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ABSTRACT

Multiway Wiener filtering has been inserted in a
wavelet framework to enhance spatial details while
denoising multidimensional images. An elevated
number of rank values is required. A solution is
to retrieve the best rank values while minimizing
a mean square criterion. In this paper, we justify
the adaptation for this purpose of a stochastic op-
timization method, and we evaluate comparatively
a genetic algorithm and particle swarm optimiza-
tion. Results obtained on multispectral images in
terms of signal to noise ratio and perceptual image
quality permit to emphasize the performance of the
obtained unsupervised method for realistic noise
magnitudes.

Index Terms— Rank, Wavelets, Tensor, Multi-
spectral

1. INTRODUCTION

In the frame of multidimensional data denoising, a
now state-of-the-art method is the multiway Wiener
filtering (MWF) [1]. Then, the MWPT-MWF (Mul-
tidimensional Wavelet Packet Transform

-Multiway Wiener Filtering) method has been pro-
posed [2, 3]. The main goal of MWPT-MWEF is to
denoise multidimensional images while preserving
details. Indeed, since the interest of the remote sens-
ing community for hyperspectral images (HSI) is
growing, it is necessary to develop denoising meth-
ods: most of HSIs, acquired by Hyperspectral Dig-
ital Imagery Collection Experiment (HYDICE [4])
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and Airborne Visible/Infrared Imaging Spectrome-
ter (AVIRIS [5]) sensors, are impaired by noise from
solar radiation, or atmospheric scattering [6]. We
consider subsampled versions of HSI acquisitions,
i.e. multispectral images. MWPT-MWF has yielded
good results in terms of signal to noise ratio (SNR)
and classification accuracy when the image contains
lots of details such as small targets. The drawback
of this method is that a large number of subspace
rank values must be estimated to ensure accurate de-
noising results: there exist one rank value for each
tensor mode, several modes for each wavelet coeffi-
cient, and several coefficients for each level. In [2],
a study about the accurate depth of the wavelet de-
composition has been performed, but the subspace
ranks are estimated with AIC, which is known, in
the array processing field for instance, not to per-
form well in a noisy environment. In [7], the authors
propose instead to minimize the mean square error
(MSE) between expected and estimated tensor, but
no numerical justification is provided for the choice
of the optimization method. The aim of this pa-
per is to investigate optimization methods and com-
pare their efficiency and computational load when
estimating multiple ranks in MWPT-MWF. In 2 we
state the denoising problem to be solved, in section
3 we justify our choice of stochastic optimization
methods to minimize the previously cited MSE cri-
terion. In section 4 we detail the steps of our algo-
rithm for multiple rank estimation in the frame of
tensor data denoising. In section 5 we show com-
parative results on multispectral images.

EUVIP 2016, Oct. 25-27, 2016, Marseille, France.
978-1-5090-2781-1/16/$31.00 ©2016 IEEE.



2. PROBLEM SETTING

We consider a noisy multidimensional signal, also
called tensor: a signal & impaired by a multidi-
mensional additive white noise A [8]. Tensors
are multidimensional arrays of size Iy, Io, ..., Iy,
where N is the ’order’ of the tensor, or equivalently
the number of modes. We aim at denoising ten-
sor R = X + N to get a denoised tensor denoted
by X. This denoised tensor depends on the so-
called ’subspace ranks’ {K1, K2,... KN} which
must be estimated. Following the notations in [2],
l1,1a, ...l are the number of decomposition levels
in the wavelet tranform for modes 1,2, ... N. There
exists 2!+ coefficients for mode k, k = 1,2,... N.
Each wavelet coefficient is a tensor of order N
[2], so N rank values must be estimated for each
coefficient. In total, the number of rank values to
be estimated in the whole algorithm is given by
N sz\/:1 2!% possibly elevated.

Hence the need for a non-supervised method for the
estimation of the rank values. The first issue con-
sists then in finding an appropriate scalar criterion
to estimate the subspace ranks K1, K2, ... KN,
we choose:

J(K1,K2,...KN)=||[R - X|?, (1)

where ||.|| represents the Frobenius norm. The cri-
terion J is a nonlinear function of the parameters
K1,K2,...KN.

The noise is considered as Gaussian, so we min-
imize a least square error to maximize the log-
likelihood.

The second issue is then the following: a global
optimization method is required. We compare a ge-
netic algorithm and particle swarm optimization not
only in terms of SNR and computational load, but
also visual aspect of the denoised images through
the MSSIM (Mean Structural Similarity) criterion

[9].

3. GLOBAL OPTIMIZATION METHODS

As the considered optimization problem is highly
non-linear, and we have no insurance that some

constraints on the minimized function are respected,
we left aside the deterministic optimization methods
such as Gradient, or Dividing Rectangles (DIRECT)
[10]. We focus on two types of stochastic optimiza-
tion methods: particle swarm optimization (PSO)
and a genetic algorithm (GA).

In their seminal work concerning particle swarm
optimization, Kennedy and Eberhart [11] got in-
spired by [12], where the term ’particle swarm’ was
chosen to define the members of a population or
test set. In their paradigm, the population members
are mass-less and volume-less. Their evolution is
described through position, speed, and acceleration
parameters [11].

An often cited, now well-known reference [13]
introduces genetic algorithms in the context of evo-
lutionary computation which implies an evolution
of a population of candidates which is inspired by
Darwin’s natural selection theory. Another largely
cited reference presents basics about genetics, the
hierarchical genetic algorithm, and applications to
H, control, neural network, and speech recogni-
tion [14].

4. PROPOSED ALGORITHM:
UNSUPERVISED MWPT-MWF

We wish to adapt rank estimation to the most re-
cent version of MWE, i.e., its implementation in a
wavelet framework [2], where an automatic rank
estimation is required due to the high number of
required rank values: we wish to obtain an unsu-
pervised MWPT-MWF algorithm. In this paper
we will further focus on multispectral images, for
which N = 3. Hence, in the following, we restrict
our study to third-order tensors. Following [2],
minimizing the MSE between A" and its estimate X
is equivalent to minimizing the MSE between Cffm

and CIX

‘m for each m:

|2 = &I = 16 = ¥ = D7 N6 — Gl
(2

where Cj¥ is the wavelet packet coefficient tensor

for levelsinl = [ll,lg,lg]T cx

»Cim 18 the coefficient



subtensor of CIX where m = [mq, mao, mg]T is the
index vector, 1 < my, < 2% —1,k=1,...,3.

We wish to minimize all terms of the summation in
Eq. (2), knowing that the noise-free tensor A" is not
available. For this we propose Algorithm 1, mul-
tidimensional wavelet packet transform and multi-
way Wiener filtering with rank estimation (MWPT-
MWE-RE). In Algorithm 1, Hy m, Hom, Hsm
denote the k-mode filters of MWEF, which depend
on rank values (K1,K2,K3) [8, 2]; C[%,, denote the
wavelet coefficients of R.

Algorithm 1 MWPT-MWF-RE

Input: noisy tensor R.

e compute the wavelet decomposition of the noisy
tensor R CIR =R x1 Wi x9 Wy x3 W3

e extract the wavelet coefficients [2]:

CR = CR X1 Em1 X9 Em2 X3 Em3,

° for each wavelet coefficient C[:

1) estimate with a global optlmlzatlon method the
optimal rank values K1, K2, K3 in terms of the cri-
terion:

Jm(K1,K2,K3) = ||C[%,
where CjY,, = CfX
i) apply MWF to each coefficient subtensor Cl’m,
with the optimal rank values.

e obtain C{¥ by concatenating all coefficients C;¥_

e reconstruct the final estimated tensor by i 1nverse
wavelet transform: X' = CIX X1 WT xoWT ><3W§

Output: denoised tensor X.

><1H1m><2H2m><3H3m

With a global optimization method, algorithm 1
is supposed to converge asymptotically towards the
best set of rank values for each coefficient of each
decomposition level. In practice, the total number
of iterations, i.e., the parameter maxit is fixed au-
tomatically: the algorithm stops when the criterion
Jm (K1, K2, K3) does not vary from an iteration to
another by a small parameter € set by the user.

5. DENOISING RESULTS

In this section, we apply the proposed method on
real-world multispectral images issued from an
AVIRIS sensor. The results obtained are evaluated

in terms of SN R and perceptual image quality. The
perceptual image quality is measured through mean
SSTM [9] over all spectral bands. In [9], under the
assumption that human visual perception is highly
adapted for extracting structural information from
a scene, the structural similarity (SSIM) criterion is
proposed to quantify the degradation of structural
information. Multispectral images follow the tensor
model and are expressed as: R = X + A. Tensors
R, X, and N are of size I; x I, x I3. For each
spectral band indexed by ¢ = 1,..., I3, the noise
N(:,:, 1) is assumed stationary zero-mean.

Programmes were written in M atlab®, and run on
a PC running Windows, with a 3GHz double core
and 3GB RAM. The denoising performance will

be evaluated through SNR = 10 log(” || 3)

and SSIM (X ,X) [9]. The images are artificially
impaired with white, identically distributed ran-
dom noise with the following input SNR values
(in dB): 5, 10, 15, 20 and 25. In the wavelet de-
composition, following the recommendations in
[2] we choose Coiflets and Daubechies wavelet
functions. Following the recommandation in [7],
we choose two decomposition levels for the space
modes and no decomposition in the wavelength
mode: 1 = [2,2,0]". This yields 16 wavelet co-
efficients (4 coefficients for each level), which are
37d_order tensors of size 64 x 64 x 16. For a given
image, the total number of rank values to be esti-
mated is 3[[;_, 2* = 3 (22 % 22 % 20) = 48.
When we run PSO algorithm, the swarm size is 10
and € = 1075, This generally yields maxit = 150
iterations. The acceleration constants yq; and 79,
are set to 2 and 3 respectively. We run a version of
GA using a Lagrangian algorithm [15, 16], with 300
individuals (ranks) in the initial population. We use
the fitness function to provide a measure of how in-
dividuals have performed in the problem domain. In
the following subsections we present the numerical
and visual results obtained with GA, PSO and AIC.
For the RGB display of the multispectral images
throughout the section, we select 3 representative
bands in the red, green, and blue wavelength do-
mains respectively, R = 690, G = 550, B = 450.



5.1. Visual results

We first present results obtained on two subimages
of PAVIAU HSI. PAVIAU is interesting in the sense
that it contains small details but also rather homo-
geneous regions. From the presence of such small
local features we expect to emphasize the interest
of wavelet-based processing, because it permits to
process seperately high and low frequency features.
The first subimage is presented in Fig. 1, and the
second subimage in Fig. 2. The first image is sub-
sampled to size 256 x 256 x 16. It exhibits some de-
tails but also rather homogeneous regions (the roof
of the main building for instance). The second im-
age is subsampled to size 128 x 128 x 16. It was
extracted from another region of PAVIAU, where
more small fetaures are present and should be pre-
served. We exemplify the proposed method with an
input SNR of 10dB for each image. By analysis of
Fig 1 and Fig 2, we can draw the following con-
clusions: while some noise is remaining in the re-
sults provided by AIC, the homogeneous regions are
smoother when GA and PSO are used, and mean-
while the details such as parked cars are clearly vis-
ible. This can be due to an overestimation of the
rank values when AIC is used.

Noised

PSO

AIC

Fig. 1. example images: noised, 10 dB, and 3 meth-
ods.

Noised

PSO

AIC

Fig. 2. example images: zoom on image: noised, 10
dB, and 3 methods.

In fig 2 we focus on the region containing many
details and frontiers. Comparing the result obtained
by AIC and wavelet decomposition with rank esti-
mation by PSO and GA, we notice that the frontiers
are much less blurred and that the details are better
preserved when wavelet decomposition is used, and
that the homogeneous regions are better denoised
when PSO is used compared to the case where AIC
is used.

5.2. Numerical results

In this subsection, to avoid the border issues, the nu-
merical results are computed from images truncated
to the size 200 x 200 x 16 (resp. 100 x 100 x 16). Ta-
bles 1 and 3 present the results obtained in terms of
output SNR. Table 2 and Table 4 present the results
obtained in terms of output MSSIM. The closer to 1,
the better the denoising results [9]. From these Ta-
bles, we can draw the following conclusions: firstly,
the output SNR and MSSIM values obtained with
GA and PSO are very close, and significantly higher
than those obtained with AIC, except with an input
SNR of 25dB (in Tables 1, 2, and 4). This con-
firms the fact that, for intermediary and realistic in-
put SNR values, AIC tends to overestimate the rank
values, which is not the case when GA or PSO are



adapted. Secondly, we notice that, with an input
SNR of 25dB, the output SNR is less than 25 dB
when either GA, PSO, or AIC are used: all meth-
ods are anyway of limited interest for input SNR
values equal to and probably higher than 25 dB.
Thirdly, apart from this particular case where the
input SNR is 25 dB, we can infer from all MSSIM
values that the perceptual aspect of the denoised im-
ages is best when either GA of PSO are used. Last
but not least, when running GA, PSO and AIC on
the multispectral image of Fig. 1, we got compu-
tational times equal to 123.2 sec., 2.199 sec. and
0.3501 sec., respectively. It shows that, while simi-
lar output SNR and mean SSIM values are reached,
PSO is much faster than GA. We then conclude that
PSO is preferable, compared to GA.

GA PSO AIC
5db 10.4620 | 10.5285 | 11.2588
10db || 14.6130 | 14.8469 | 12.9793
15db || 18.1850 | 18.6587 | 15.9241
20db || 19.8834 | 21.5239 | 19.3406
25db || 21.7576 | 22.8081 | 23.7061

Table 1. Output SNR vs. input SNR for image in

Fig. 1
GA PSO AIC
5db || 0.5299 | 0.5455 | 0.4997
10db || 0.7053 | 0.7341 | 0.5624
15db || 0.8594 | 0.8655 | 0.7488
20db || 0.9041 | 0.9275 | 0.8775
25db || 0.9319 | 0.9478 | 0.9569

Table 2. Output MSSIM vs. input SNR for image
in Fig. 1

GA PSO AIC
5db 11.0060 | 10.9490 | 10.9379
10db || 15.0184 | 15.2056 | 13.6347
15db || 18.5342 | 18.7736 | 16.8716
20db || 20.3681 | 21.2576 | 19.8940
25db || 21.9652 | 22.5749 | 22.5152

Table 3. Output SNR vs. input SNR for image in
Fig. 2

GA PSO AIC
5db || 0.5726 | 0.5798 | 0.5029
10db || 0.7877 | 0.7927 | 0.6785
15db || 0.8931 | 0.8956 | 0.8388
20db || 0.9223 | 0.9424 | 0.9147
25db || 0.9352 | 0.9440 | 0.9586

Table 4. Output MSSIM vs. input SNR for image
in Fig. 2

6. CONCLUSION

The contribution of this paper is an unsupervised
multiple rank estimation method inserted in a
wavelet framework, for the purpose of multidimen-
sional data denoising. We show that a stochastic
optimization method is appropriate to minimize a
least-squares criterion between expected and de-
noised wavelet coefficient. Focusing on a GA and
PSO, we have illustrated the ability of the proposed
method to remove noise with realistic magnitude
values in an application to multispectral image de-
noising. Referring to SNR and perceptual quality
evaluated through mean SSIM, GA and PSO per-
form better than AIC while estimating the rank
values: the details are better preserved as well as
the perceptual information. We also have shown
that PSO is faster than GA for equivalent numerical
results.
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