
Improved Discrete Grey Wolf Optimizer
Benoit Martin

IntuiSense Technologies
Gemenos, France

benoit.martin@intui-sense.com

Julien Marot
Aix Marseille Univ., CNRS

Institut Fresnel
Marseille, France

julien.marot@fresnel.fr

Salah Bourennane
Centrale Marseille, CNRS

Institut Fresnel
Marseille, France

salah.bourennane@fresnel.fr

Abstract—Grey wolf optimizer (GWO) is a bio-
inspired iterative optimization algorithm which sim-
ulates the hunting process of a wolf pack guided by
three leaders. In this paper, a novel discrete GWO
is proposed: a random leader selection is performed,
and the probability for the main leader to be selected
increases at the detriment of the other leaders across
iterations. The proposed discrete GWO is compared
to another discrete version of GWO, using standard
test functions.

Index Terms—bio-inspired optimization, discrete
space, grey wolf

I. INTRODUCTION

Bio-inspired optimization methods mimic the be-
havior of animals in nature to maximize or min-
imize a real function by systematically choosing
input values from within an allowed search space
and computing the value of the function. With the
emergence of graphs and discrete signal processing
(see [1], [2] and references inside), it is more and
more relevant to innovate on bio-inspired optimiza-
tion methods which are specifically dedicated to
discrete search spaces.
Relation to prior work in the field:
The first bio-inspired optimization method is par-
ticle swarm optimization (PSO) [3]. Afterwards,
grey wolf optimization (GWO) was proposed in
[4]. The GWO algorithm mimics the leadership
hierarchy and hunting mechanism of grey wolves
to create update rules for the search agents. Four
types of grey wolves, the alpha, beta, delta, and the
omega are employed for simulating the leadership
hierarchy. A number of variants are also proposed
to improve the performance of basic GWO that
include a hybrid version of GWO with PSO [5], and

a binary GWO [6] solves a combinatorial problem
for classification purposes. The very last versions of
GWO aim at solving discrete problems, such as the
multiobjective discrete GWO (MODGWO) whose
implementation is detailed in [7], [8].
Main contributions:
The purpose of our paper is to develop an improved
discrete grey wolf optimizer: update rules are pro-
posed for wolves which permit to distinguish clearly
between an exploration phase, and an exploitation
phase, respecting thereby the primal philosophy of
the grey wolf optimizer, and taking advantage of its
properties.
Outline:
In section II we review the computational aspects of
grey wolf optimization; in section III, we present the
proposed improved discrete GWO. In section IV, a
comparative performance evaluation is performed
on several benchmark functions.
Notations:
Scalars are denoted by italic lowercase or uppercase
roman, like a or A; vectors by boldface lowercase
roman, like a; matrices by boldface uppercase ro-
man, like A; Manifolds are denoted by blackboard
bold like A.

II. COMPUTATIONAL BACKGROUND

Optimization algorithms aim at estimating the
best values of N parameters K1,K2, . . . ,KN ,
where N ≥ 1. In this section we focus on the
computational aspects of GWO and MODGWO.
The following notations will be used:
• N is the number of expected parameters, which
are indexed with i.

2018 26th European Signal Processing Conference (EUSIPCO)

ISBN 978-90-827970-1-5 © EURASIP 2018 499

• iter denotes one iteration and Tmax the maximum
allowed number of iterations.
• f(·) is the function which is minimized, also
called criterion. It depends on the N parameters
which should be estimated.
• xk

q (iter) is a vector corresponding to one search
agent q = 1, . . . , Q, at iteration iter. It takes a
form of a vector with an N -uplet of tested values
xk
q (iter) = [K1,K2, . . . ,KN]

T .

A. Continuous Grey wolf optimization

The seminal Grey wolf optimizer (GWO) mimics
the behavior of a herd of wolves [4] to search
a continuous space. Four types of grey wolves
are employed to simulate the leadership hierarchy:
three leaders α, β, δ, and the ω wolves. Searching
and attacking prey are implemented. The updated
position is calculated as:

xk
q (iter + 1) =

1

3
(yα + yβ + yδ) (1)

It results from the equal contribution of the α, the β,
and the δ wolves. These contributions are computed
as follows, for instance for the α:

yα = xk
α − b · dα (2)

with: dα = |c · xk
α − xk

q (iter)|
The vectors b and c are calculated as b = 2a·r1−a
and c = 2·r2. In these expressions, the components
of vector a are all equal to a, a scalar value which
is a key parameter in the algorithm. The value of a
decreases from 2 to 0 across the iterations. Vectors
r1, r2 have random components between 0 and 1.
During the hunt, the wolves firstly diverge from
each other to search for prey. Secondly, they con-
verge to attack prey. This is mathematically mod-
eled through the deterministic vector a. When a >
1, the search agents are obliged to diverge from
the prey: this is the exploration phase. Conversely,
when a ≤ 1, the search agents are obliged to
attack towards the prey: this is the exploitation
phase. We notice that a key parameter to balance
the exploration and the exploitation phases is the
deterministic vector a. In the seminal version of
GWO [4], a is regularly decreased from 2 to 0:
a = 2(1− iter

Tmax
), where iter is the iteration index,

and Tmax is the maximum number of iterations. The

exploration step lasts until a = 1, the exploitation
step lasts from a = 1 to a = 0. In [9], a modified
GWO (mGWO) is implemented with an exponential
model for a:

a = 2(1− iter2

Tmax
2) (3)

This permits to emphasize the exploration phase,
that is, to encourage a global search, at the expense
of the exploitation phase.

B. Discrete Grey wolf optimization

In [7] a multiobjective discrete version of GWO
(MODGWO) is proposed, with two types of update
rules:
Let rand be a random real number between 0 and
1.

K1 =


Kα

1 if rand ≤ 1
3

Kβ
1 if rand > 1

3 and rand ≤ 2
3

Kδ
1 if rand > 2

3
(4)

The second update rule is as follows: Let rand be
a random real number between 0 and 1.

K2 =

{
Kα

2 , K
β
2 , or Kδ

2 if rand ≤ a
K

′

2 if rand > a
(5)

In Eq. (5), a = 1 − iter
Tmax

, and K
′

2 is the second
component of any wolf in the herd, taken at random.
We notice that, in this algorithm,

These update rules are certainly valid for the
application considered in [7]. However, we expect
from the improved discrete GWO proposed in the
following to obtain better results, as it better re-
spects the philosophy of the classic GWO.

III. IMPROVED DISCRETE GWO

The idea behind the discrete grey wolf optimizer
is that the search spaces are discrete, and that not
only sets of values are searched but also sets of
indexes. A search agent or ’wolf’ at iteration iter
is denoted by xk

q (iter) and contains N components
which are possible values of expected parameters:
• For each parameter i, the number of possible
values is denoted by the scalar Hi.

• Vector dvali =
[
K1
i , . . . ,K

hi
i , . . . ,K

Hi
i

]T
is the

’search domain’ for Ki, that is, it contains all

2018 26th European Signal Processing Conference (EUSIPCO)

ISBN 978-90-827970-1-5 © EURASIP 2018 500

acceptable values for parameter Ki.
• Vector dindi = [1, . . . , hi, . . . ,Hi]

T contains the
index of each acceptable value for the ith parameter.
dindi contains Hi integer values in increasing order.
• A wolf denoted by xk

q (iter), is a vector with
N components that we call vector of ’values’.
These values are denoted as follows: xk

q (iter) =

[x1(iter), . . . , xi(iter), . . . , xN (iter)]
T , where the

index q is omitted for sake of clarity.
• Vector hq(iter) is the vector of N in-
dexes associated with wolf xk

q (iter). These
values are denoted as follows: hq(iter) =

[h1(iter), . . . , hi(iter), . . . , hN (iter)]
T , where the

index q is omitted for sake of clarity.
• Vectors xk

α, xk
β , xk

δ , xk
ρ1, xk

ρ2 are the vectors of
values for leaders α, β, δ, and for two wolves ρ1
and ρ2, selected at random among the Q wolves of
the population.
• Vectors hα, hβ , hδ , hρ1, hρ2 are the vectors of
indexes for leaders α, β, δ, and for the two random
wolves ρ1 and ρ2.
• The current leader in our iterative algorithm
is denoted by l. Its vector of values is xk

l =[
xl1, . . . , x

l
i, . . . , x

l
N

]T
and its vector of indexes is

hl =
[
hl1, . . . , h

l
i, . . . , h

l
N

]T
.

• The scalar xli is the ith component of xk
l , and the

scalar hli denotes the ith component of hl.
We notice that a value located at the component
with index hi in dindi is denoted by Khi

i . For
instance, for the vector of values xk

q (iter) =[
K2

1 , . . . ,K
5
N

]T
, the associated vector of indexes

is hq(iter) = [2, . . . , 5]
T .

Algorithm 1 (see below) details the proposed im-
proved discrete GWO. It involves a parameter a, as
defined in Eq. (3).

Step 5 includes the selection of a leader xk
l and

the update process of the index vector hq(iter).
As the parameter a is decreasing from 2 to 0 across
the iterations, it is more and more probable for α to
be chosen as the leader. The random wolves may be
selected during the first part of the process, when
a > 1, and cannot be selected during the second
part of the process, when a ≤ 1.
In the update equations at step 5b, sgn(·) denotes
the sign function, and mod denotes the ’Modulo’

operator. ∆ is computed as follows:

∆ =


1 if φ ≤ a

6
2 if φ > a

6 and φ ≤ 2a
6

4 if φ > 2a
6 and φ ≤ 3a

6
1 if φ > 3a

6

(6)

where φ is a random value in R, between 0 and 1.
Across the iterations, it is more and more probable
for the value 1 to be chosen, and less and less
probable for the larger values such as 2 and 4 to
be chosen. This is coherent with the paradigm of
the original Grey Wolf Optimizer [4], where explo-
ration is emphasized when a > 1 at the beginning
of the process, and exploitation is emphasized when
a ≤ 1 at the end of the process. The proposed
algorithm has a complexity of O(TmaxNQ).

IV. PERFORMANCE EVALUATION

In this section, we evaluate the performances
of our improved discrete GWO and comparative
MODGWO [7]. When MODGWO is run, the first
parameter is updated using Eq. (4), while the other
parameters are updated using Eq. (5). Unimodal
functions are those which exhibit only one global
minimum and no relative minima, whereas multi-
modal functions exhibit several relative minima.
Tests have been run on the two unimodal function
(F1 and F2), and two multimodal functions (F16

and F18) [4], [9]:

F1(x) =

n∑
i=1

x2i , with n = 3

F2(x) =
n∑
i=1

|xi|+
n∏
i=1

|xi|, with n = 3

F16(x) = 4x21 − 2.1x41 +
1

3
x61 + x1x2 − 4x22 + x42

F18(x) =
[
1 + (x1 + x2 + 1)

2 (
19− 14x1 + 3x21 − 14x2 + 6x1x2 + 3x22

)][
30 + (2x1 − 3x2)

2 (
18− 32x1 + 12x21 + 48x2 − 36x1x2 + 27x22

)]
Table I presents, for each function, the expected
minimum value, and the search space for our im-
proved discrete GWO and MODGWO. The results
are computed over M = 30 independents runs. To
compute the performance metrics, we consider, for
the mth run, f(xk

α)m, the fitness value obtained at

2018 26th European Signal Processing Conference (EUSIPCO)

ISBN 978-90-827970-1-5 © EURASIP 2018 501

Algorithm 1 Pseudo-code: Improved Discrete Grey Wolf Optimization for multiple parameter estimation

Inputs: fitness function f , number N of expected parameters, small factor ε set by the user, to stop the
algorithm, maximum number of iterations Tmax.
For each parameter indexed by i = 1, . . . , N : the search space dindi with Hi possible values.

1) Set iteration number iter = 1,
create an initial set of index vectors hq(iter), q = 1, . . . , Q. For each index q, each component hiteri

is an integer value between 1 and Hi.
Create an initial herd composed of Q wolves xk

q (iter), q = 1, . . . , Q with the N required parameter
values. This initial population takes the form of a matrix with Q rows and N columns. For each
index q, xi(iter) = dindi (hi(iter)).

2) Evaluate fitness function value f(xk
q (iter)) of each wolf xk

q (iter), q = 1, . . . , Q.
3) Sort the wolves through their fitness value and update the wolves which hold the first, second

and third best fitness value: store the corresponding vectors of indexes hα, hβ , hδ and vectors of
values xk

α, xk
β , xk

δ .

4) If a > 1, select two wolves ρ1 and ρ2, randomly among the herd of Q wolves, with ρ1 6= ρ2. Store
the corresponding vectors of indexes hρ1, hρ2 and vectors of values xk

ρ1, xk
ρ2.

Else if a ≤ 1, go to step 5.
5) Repeat steps for each wolf q, q = 1, . . . , Q, with vector of values xk

q (iter) and vector of indexes
hq(iter):

a) Select leader xk
l (r real random number between 0 and 1):

if a > 1:

xk
l =



xk
α if r ≤ a

10
xk
β if r > a

10 and r ≤ 2a
10

xk
δ if r > 2a

10 and r ≤ 3a
10

xk
ρ1 if r > 3a

10 and r ≤ 4a
10

xk
ρ2 if r > 4a

10 and r ≤ 5a
10

xk
α if r > 5a

10

if a ≤ 1:

xk
l =


xk
α if r ≤ a

6
xk
β if r > a

6 and r ≤ 2a
6

xk
δ if r > 2a

6 and r ≤ 3a
6

xk
α if r > 3a

6

Store the vector of indexes corresponding to xk
l in a vector denoted by hl.

b) Update the N indexes and the N values for wolf q (i = 1, . . . , N):

hi(iter + 1) = (hi(iter) + ∆ sgn(hli − hi(iter))) mod Hi

and
xi(iter + 1) = dvali (hi(iter + 1))

c) Get the updated vectors of indexes and values:
hq(iter + 1) = [h1(iter + 1), . . . , hi(iter + 1), . . . , hN (iter + 1)]

T .
xk
q (iter + 1) = [x1(iter + 1), . . . , xi(iter + 1), . . . , xN (iter + 1)]

T .
6) Exchange the current population with the new one, obtained at step 5
7) If iter < Tmax or f(xk

q (iter)) > ε, increase iter, and go to step 2.

Output: estimated parameter values K̂1, K̂2, . . . , K̂N

2018 26th European Signal Processing Conference (EUSIPCO)

ISBN 978-90-827970-1-5 © EURASIP 2018 502

Function fmin dval Hi

F1 0 [−100, . . . , 0, . . . , 100]T 201

F2 0 [−10, . . . , 0, . . . , 10]T 41

F16 −1.0316 [−5, . . . , 0, . . . , 5]T 101

F18 3 [−2, . . . , 0, . . . , 2]T 41

Table I: Benchmark functions: expected minimum,
range and step for the search space

iteration Tmax for the best wolf, namely α.
The statistical mean is the average (Avg.) of fitness
values:

Avg = 1
M

M∑
m=1

f(xk
α)m

The standard deviation (Std.) is a representation for
the variation of the obtained best solutions:

Std =

√
1
M

M∑
m=1

(f(xk
α)m −Avg)2

The median (Med.) is the value separating the
M
2 higher half from the M

2 lower half of values
obtained for f(xk

α).
As other versions of GWO, our improved discrete
GWO and MODGWO involve few parameters: we
use Q = 30 search agents. With Tmax = 3000 for
the proposed improved discrete GWO and Tmax =
10000 iterations for the MODGWO, the time re-
quired per run is always slightly lower with the
proposed method than for MODGWO. Programs
were written in C + +, and executed on a PC
running Windows, with a 3GHz double core and
3GB RAM. The results obtained for each algorithm
are presented in Tables II and III.

F Avg. Std. Med. Time
F1 3.233 2.046 2 289.83 ms
F2 0.200 0.249 0 291.80 ms
F16 −0.974 0.094 −1.0298 261.20 ms
F18 4.628 2.576 3 237.17 ms

Table II: Results MODGWO with Tmax = 10000

We notice that for slightly lower computational
times, the proposed method outperforms MOD-
GWO on the considered benchmark functions in
terms of Avg., Std., and Med. Moreover, as indi-
cated by the median value, our improved discrete
GWO has found the expected minimum on all the
benchmark functions on at least 50% of the runs.

F Avg. Std. Med. Time
F1 0 0 0 279.67 ms
F2 0 0 0 258.13 ms
F16 −1.0298 7.42 10−16 −1.0298 191.00 ms
F18 3 2.26 10−15 3 173.43 ms

Table III: Results improved discrete GWO with
Tmax = 3000

V. CONCLUSION

This paper proposes an improved discrete GWO,
one of the first bio-inspired optimization algorithms
which tackles discrete problems. The proposed
method is tested on unimodal and multi-modal
benchmark functions and yields results which out-
perform the existing MODGWO.

REFERENCES

[1] P. Di Lorenzo, P. Banelli, and S. Barbarossa, “Optimal
sampling strategies for adaptive learning of graph signals,”
in Signal Processing Conference (EUSIPCO), 2017 25th
European. IEEE, 2017, pp. 1684–1688.

[2] P. Di Lorenzo, E. Isufi, P. Banelli, S. Barbarossa, and
G. Leus, “Distributed recursive least squares strategies for
adaptive reconstruction of graph signals,” in Signal Process-
ing Conference (EUSIPCO), 2017 25th European. IEEE,
2017, pp. 2289–2293.

[3] J. Kennedy and R. Eberhart, “Particle swarm optimization,”
in IEEE International Conference on Neural Networks,
Perth, 1995, pp. 1942–1948.

[4] S. Mirjalili, S. M. Mirjalili, and A. Lewis, “Grey wolf
optimizer,” Advances in Engineering Software, vol. 69,
pp. 46 – 61, 2014. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/S0965997813001853

[5] V. K. Kamboj, “A novel hybrid pso–gwo approach for unit
commitment problem,” Neural Computing and Applications,
pp. 1–13, 2015.

[6] E. Emary, H. M. Zawbaa, and A. E. Hassanien, “Binary
grey wolf optimization approaches for feature selection,”
Neurocomputing, vol. 172, pp. 371âĂŞ–381, 2016.

[7] C. Lu, S. Xiao, X. Li, and L. Gao, “An effective multi-
objective discrete grey wolf optimizer for a real-world
scheduling problem in welding production,” Advances in
Engineering Software, vol. 99, pp. 161 – 176, 2016.
[Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0965997816301260

[8] C. Lu, L. Gao, X. Li, and S. Xiao, “A hybrid multi-
objective grey wolf optimizer for dynamic scheduling in
a real-world welding industry,” Engineering Applications
of Artificial Intelligence, vol. 57, pp. 61 – 79, 2017.
[Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0952197616301968

[9] N. Mittal, U. Singh, and B. Singh Sohi, “Modified grey
wolf optimizer for global engineering optimization,” Applied
Computational Intelligence and Soft Computing, vol. Article
ID 7950348, p. 16 pages, 2016.

2018 26th European Signal Processing Conference (EUSIPCO)

ISBN 978-90-827970-1-5 © EURASIP 2018 503

