [2] and [3], the
SAM (spectral angle mapper) classification method is adapted
to distinguish three classes in hyperspectral images contain-
ing about 200 bands: ’healthy’, ’light mycelium’ of powdery
mildew, and ’dense mycelium’ of powdery mildew. The main
limitations of any classification method, and SAM in partic-
ular, are as follows: the segmented regions correspond to the
dominant reflectance spectrum in these regions. A classifi-
cation method does not characterize mixtures. In [5], local
reflectance values yield the corresponding local plant charac-
teristics: there is no common processing of a set of spectra.
Now, we predict that extracting dominant or reference infor-
mation from a set of spectra is worth considering.
Some pending issues can be drawn from the literature.
In [3], the authors point out that, from a general point of view,
”the identification of a disease ... using sensing techniques is
still a challenge in vegetation monitoring”, and that ”inter-
pretation of spectral reflectance data without knowledge on
spectral characteristics of leaves and typical symptoms is im-
possible at present.” This point out the lack of reliable ”refer-
ence” or marker spectra for sake of comparison in a given sit-
uation. From this state-of-the-art, it appears that introducing
advanced signal processing methods in the context of nonde-
structive plant analysis would be very valuable for this field.
The visual aspect of a leaf is the starting point of our study:
zones of a leaf with noteworthy colorations will provide input
spectra. Indeed, a hyperspectral camera provides reflectance
values at a large number of wavelengths with a high resolu-
tion. This permits to go beyond the visual aspect of the leaf
and characterize the zones which were selected rigorously,
by their corresponding spectrum. We then aim at selecting
marker spectra, to study their contribution on the whole leaf.
Our hyperspectral acquisition system is presented in section
2. In section 3 we adapt vertex component analysis. This
method selects marker spectra from the set of input spectra.
These are the spectra which best yield all other studied spec-
tra by linear combination. By computing a pseudo-inverse,
we get the contribution of each marker spectrum in every in-
put spectra extracted from the hyperspectral image. In section
4 we perform hyperspectral image acquisition from two dif-
ferent leaves. Then, we study the pigment content of leaves
through their spectral reflectance.

2. ACQUISITION CONDITIONS, HYPOTHESES AND
OBJECTIVES

Our hyperspectral image acquisition system is composed of
an sCMOS VIS-NIR camera containing a linear scanning
spectrograph with a sensitivity in the wavelength domain
400-1000 nm, and a spectral resolution 0.6 nm. The viewing
angle of the camera is 30◦. The grey level dynamics for
each band is 16 bits. For the illumination of the scene, two
lamps are used which emit a white light with approximately
flat spectrum in the wavelength domain 400-1000 nm. The
illumination constraint is then not as harsh as in a fluores-
cence setup [7]. We also afford a software which is adapted
to the camera. The spatial resolution is 8 10−5 m per pixel at
the height of the camera, 0.27 m. Referring to [2], a spatial
resolution of 2 10−4 m per pixel is optimal to visualize char-
acteristic leaf spots caused by a fungi. Our imaging system
provides a resolution of 8 10−5 m per pixel, but we average
spectra from a window of size 10 × 10 pixels. Therefore the
equivalent resolution is 8 10−4 m per pixel. With this equiva-
lent resolution, the amount of pixels with mixed information
is significant and it is of great interest to unmix the data re-
sulting from a set of spectra. It is worthwhile noticing that the
size of pigment molecules is a few nanometers. Hence, we
can assume that there are always several types of pigments
which contribute to the spectrum in a given location. Before
they are exploited, the images have to be normalized with
respect to a white 99% reflecting panel. Then, we select the
wavelength region of interest: 400− 900 nm.
Our hypotheses are as follows: we consider that spectral
pixels of a hyperspectral image are linear combinations of
spectra called ”endmembers”, that we call markers because
they are noteworthy. The coefficients of the linear combina-
tions are called ”abundances”. Referring to plant physiology
[4], the markers are related indistinctly to three main pig-
ments: chlorophyll, carotenoid, and an anthocyanin. We aim
at estimating the contribution of each marker spectrum any-
where on a leaf. For this, we first adapt the vertex component
analysis (VCA) to select the marker spectra; then a matrix
inversion yields the mixing coefficients.

3. VERTEX COMPONENT ANALYSIS ADAPTED TO
MARKER SPECTRA SELECTION

To set the link between algebraic methods and hyperspectral
images, an HSI is considered from a mathematical point of
view as a multidimensional array, also called ”tensor” [8], of
order 3 T ∈ R

I1×I2×L, where I1 is the number of rows, I2 is
the number of columns, andL is the number of channels. This
image can be flattened as a 2D matrix T3, along the wave-
length mode [8]. The columns of this matrix are the spec-
tral pixels. In the following, we select a subset of S ≤ I1I2
columns of T3 and set them column-wise in a matrix Y of
size L× S.
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Vertex component analysis of Hyperspectral images is similar
to principal component analysis or Gram-Schmidt to reduce
the dimensions of the data. This is used in human vision per-
ception and color imaging where 3 primaries are used to rep-
resent the data.
Let’s consider one column of matrix Y, a spectral pixel de-
noted by y, which is a vector of size L × 1. The model that
we adopt for y is the linear combination of p endmembers
denoted by xi (i = 1, . . . , p). Vector y is expressed as:

y = X ∗ a (1)

where
X = [x1,x2, . . . ,xp] and a = [a1, a2, . . . , ap]

T , where
a1, a2, . . . , ap are the abundances of each endmember.
The abundances ak, k = 1, . . . , p are such that:

0 ≤ ak ≤ 1 (2)
p∑

k=1

ak = 1 (3)

Each spectral pixel is considered as a vector in a Eu-
clidean space of dimension L. VCA algorithm requires as an
input a set of spectral pixels, among which marker spectra
must be present. It iteratively projects data onto a direction
which is orthogonal to the subspace spanned by the already
estimated endmembers. The new endmember signature cor-
responds to the extreme of the projection. The algorithm
iterates until the number of endmembers is exhausted.

In Fig. 1 is represented this Euclidean space, restricted
to two bands (two spectral pixel components). As is shown
by Fig. 1, because of physical constraints (see Eq. (2) and
Eq. (3)) vector y belong to a simplex [9] whose summits
represent the markers. Vector f bears the direction for data
projection. Algorithm 1 details vertex component analysis,
which extracts marker spectra.

a) b)

Fig. 1. a) Mixed spectral data; b) Illustration of the VCA
algorithm, including the first two instances of f and the choice
of the first marker by a maximum argument.

In algorithm 1, the following matrices are handled:
Y = [y1,y2, . . . ,yS ] (S is the number of input spectra)

Algorithm 1 V CA

Input: p and Y = [y1,y2, . . . ,yS ]

X̂ = 0, matrix of marker spectra of size L× p;
Project the data onto a p-dimensional subspace:
for all s = 1, . . . , S, [B]:,s ← UT [Y ]:,s − ȳ where UT is
obtained from Y by PCA,
and ȳ is the mean of vectors y1,y2, . . . ,yS .
c = argmax

s=1,...,S
[B]:,s

c = [c, c, . . . , c] (c is a 1× S vector)

Y =

[
B
c

]

f = [1, 0, . . . , 0]
T vector of size L× 1

for j ∈ [1, p] do
z = fTY;
k = argmax

s=1,...,S
|z(s)|

ˆ[X]:,j = [Y]:,k
generate a vector f orthonormal to span( ˆ[X]:,1:j)

f = orthonormal( ˆ[X]:,1:j)
end for

X̂ estimated matrix of marker spectra
ˆ[X ]:,j j

th column of X̂
ˆ[X ]:,1:j columns 1 to j of X̂
[Y ]:,k kth column of matrix Y
| · | stands for absolute value.
For S input spectral pixels, there exist S vectors a1, . . . , aS
whose coefficients are the abundances for each spectral pixel.
By grouping all abundance vectors in an abundance matrix
A = [a1, . . . , aS ], we can express the matrix containing the
input spectra as: Y = X ∗ A. The estimated abundance
matrix Â is provided from the estimated marker spectra by
the following computation:

Â = X̂† ∗Y (4)

where (·)† stands for pseudo-inverse.
For any observation spectrum ys, s = 1, . . . , S, the corre-
sponding estimated abundance vector is the sth column of Â.
From the specifications in [9], when data are projected onto a
p-dimensional subspace, they should remain nonnegative. We
set to 0 all negative values in Â.

4. RESULTS

The plants used in these experiments are grown in a natural
environment without using any additive substance, and were
naturally watered. As an evaluation criterion, we consider the
sum-to-one criterion of the estimated matrix coefficients. The
aim of the experiments is twice: we aim at finding the marker
spectra which, by linear combination, best yield the six input
spectra chosen in each experiment. A higher number could be
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chosen, if a larger variety of regions is present on the leaf. We
estimate the abundance matrix which permits to reconstruct
each input spectrum, as a linear combination of the marker
spectra. The number of expected marker spectra is estimated:
for all input spectra the reflectance values for two bands i and
j are selected, and represented as in Fig. 1. If the correlation
coefficient between both sets of reflectance values is larger
than 0.9, the number of sources is set to 2; if not, it is set to 3.
The acquired HSIs exhibit L = 777 bands, downsampled by
a factor of 5 to fasten the processing.

4.1. Transition between symptomatic and asymptomatic
tissues

We consider arabidopsis leaves with symptomatic and asymp-
tomatic regions (see Fig. 2a)). From its color, a location
seems to correspond to a purely asymptomatic zone of the
leaf. It is denoted by a grey square. The symptomatic regions
appear as rather yellow or white. Their color may be due to
a lack of chlorophyll and carotenoid and/or to the presence
of mycelial colonies. These colonies expand rapidly over the
leaf surface. A plant where chlorophyll is lacking is not pro-
ductive, and a plant which is contaminated should be immedi-
ately removed from any set of cultivated plant, so that it does
not contaminate its neighbors. Hence the interest of detecting
a region whose chlorophyll concentration is below a certain
threshold.
The black squares on Fig. 2b), in addition to the grey square,
indicate the locations of the selected spectra represented on
Fig. 3a). The spectrum corresponding to the grey square
is the last column of Y. As shown in Fig. 3b), the spectra
are aligned, with a correlation coefficient of 0.999, on a seg-
ment delimitated by two summits: the value of the correlation
coefficient indicates that among the input spectra, there are
two marker spectra (they are emphasized in Fig. 3b) by two
crosses), which yield all input spectra by linear combination.
We then set p = 2 while running VCA algorithm. The esti-
mated mixing matrix Â (see Eq. (4)) is as follows:

[
0 0.2573 0.3898 0.5578 0.7861 1
1 0.7427 0.6102 0.4422 0.2139 0

]

The summation of the coefficients of Â is always 1, for each
column. We get the marker spectra represented on Fig. 3c).
We notice that one of them exhibits a relative maximum at
550 nm, which is the distinctive character of chlorophyll. This
marker spectrum is then related to chlorophyll, without being
the spectrum of either chlorophyll a or b. It results much more
reliably from the contribution of carotenoid and chlorophyll
because chlorophyll cannot be the single contributor of this
spectrum at this observation scale. Owing to the shape of the
second marker spectra, we can assume that the production of
chlorophyll has stopped in this location. It does not exhibit
the characteristic relative maximum at 550 nm. The last col-
umn of Y contains the spectrum associated with the greenest

pixel. We notice that, in matrix Â, the last column exhibits a
1 on the first row. From this, we deduce that the first row of
Â yields the contribution of the first marker spectrum.
We now look for the chlorophyll concentration at all loca-
tions of the input spectra. To this aim, we use reflectance
indices. NDVI is well-known and adapted to quantify the
proportion of sane vegetation in a region which also com-
prises soil [10] or fungi [11]. To our knowledge, it is used
in remote-sensing contexts at large spatial scales. So, to ob-
tain the chlorophyll concentration at any location, we refer to
the reflectance index proposed in [4]: RI = y786/y673 − 1
where yλ is the reflectance value at wavelength λ for the in-
put spectrum y, which yields the chlorophyll concentration
C = 1.0974 RI + 0.0219. Firstly, we apply this method
to the greenest region. Indeed, we can expect that the error
on the estimated concentration will be the lowest for high
chlorophyll concentration values [4]. We obtain C = 5.46
nmol.mg−1. Secondly, by multiplying this value by the coef-
ficients in the first row of Â, we get the chlorophyll concen-
trations at the six considered regions (in nmol.mg−1): 0, 1.41,
2.13, 3.05, 4.29, 5.46. By using matrix Â, we avoid applying
the reflectance index computation to all locations. We no-
tice that the reflectance index in [4] yields an unchanged RI
when the two reflectance values of interest are modified by
the same multiplicative factor. On the contrary, the proposed
method yields matrix Â from reflectance values for numerous
wavelengths (see Eq. (4)).

a)
50 100 150 200 250 300

50

100

150

b)
50 100 150 200 250 300

50

100

150

Fig. 2. Ill arabidopsis: a) acquired hyperspectral image; b)
location of the input spectra.

We expect this method to be more reliable than RI computa-
tion, because it uses more non-redundant information.

4.2. Case of three marker spectra

We now consider the case where three markers can be se-
lected from the input spectra. We also emphasize the relation-
ship between the number of expected markers and the num-
ber of significant pigments. Anthocyanin is a UV-absorbing
pigment which protects the leaf from an excess of light and
UV-rays. In [12], measurements of in vivo chlorophyll flu-
orescence indicated that the ratio of UV-absorbing screening
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Fig. 3. Ill arabidopsis: a) superposition input (-) and recon-
structed (·) spectra; b) reflectance value at 460 nm vs re-
flectance value at 432 nm; c) unmixed spectra.

pigments per leaf area increases from the leaf base to the top.
This is coherent with the aspect of the young leaf on Fig. 4a),
which appears green at the base and red on the borders. We
aim at quantifying this evolution in terms of pigment concen-
tration with VCA method, by selecting marker spectra (see
the black and white squares in Fig. 4b)). The white square
denotes the greenmost location.
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Fig. 4. Young leaf: a) acquired hyperspectral image; b) loca-
tion of the selected spectra.

Fig. 5a) displays the input spectra corresponding to the black
squares and the white square in Fig. 4b), as well as the re-
constructed spectra. Fig. 5b) represents the reflectance value
for each input spectrum at bands 651 nm vs 566 nm. It shows
that the input spectra are contained in a simplex with three
summits. The correlation coefficient between the two sets of
reflectance values is 0.2 < 0.9, so the number of marker spec-
tra is set to p = 3. Fig. 5c) presents the three marker spectra
provided by VCA algorithm. They are associated with the
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Fig. 5. Young leaf: a) superposition input (-) and recon-
structed (·) spectra ; b) reflectance value at 651 nm vs re-
flectance value at 566 nm; c) unmixed spectra.

red crosses in Fig. 5b)). The estimated mixing matrix (see
Eq. (4)) is:

Â =

⎡
⎣0.7317 0.4922 0.3674 0 1 0
0.1625 0.4679 0.2089 1 0 0
0.1058 0.0399 0.4237 0 0 1

⎤
⎦

One row corresponds to one marker spectrum, and one col-
umn to one location in the leaf. The summation of the coeffi-
cients of A for each column is always 1.
Among the marker spectra, one exhibits a relative maximum
at 550 nm (see Fig. 5c)). It corresponds to the white square
in Fig. 4b) and the last column of Y. This relative maximum
is characteristic from chlorophyll and we can, in a first ap-
proximation, assert that this marker spectra informs about the
repartition of chlorophyll on the leaf surface. The higher the
coefficient in the third row of Â, the higher the chlorophyll
content at the corresponding location. For instance, apart
from the white square, the location containing most chloro-
phyll is {410, 150} (see column 3 of Â, exhibiting the co-
efficient 0.4237). The second spectrum corresponds to the
fifth column of Â, and to the location {454, 55}, which ex-
hibits the characteristic red color of anthocyanin. The third
spectrum corresponds to the fourth column of Â, and to lo-
cation {420, 105}. It exhibits the characteristic flatness of
carotenoid spectrum between 500 and 650 nm. These three
spectra are the closest possible to the spectra of chlorophyll,
anthocyanin and carotenoid in these acquisition conditions.
Similarly to a recent study [4], we aim at getting the concen-
tration of chlorophyll ’a’ (whose abundance is known to be
generally much higher than chlorophyll ’b’) at each location
of the leaf with the help of the relevant reflectance index pro-
posed in [4]: RI = y772−800

y670−676
−1, which yields the chlorophyll

’a’ concentration C = 1.0974RI +0.0219. Contrary to what
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is done in [4], we wish to compute RI only at the most reli-
able location, i.e. where the chlorophyll concentration is the
highest. First, we compute the RI and the chlorophyll con-
centration to the greenmost location. We obtain C = 6.47
nmol.mg−1. Then, we get an approximation of the concen-
tration at all locations from matrix Â. By multiplying this
value by the coefficients in the third row of Â, we get the
chlorophyll ’a’ concentration at the six considered regions (in
nmol.mg−1): 4.07, 3.59, 4.67, 3.88, 3.80, 6.47. For sake of
comparison, although it is generally used in a remote sensing
context, we provide NDVI value computed from the spectrum
of each location. Here are NDV I = (y850−y662)

(y850+y662)
, and the ob-

tained values: 0.60, 0.57, 0.62, 0.58, 0.57, 0.69. In both cases,
the rank from most to least concentrated in chlorophyll is 6,
3, 1, 4, 5, 2.
When 750 bands are acquired, the number of rows is 500 and
the number of columns 2560, the acquisition time is 40 sec.,
and the size of the data is 1,8 GB. On a 2-core 3GHz PC run-
ning Windows and working with Matlab, opening this image,
selecting the leaf of interest, resampling the image to the size
650 × 650 × 186 and processing 6 input spectra to get three
marker spectra and the associated abundance coefficients re-
quires 2.5 sec.

5. CONCLUSION

This paper concerns an application of hyperspectral imag-
ing: non-destructive plant characterization. For the first time,
we provide reliably the contribution of marker spectra to any
spectrum extracted from a leaf, by adapting vertex compo-
nent analysis. Experiments have shown that marker spectra
are related to pigments, for instance chlorophyll. With the
help of a reflectance index proposed in the literature, we com-
pute the chlorophyll concentration on the location where it is
maximum, and we extrapolate the chlorophyll concentration
on all considered locations of a leaf, using the mixing ma-
trix derived with VCA. These experiments, performed on two
leaves of different type, emphasize the advantages of the pro-
posed method: our hyperspectral imaging setup, associated
with vertex component analysis, is a non-destructive method;
it exploits the whole spectrum, instead of two reflectance val-
ues, as done classically to characterize plants, and provides a
general piece of information, namely marker spectra, in ad-
dition to a local information such as chlorophyll concentra-
tion. We estimate the number of contributing marker spectra,
and we select these marker spectra automatically, whatever
the acquisition conditions, and independently of any reference
database.
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