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a b s t r a c t

Greywolf optimizer (GWO) is a bio-inspired iterative optimization algorithmwhich simulates the hunting
behaviour of a pack of wolves. Their position is updated across iterations in a search space under the
leadership of the α, β , and δ wolves. In this work, a novel mixed GWO is proposed, which, for the first
time, searches for parameter values in both continuous and discrete spaces. In the proposed approach, the
update rules are as follows: the leaders guide the hunt, assisted by two random wolves during the first
half of the iterations; for the continuous parameters, a weighted combination of the leaders’ contribution
is calculated; for the discrete parameters, a random selection is performed instead, and the probability
for the α to be selected increases at the detriment of the other leaders across iterations. The exploration
and exploitation phases are distinguished for continuous and discrete parameters. The proposed mixed
GWO is compared against other bio-inspired optimizationmethods, using several test problemswhich are
either continuous, discrete or mixed: the proposed algorithm can significantly improve the performance
metrics. Moreover, ourmethod is adapted to simultaneously denoise and unmix real-worldmultispectral
images.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

An optimization problem consists of maximizing orminimizing
a real fitness function by systematically choosing input values
from within an allowed set and computing the value of the func-
tion. To solve an optimization problem, an interesting field of
applied mathematics has attracted much interest during the past
few years: Meta-heuristics. These methods exhibit a good capacity
in solving computationally expensive numerical problems, with a
limited number of function evaluations [1]. Meta-heuristics may
be classified into three main classes: physics-based, evolutionary,
and swarm intelligence (SI) algorithms. Physics-based algorithms
include for instance gravitational search algorithm [2–4], where
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the search agents are provided with a mass which depends on
their fitness, and wind driven optimization (WDO) [5]. Simulated
annealing [6] can also be seen as a physics-based algorithm. The
name and inspiration come from annealing in metallurgy, a tech-
nique involving heating and controlled cooling of a material to
increase the size of its crystals and reduce their defects. This notion
of slow cooling implemented in the simulated annealing algorithm
is interpreted as a slow decrease in the probability of accepting
worse solutions as the solution space is explored. Evolutionary al-
gorithms [7], together with swarm intelligence algorithms [8–11],
compose the bio-inspired optimization algorithms. They differ for
instance in their way to encode the agents which search the space
composed by the allowed sets of values. The convergence success
of a bio-inspired optimization algorithm depends on directing
and balancing its so-called ‘exploration’ and ‘exploitation’ abili-
ties [12,13]. Among bio-inspired swarm intelligence algorithms,
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Nomenclature

Notations used

a or A Scalars
a Vectors
A Matrices
A Manifolds

Parameters used

N Number of expected parameters
i Index of the expected parameter with

i = 1, . . . ,N
Ki ith expected parameter
f (·) Function to minimize, also called crite-

rion
a Phase distinguisher
iter Current iteration
Tmax Maximum number of iterations
η Phase emphasizer
Q Number of wolves in the Herd
xkq (iter) Position of the qth wolf, with q =

1, . . . ,Q
xkα , xkβ , x

k
δ Positions of the leaders α, β and δ

xkρ1, x
k
ρ2 Positions of the random wolves ρ1 and

ρ2
K̂i ith estimated parameter

Parameters solely used for Improved Discrete GWO

Hi Number of candidate value for the pa-
rameter Ki

dval
i =

[
K 1
i , . . . , K hi

i , . . . , KHi
i

]T
Candidates values for the

parameter Ki

dind
i = [1, . . . , hi, . . . ,Hi]T Indexes of each candidate value

for the parameter Ki

hq(iter) Vector of indexes associated with the
wolf xkq (iter)

hα , hβ , hδ Vector of indexes associated with the
leaders α, β and δ

l Refer to the selected leader, either α, β ,
δ, ρ1 or ρ2

∆ Displacement factor

Parameters solely used for Global Continuous GWO

yli Contribution of a leader l for the param-
eter Ki

the greywolf optimizer (GWO) [10,11,14,15] has recently attracted
much attention due to its good performances, simplicity of use,
and good capacity to distinguish between an exploration phase
and an exploitation phase. That is why, further in this work, we
present a detailed state-of-the-art about bio-inspired optimization
in general and GWO in particular.

The main purpose of this paper is to develop an automatic
algorithm which estimates the best parameter values in a mixed
search space, with an adequate variant of the grey wolf optimizer.
For this, we propose the mixed grey wolf optimization algorithm
(mixedGWO). This novel version of GWOhandles the simultaneous
estimation of optimal parameters in search spaces which can be
continuous as well as discrete.

This new research has been driven by an image processing ap-
plication: the simultaneous denoising and unmixing of multispec-
tral images. Denoising of multispectral images is an issue which
can be tackled by the tensor signal processing paradigm: tensor
signal denoising methods have been proposed which involve so-
called subspace ranks, which are integer-valued. Unmixing ofmul-
tispectral images consists in estimating mixing coefficients, which
are positive, real-valued, and less than or equal to 1. Therefore,
to solve the issue of simultaneous denoising and unmixing of
multispectral images, a mixed optimization method is required.

Our main contributions are listed as follows:

• for the first time, we propose a mixed grey wolf optimizer,
which allows searching parameter values in both discrete and
continuous spaces;

• update rules are proposed for wolves which permit to distin-
guish clearly between an exploration phase, and an exploita-
tion phase, respecting thereby the primal philosophy of the
grey wolf optimizer, and taking advantage of its properties;

• to the best of authors’ knowledge, the identification of the
best parameters for tensor signal processing with a mixed-
integer optimization problem has not been reported yet, in
the previous research.

The remainder of this paper is organized as follows.
In Section 2, a state-of-the-art about bio-inspired optimization

methods, in particular swarm intelligence, and discrete algorithms,
is provided. We present their applications in the image process-
ing field. Most of the discrete swarm intelligence methods are
restricted to binary versions of the algorithms, and a compar-
ative study permits to justify the choice of GWO as a basis to
create a mixed bio-inspired optimization algorithm. In Section
3, the proposed algorithms mixedGWO and its adaptive version
amixedGWOand their computational aspects are described. In Sec-
tion 4, a performance evaluation of our proposed methods is done
compared to the state-of-the-art on several benchmark functions.
Finally, in Section 5, the usefulness of the amixedGWO algorithm
on a real-world application such as the denoising and unmixing of
multispectral images is studied.

The notations and the parameters used throughout this paper
are gathered in the following nomenclature along with their de-
scription.

2. Background and state-of-the-art

This section provides an overview of bio-inspired optimization
methods and focuses on their image processing applications.

In Section 2.1, a background about bio-inspired optimization
methods is proposed to the reader. These methods distinguish for
instance on the properties of the search agents they encode.We fo-
cus on swarm intelligence (SI) algorithms, which includes themost
recent publications about bio-inspired optimization methods. In
Section 2.2, we provide a short state-of-the-art about discrete
bio-inspired optimization methods, which are essentially binary
optimization methods. In Section 2.3, we summarize the image
processing applicationswhich have been tackledwith bio-inspired
optimizationmethods, andwe focus on the applications of discrete
bio-inspired methods.

2.1. Bio-inspired optimization

Among evolutionary algorithms, the most popular are the ge-
netic algorithms (GA). This algorithm was proposed by Holland in
1992 [7] and simulated Darwinian evolution concepts. An often
cited, now well-known reference [16] introduces genetic algo-
rithms in the context of evolutionary computation which implies
the evolution of a populationwhich is inspired by Darwin’s natural
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selection theory. Another largely cited reference presents basics
about genetics, the hierarchical genetic algorithm, and applications
to H∞ control, neural network, and speech recognition [17]. The
seminal work about swarm intelligence is particle swarm opti-
mization (PSO) [8,9], proposed by Kennedy and Eberhart, who
got inspired by [18] where the term ‘particle swarm’ was chosen
to define the members of a population or test set. In the PSO
paradigm, the population members are mass-less and volume-
less. Their evolution is described through position, speed, and
acceleration parameters. The concept of swarm got first inspired
by the behaviour of birds, where one leader guides the flock.
In [10], a method involving three leaders was proposed, which
gets inspired by the behaviour of wolves, namely grey wolf op-
timization: the GWO algorithm mimics the leadership hierarchy
and hunting mechanism of grey wolves in nature. Four types of
grey wolves such as alpha, beta, delta, and omega are employed
to simulate the leadership hierarchy. In addition, the three main
steps of hunting, searching for prey, encircling prey, and attacking
prey, are implemented.

The computational rules of PSO and GWO are described in
Algorithms 5 and 6, and available in the Appendix .

A number of variants are also proposed to improve the per-
formance of vanilla GWO that include a hybrid version of GWO
with PSO [19], and a ‘modified GWO’ (mGWO) [11] which includes
a slightly modified update rule for the wolves. In [14] grey wolf
optimization is adapted for multi-objective optimization prob-
lems. In [15] a ‘chaotic’ GWO is proposed which aims at accel-
erating the global convergence speed of GWO. Compared to PSO
and other prevailing techniques, GWO has the ability to converge
to a better quality near-optimal solution and possesses better
convergence characteristics [19]. Also, GWO has a good balance
between exploration and exploitation that results in high local
optima avoidance [20]. It has been successfully applied, as men-
tioned in [11], for solving economic dispatch problems, optimal
design of double layer grids, time forecasting, flow shop scheduling
problem, optimal power flow problem, and optimizing key values
in the cryptography algorithms. Some other variants of the GWO
algorithm can be found in [13,21,22] and in the references inside.

Within bio-inspired optimization algorithms, Artificial Bee
Colony (ABC) [23] and Tree Seed Algorithm (TSA) [24] exhibit a
common property: they rule the displacement of the search agents
through the choice of a random leader, selected among the whole
population of search agents.

In the ABC algorithm [23], the colony of artificial bees contains
three groups of bees: employed bees, onlookers and scouts. A
bee waiting on the dance area for making decision to choose a
food source is called an onlooker and a bee going to the food
source visited by itself previously is named an employed bee. A
bee carrying out random search is called a scout. In the original
ABC algorithm, one half of the bees are employed bees, and the
other half constitutes the onlookers. In order to update the position
of the current employed bee, one of the other employed bees is
selected at random. As the difference between the location of the
current and the random bee decreases, the displacement of the
current bee decreases too. Thus, as the search approaches to the
optimumsolution in the search space, the displacementmagnitude
is adaptively reduced: exploration is preferred at the beginning
of the algorithm, and exploitation is preferred at the end of the
algorithm.

In TSA [24], a new seed location is produced through one of the
two principal equations of the algorithm (see [24,25] for details).
In the first equation, the global best position obtained so far rules
the creation of a new seed. In the second equation, a tree selected
at random among all but the current tree rules the creation of a
new seed. The decision of choosing either the first equation or
the second one is made through the ‘search tendency’ parameter

(ST). The higher ST, the more probable is the choice for the first
equation. The smaller ST, the more probable is the choice for the
second equation. A high value of ST yields a powerful local search
and a high convergence speed, whereas a low value of ST causes
slow convergence but powerful global search. In other words, the
exploration and exploitation capabilities of the TSA are controlled
by ST parameter. We notice that this capability is set a priori for an
entire run of the algorithm.

A common and interesting property of ABC and TSA is that the
evolution of the population of search agents is based on the selec-
tion of a random agent. However, they can only handle continuous
search spaces.

Mainly, the rest of the swarm intelligence techniques which
mimic the behaviour of groups of animals are as follows (see [10]
and references inside): Marriage in Honey Bees Optimization Al-
gorithm (MBO) in 2001, Artificial Fish-Swarm Algorithm (AFSA) in
2003, Termite Algorithm in 2005, Wasp Swarm Algorithm in 2007,
Monkey Search in 2007, Bee Collecting Pollen Algorithm (BCPA)
in 2008, Dolphin Partner Optimization (DPO) and Cuckoo search
(CS) [26] in 2009, Firefly Algorithm (FA) in 2010, Bird Mating Opti-
mizer (BMO) in 2012, Krill Herd (KH) in 2012, Fruit flyOptimization
Algorithm (FOA) in 2012, Glowworm Swarm Optimization [27] in
2016, artificial algae algorithm (AAA) [28] in 2018.

We now focus on methods which are based on the division
of the search agents into ‘groups’ also called ‘tribes’. Tribes PSO
has first been proposed in [29] and further developed in [30]. Its
performance has been analysed in [31]. The principles of tribes PSO
is to reduce the number of parameters in PSO, through an adaptive
process which modifies autonomously the number of particles.
In [32] a grouped grey wolf optimizer is proposed which is a ‘tribe
version’ of GWO: the grey wolves are divided into two groups,
including a cooperative hunting group with four types of wolves
and a random scout group with two types of wolves. Contrary to
the tribes in [30], these two tribes of wolves are not defined sym-
metrically. The first group (hunters) is meant for both ‘exploration’
in a first phase of the algorithm, and then ‘exploitation’, that is,
concentration around the global minimum when it is assumed to
be found. The second group is meant for exploration, to randomly
look for a potential prey.

In summary, as evoked by the ‘‘No Free Lunch’’ theorem [33],
the diversity ofmeta-heuristic algorithms comes from the fact that
general applicability comes at the cost of domain specific perfor-
mance, and that there is no one best approach for all domains.
Further, there are no guarantees of finding a globally optimal
solution, even within a specified tolerance.

2.2. Discrete bio-inspired optimization

The methods which aim at estimating the best integer values
within an allowed set by minimizing some linear criterion are
called integer linear programming (ILP). When only part of the
values are enforced to be integer, one refers tomixed-integer linear
programming (MILP).

Discrete bio-inspired optimization methods are meant to min-
imize some non-linear criteria. A major discrete bio-optimization
method is ant colony optimization (ACO) [34]. ACO is motivated
by the natural collective behaviour of real-world ant colonies.
Artificial ants used in ACO are procedures of solution construction
that probabilistically build a solution by iteratively adding solution
components to partial solutions [34] by taking into account heuris-
tic information about the problem instance being solved, if avail-
able, and (artificial) pheromone trails which change dynamically at
runtime to reflect the agents’ acquired search experience.

The other swarm intelligence methods, which are originally
dedicated to continuous search spaces, have been firstly adapted
to binary problems. Binary optimization is a subfield of discrete
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optimization, in the sense that the research space is restricted to
the set {0, 1} for all parameters. In [35] a binary version of PSO
(BPSO) is proposed. In [36] a mimetic binary particle swarm op-
timization scheme is introduced based on hybrid local and global
searches in BPSO. In [37], the first binary version of Cuckoo search
was proposed.

After this, in [38], a binary version of the TSA method has been
created.

In [39] a binary GWO is proposed and used to select an op-
timal feature subset for classification purposes. In [40], the first
discrete version of GWO which is not restricted to binary search
spaces is proposed, to address a combinatorial problem. A multi-
objective mixed integer programming model is formulated. These
advances are driven by an application of job scheduling for an
optimal assignment of machines. One of the contributions in [40]
consists in turning the computation of the influence of the leaders
into a decision process: one leader is selected at random, between
the three leaders, at each iteration. Job permutation is performed
with a probability 1

3 for each leader at any iteration. Machine
assignment is performed with a probability which depends on the
iteration index.

In [41], to further enhance the exploration, the authors embed
a genetic operator, namely permutation, into their discrete GWO
algorithm. The proposed method is called hybrid multi-objective
grey wolf optimizer because GWO and GA are mixed together.
In [42], an improved discrete cuckoo optimization algorithm is
proposed for a flowshop scheduling problem.

Wenotice that, to the best of our knowledge, nomixedGWOhas
been proposed yet. Despite, there may be numerous applications
which require the estimation of interdependent parameters taking
their values in both discrete and continuous spaces. The proposed
mixed GWO is driven by an image processing application.

2.3. Application of bio-inspired optimization to image processing

The physics-based WDO method has been applied to solve an
issue of satellite image thresholding [5]. In [6], a genetic algorithm
is compared to a simulated annealing algorithm with a view to
reconstruct an image through thin scattering media.

As concerns swarm intelligence algorithms, they have been
used essentially for classification issues, andmore precisely for the
estimation of the parameters of SVM (support vector machines)
classifiers [43–45]. In [46] a ‘firefly-SVM’ algorithm is proposed
to train all parameters of the SVM simultaneously. In [47], GWO
estimates the parameters of an SVM classifier: 3-fold validation
is performed for colour image classification. GWO has also been
applied to the training ofMulti-Layer Perceptron [20]. Bio-inspired
optimization is undoubtedly of great interest for the processing of
the images provided by optical remote sensing instruments [48,
49]. Indeed, their huge dimensionality and complex data structure
yield nonlinear optimization problems [48]. For instance, in [50],
GWO is adapted to band selection in hyperspectral data. Binary
versions of GWO have been developed for image processing ap-
plications: feature selection [39], and classification of cervix lesion
images [51].

Discrete bio-inspired methods (not restricted to binary) have
been firstly driven by engineering applications. A multi-objective
discrete greywolf optimizer (MODGWO) has been derived for a job
scheduling purpose in [40,41]. ThisMODGWOalgorithm is detailed
in the Appendix , in Algorithm 7.

To the best of our knowledge, and due to their novelty, the
discrete versions of GWOwhich have been applied to solve an im-
age processing issue are restricted to binary. Moreover, no mixed
bio-inspired optimizationmethod has been developed to solve any
image processing issue.

2.4. Comparative discussion about optimization methods

In this subsection, we aim at showing that GWO is an appropri-
ate paradigm to create a mixed bio-inspired optimization method,
and that other algorithms such as ABC or TSA can inspire us to
ensure good convergence capabilities to the proposed method.

Ant Colony Optimization (ACO) [34] is dedicated to optimiza-
tion problems with only discrete parameters: combinatorial prob-
lems such as the travelling salesman [52]. The specificity of this
problem is that the same value cannot be present several times in
a set of solutions. This is not the case for the considered application,
where two unknown parameters may bear the same value.

In the considered application of denoising and unmixing of
multispectral images, all parameters should be estimated jointly,
within their whole range of possible values, which should not
change across the iterations. Hence, methods which belong to the
family of ACO do not seem to be appropriate for this application.
As concerns ABC and TSA, they have been originally dedicated to
continuous optimization problems. A valuable effort has been per-
formed to adapt TSA into a binary optimization problem [38], but a
discrete version, not restricted to binary, can still be considered, to
the best of our knowledge, as future work for [38]. A careful study
of the existing literature shows that the most recent advances on
discrete optimization methods which are not restricted to binary
problems concern GWO [14,40,41]. For all these reasons, it seems
appropriate to choose GWO as a paradigm to develop a mixed bio-
inspired optimization method.

The discrete version of GWO proposed in [40] has much merit
in the sense that, for the first time, a variant of GWO is proposed
to search discrete spaces. For this, the computation of a centroid
which accounts simultaneously for the location of the three leaders
is replaced by a selection process, where, at each iteration, one
leader is selected at random. The update rules proposed in [40] are
certainly valid for the application considered therein. Though, one
can notice that some key properties of the seminal GWO [10] are
lost in this discrete version [40]:

• for each of its components, a wolf is not displaced towards
the selected leader. It actually takes the value of the selected
leader;

• in the second update rule, in Eq. A.3 of Algorithm 7 in the
Appendix , there seem to be firstly an ‘exploitation’ phase
where importance is given to the leaders at the detriment of
the other wolves, and thereafter an exploration phase where
importance is given to the wolf selected at random at the
detriment of the leaders.

In [41], the authors modify their proposed discrete grey wolf
optimizer as a hybrid grey wolf optimizer. This hybrid optimizer
includes a genetic search operator: crossover and then mutation
are applied to enhance the exploration phase. However, we wish
to better distinguish the exploration phase from the exploitation
phase. We also notice that the methods proposed in [40] and [41]
are only valid when the search spaces are strictly discrete.

Though ABC and TSA are still essentially dedicated to contin-
uous optimization, some of their key features inspire us to build
an improved version of GWO with well-balanced exploration and
exploitation capacities: what is original in ABC and TSA is that not
only the agent with the best score obtained so far but also some
random agents are used in the update rules.

For the first time in this paper, we propose a new bio-inspired
optimizationmethodwhich is able to handlemixed problems, that
is, problems with both discrete and continuous variables. In some
applications, some parameters take their values in a discrete space,
while other parameters take their values in a continuous space.
Also, all parameters may be interdependent. An example in the
image processing field will be presented further in the paper. In
Section 3,we explain the theoretical aspects of the proposedmixed
grey wolf optimizer.
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3. Proposed mixed grey wolf optimizer

Our general goal is to propose a mixed GWO which can handle
a problem with both discrete and continuous variables. In other
words, the research space can be discrete for some of the pa-
rameters to be estimated, and continuous for other parameters.
Moreover, it can also be used for problems solely composed of
discrete variable or solely composed of continuous variables. The
discrete process is applied to a subset of the expected parameters,
taking their values in discrete search spaces, while the continuous
process is applied independently to the other parameters, taking
their values in continuous search spaces.

In this section, we firstly propose, in Section 3.1 a discrete
bio-inspired optimization algorithm, that we will call ‘improved
discrete GWO’. Secondly, we explain in Section 3.2 what is the
exact continuous counterpart of the proposed discrete GWO. We
combine these two algorithms in a mixed grey wolf optimizer pre-
sented in Section 3.3, which handles both discrete and continuous
parameters.

For sake of coherence with the original GWO [10], we still use a
parameter, also denoted by a, to distinguish an exploration phase
to an exploitation phase. The scalar a is decreased from 2 to 0, but
in opposite to the seminal version of GWO [10], a does not decrease
regularly. A parameter η is added in the model so that:

a = 2(1 −
iterη

Tmax
η ) (1)

We notice that the modified GWO implemented in [11] is a
particular case where η = 2.

With this parameter η, the amount of iterations spent on the
exploration phase texploration becomes :

texploration =
Tmax

2
1
η

(2)

Thus, it is possible to freely decide if the GWO algorithmmust em-
phasize the exploration phase (η > 1), emphasize the exploitation
phase (η < 1) or spend an equal amount of iterations on both
phases (η = 1).

3.1. Improved discrete GWO

The idea behind the discrete grey wolf optimizer is that search
spaces are discrete, and that not only vectors with values are
defined for each wolf but also vectors with indexes. Still, a search
agent or ‘wolf’ at iteration iter is denoted by xkq (iter) and containsN
components which are candidate values of expected parameters.

Algorithm 1 details the proposed improved discrete GWO.
We notice that a value located at the component with index

hi in dind
i is denoted by K hi

i . For instance, for the vector of val-
ues xkq (iter) =

[
K 2
1 , . . . , K 5

N

]
, the associated vector of indexes is

hq(iter) = [2, . . . , 5].
We predict that the performance of our improved discrete GWO

could be better than the performances of the MODGWO proposed
in [40] which is suited for a specific combinatorial multi-objective
optimization problem.

In Algorithm2,we detail thewolf update rule for onewolf index
q ∈ [1, . . . ,Q ]T , at any iteration index iter.

Here are some details about the proposed improved discrete
GWO algorithm:

Algorithm1Pseudo-code: ImprovedDiscreteGreyWolfOptimiza-
tion for multiple parameter estimation
Inputs: fitness function, number N of expected parameters, small
factor ϵ set by the user, to stop the algorithm, maximum number
of iterations Tmax.
For each parameter indexed by i = 1, . . . ,N: the search space dind

i
with Hi possible values.

1. Set iteration number iter = 1.
Create an initial set of index vectors hq(iter), q = 1, . . . ,Q .
For each index i between 1 and N , a component hi(iter) of
hq(iter) is an integer value between 1 and Hi.
Create an initial herd composed of Q wolves xkq (iter), q =

1, . . . ,Q with the N required parameter values. This initial
population takes the form of a matrix with Q rows and N
columns. For each index q, the components of xi(iter) are
dind
i (hi(iter)).

2. Evaluate fitness function value f (xkq (iter)) of each wolf
xkq (iter), q = 1, . . . ,Q .

3. Sort the wolves through their fitness value and update the
wolves which hold the first, second and third best fitness
value: store the corresponding vectors of indexes hα , hβ , hδ

and vectors of values xkα , xkβ , x
k
δ .

4. If a > 1, select two wolves ρ1 and ρ2, randomly among the
herd of Q wolves, with ρ1 ̸= ρ2. Store the corresponding
vectors of indexes hρ1, hρ2 and vectors of values xkρ1, x

k
ρ2.

Else if a ≤ 1, go to step 5.
5. Repeat steps for each wolf q, q = 1, . . . ,Q , with vector of

values xkq (iter) and vector of indexes hq(iter):
Apply Algorithm 2.

6. Exchange the current populationwith the newone, obtained
at step 5

7. If iter < Tmax or f (xkq (iter)) > ϵ, increase iter, and go to step
2.

Output: estimated parameter values K̂1, K̂2, . . . , K̂N contained in
xkα .

At step 1, if a > 1, the leader is selected randomly among the α,
β , δ, ρ1, and ρ2 wolves:

xkl =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

xkα if r ≤
a
10

xkβ if r > a
10 and r ≤

2a
10

xkδ if r > 2a
10 and r ≤

3a
10

xkρ1 if r > 3a
10 and r ≤

4a
10

xkρ2 if r > 4a
10 and r ≤

5a
10

xkα if r > 5a
10

(3)

where r is a random value in R, between 0 and 1.
if a ≤ 1, the leader is selected randomly among the α, β , and δ

wolves:

xkl =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
xkα if r ≤

a
6

xkβ if r > a
6 and r ≤

2a
6

xkδ if r > 2a
6 and r ≤

3a
6

xkα if r > 3a
6

(4)

where r is a random value in R, between 0 and 1.
As the parameter a is decreasing from 2 to 0 across the itera-

tions, it is more andmore probable for α to be chosen as the leader.
The random wolves may be selected during the first part of the
process, when a > 1, and cannot be selected during the second
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Algorithm2 Pseudo-code: Update rule for Improved Discrete Grey
Wolf Optimization for multiple parameter estimation
Inputs: Vector of indexes hq(iter), vector of values xkq (iter).

1. Select leader:

(a) Let xkl denote the vector of values for the selected
leader, chosen randomly among xkα , xkβ , x

k
δ , x

k
ρ1, and

xkρ2. This selection process is detailed in Eqs. (3) to (4).
(b) Store the vector of indexes corresponding to xkl in a

vector denoted by hl.

2. Update wolf q:
for each index i = 1, . . . ,N

(a) Compute the updated component hi(iter + 1).
(b) Compute the updated component xi(iter + 1).

This update process is detailed in Eqs. (5), (7), (8)
3. Store the N components obtained at steps 2a and 2b:

(a) Get the updated vector of indexes:
hq(iter + 1) = [h1(iter + 1), . . . , hi(iter + 1), . . . ,
hN (iter + 1)]T .

(b) Get the updated vector of values:
xkq (iter + 1) = [x1(iter + 1), . . . , xi(iter + 1), . . . ,
xN (iter + 1)]T .

Output: hq(iter + 1), xkq (iter + 1)

Fig. 1. Evolution of the possibilities of leader selection according to the decrease of
a.

part of the process, when a ≤ 1. This is coherentwith the paradigm
of the original Grey Wolf Optimizer [10], where exploration is
emphasized when a > 1, and exploitation is emphasized when
a ≤ 1.

The Fig. 1 illustrates how the separation between the explo-
ration phase and the exploitation phase is done in the proposed
algorithm. At the beginning of the process, when a ≃ 2, each
leader may be chosen with the same probability, which permits
to ‘explore’ the search space. When a decreases towards 0, the

last possibility in Eqs. (3) and (4) may be selected with a higher
probability, which permits to ‘exploit’ the corresponding promis-
ing location in the search space. Indeed, a wolf will then move
according to the leader α, which is the leader with the best fitness.

The leader xkl will rule the displacement of wolf xkq (iter) as
explained below.

At step 2a, each component of the vector of indexes hq(iter) is
updated as follows:

For each index i, i = 1, . . . ,N:

hi(iter + 1) = (hi(iter) + ∆ sgn(hl
i − hi(iter))) mod Hi (5)

where:

• sgn(·) denotes the sign function, which is such that sgn(z) =

−1 if z < 0, sgn(z) = 0 if z = 0, and sgn(z) = 1 if z > 0 for
any real value z;

• mod denotes the ‘Modulo’ operator, defined as follows: what-
ever the real values u ∈ R

+
and v ∈ R∗

+
:

u mod v =

{
u − v⌊u/v⌋ if u ̸= v

v if u = v, or u = 0 (6)

where ⌊·⌋ denotes integer part.
• ∆ is computed as follows:

∆ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if φ ≤

a
6

2 if φ > a
6 and φ ≤

2a
6

4 if φ > 2a
6 and φ ≤

3a
6

1 if φ > 3a
6

(7)

where φ is a random value in R, between 0 and 1.

As the parameter a is decreasing from 2 to 0 across the iter-
ations, it is more and more probable for the value 1 to be chosen,
and less and less probable for the larger values such as 2 and 4 to be
chosen. This means that, at the beginning of the process, the wolf
which is currentlymodifiedmaybedisplaced by 2 or 4 components
in the direction of the leader with a rather high probability, and
that, at the end of the process, it is highly probable that it will be
displaced by only 1 component in the direction of the leader.

This permits to explore the research space with large displace-
ment values at the beginning of the optimization process, and to
perform exploitation, with rather small displacements towards the
selected leader at the end of the optimization process.

Then, at step 3a the updated values hi(iter + 1), i = 1, . . . ,N ,
computed in Eq. (8) are stored in vector hq(iter + 1).

At step 2b:
each component of the updated vector of values xkq (iter + 1) is
computed as follows:

xi(iter + 1) = dval
i (hi(iter + 1)) (8)

Then, at step 3b the updated values xi(iter + 1), i = 1, . . . ,N ,
computed in Eq. (8) are stored in vector xkq (iter + 1).

When each vector, or ‘search agent’ xkq (iter + 1), q = 1, . . . ,Q ,
has been computed at step 5, the whole population of wolves is
updated at step 6, and one may increase the iteration index or
terminate the algorithm.At step7, vectorxkα contains the estimated
parameters K̂1, K̂2, . . . , K̂N .

The Fig. 2 illustrates a simple example with 3 possible updates
for a wolf ω. In this example, the α leader has been selected as the
leader that ω must follow. Moreover, there is only one parameter
to search with dval

= [11, 27, 29, 42, 58, 69, 87]T and H = 7.
Table A.1 presents, in cases 2a, 2b, and 2c, the index h(iter), the

updated index h(iter + 1) and the updated value x(iter + 1) =

dval(h(iter + 1)).
This improved discrete GWO is the most innovative part of the

mixed GWO proposed in this paper. In Section 3.2, we present its
continuous counterpart.
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Fig. 2. Examplification of a wolf update with the proposed discrete GWO.

3.2. Global continuous grey wolf optimizer

In Algorithm 3, we detail the continuous version of wolf leader
selection and wolf update for one parameter index i ∈ [1, . . . ,N]T

and one wolf index q ∈ [1, . . . ,Q ]T , at any iteration index iter.
To preserve the coherence with the proposed improved discrete
grey wolf optimizer, we introduce two randomwolves which may
also contribute to the displacement of any wolf. As these random
wolves help the algorithm to explore the search space and avoid
local minima, we call this version of GWO the Global Continuous
Grey Wolf Optimizer.

Algorithm3 Pseudo-code:Global ContinuousGreyWolf Optimiza-
tion for multiple parameter estimation
Inputs: xi(iter), ith component of a given wolf xkq (iter) at iteration
iter; leaders α, β , δ.

1. Compute the contributions yα
i , y

β

i , and yδ
i of wolves α, β , and

δ respectively to the displacement of the qth wolf.
This computation is detailed in Eqs. (11) and (12) below.

2. if a > 1 go to step 3, else if a ≤ 1 go to step 4
3. Compute the contributions yρ1

i and yρ2
i of wolves ρ1 and ρ2,

respectively to the displacement of the qth wolf.
This computation is detailed in Eqs. (11) and (12) below.

4. Compute the update position at the ith of the qth wolf:
if a > 1:

xi(iter + 1) =
1
5
(yα

i + yβ

i + yδ
i + yρ1

i + yρ2
i ) (9)

else if a ≤ 1:

xi(iter + 1) =
1
3
(yα

i + yβ

i + yδ
i ) (10)

Output: xi(iter + 1)

This updated position mentioned at step 4 of Algorithm 3 is
computed as the equal contribution of the leaders α, β and δ. If
a > 1, then the contributions of two randomwolves ρ1 and ρ2 are
also used. These contributions are computed as follows:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

yα
i = xα

i − b1 · dα
i ,

yβ

i = xβ

i − b2 · dβ

i ,

yδ
i = xδ

i − b3 · dδ
i ,

yρ1
i = xρ1

i − b4 · dρ1
i ,

yρ2
i = xρ2

i − b5 · dρ2
i

(11)

with:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

dα
i = |c1 · xα

i − xi(iter)|,

dβ

i = |c2 · xβ

i − xi(iter)|,

dδ
i = |c3 · xδ

i − xi(iter)|,

dρ1
i = |c4 · xρ1

i − xi(iter)|,

dρ2
i = |c5 · xρ2

i − xi(iter)|

(12)

where the scalars b and c are calculated as in the vanilla GWO:
b = 2ar1−a and c = 2r2. In these expressions, r1 and r2 are random
scalars between 0 and 1.

3.3. Extension to a mixed grey wolf optimizer

In a same problem, the expected parameters do not necessar-
ily belong to the same type of searching space. Some of these
parameters will be continuous while the others will be discrete
and though, they may be interdependent and should be estimated
simultaneously.Wewill refer to such problems asmixed problems.
Combining the improved discrete and global continuous GWO
methods proposed in Sections 3.1 and 3.2 respectively, we propose
a mixed GWOmethod. The following notations will be specifically
used for the mixed GWO, in addition to the notations presented in
Section 3.1:

• Assuming that the ith parameter Ki takes its values in a
continuous search space, itsminimumacceptable value is de-
noted by Kmin

i and its maximum acceptable value is denoted
by Kmax

i ;
• the interval of acceptable values for the parameter Ki in a

continuous search space is denoted by dval
i =

[
Kmin
i ; Kmax

i

]T .
Algorithm 4 describes the proposed mixed grey wolf optimiza-

tion while Figs. A.14 and A.15, available in the Appendix , describe
its flowchart.

Here are some remarks about Algorithm 4, the mixed GWO
algorithm:

The components of each search agent may be updated with
continuous update rules (see step 5b) or with discrete update
rules (see step 5d), whether they belong to continuous or discrete
search spaces. However, at a given iteration iter, a given wolf q
characterized by the vector of values xkq (iter) where continuous
and discrete parameters are mixed yields one common fitness
function value f (xkq (iter)) (see step 2).

Further in the paper, we will distinguish between two versions
of our mixed grey wolf optimizer, depending on the expression of
the parameter a: in the mixed GWO (denoted by mixedGWO) the
parameter a is expressed as follows:

a = 2(1 −
iter2

Tmax
2 ) (13)
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Algorithm4 Pseudo-code:Mixed GreyWolf Optimization formul-
tiple parameter estimation
Inputs: fitness function, small factor ϵ set by the user, to stop the
algorithm.

1. Set iteration number iter = 1, create an initial herd
composed of Q wolves with all required parameter values
xkq (iter), q = 1, . . . ,Q . This initial population takes the form
of a matrix with Q rows and N columns.

2. Evaluate fitness function value f (xkq (iter)) of each wolf
xkq (iter), q = 1, . . . ,Q .

3. Sort the wolves through their fitness value and update the
α, β , and δ wolves which hold respectively the first, second
and third best fitness value. Store their position in vectors
xkα , xkβ , and xkδ respectively. For the discrete parameters,
store the corresponding vectors of indexes of their discrete
components hα , hβ and hδ .

4. If a > 1, select two wolves ρ1 and ρ2, randomly among the
herd of Q wolves, with ρ1 ̸= ρ2. Store the vectors of values
xkρ1, x

k
ρ2 and, for the discrete parameters, the corresponding

vectors of indexes hρ1, hρ2.
Else if a ≤ 1, go to step 5.

5. Repeat steps for each wolf xkq (iter), q = 1, . . . ,Q :
For each component xi(iter) with i = 1, . . . ,N:

(a) if the ith parameter Ki takes its values in a continuous
search space then go to step 5b,
else ifKi takes its values in a discrete search space then
go to step 5d.

(b) Apply the continuous versions of wolf update and
displacement, proposed in Algorithm 3.
Skip steps 5d to 5e.

(c) select the leader xkl , and the displacement magnitude
∆ which will be used for the discrete parameters. For
this, refer to Eqs. (3), (4), (5), and (7).

(d) apply step 2a of algorithm 1 to get hi(iter + 1) as in
Eq. (5)

(e) apply step 2b of algorithm 1 to get xi(iter + 1) as in
Eq. (8)

6. Exchange the current populationwith the newone, obtained
at step 5

7. If iter < Tmax or f (xkq (iter)) > ϵ, increase iter, and go to step
2.

Output: estimated parameter values K̂1, K̂2, . . . , K̂N

In a second version, that we call adaptive mixed GWO and we
denote by amixedGWO, parameter a is such that:

a =

⎧⎪⎪⎨⎪⎪⎩
2
(
1 −

iterη
(Tmax/2)η

)
if iter ≤ Tmax/2

2
(
1 −

(iter−Tmax/2)
1
η

(Tmax/2)
1
η

)
if iter > Tmax/2

(14)

An elevated value of η encourages exploration during the first
phase, from iter = 1 to iter = Tmax/2; and exploitation during the
second phase, from iter = Tmax/2 + 1 to iter = Tmax.

The term ‘adaptive’ means that the expression of a is ‘adapted’
depending on the iteration index.

4. Performance evaluation on synthetic data

In this section, we evaluate the performances of the proposed
methods and comparative bio-inspired optimization methods,
when applied to the minimization of various unimodal or multi-
modal test functions. Unimodal functions exhibit only one global
minimum and no relative minima, whereas multimodal functions
exhibit several relative minima.

4.1. Experimental conditions

In this subsection, we present the experimental conditions
which, unless specified, are common to thewhole Section 4. Unless
specified, the results are computed over M = 30 independent
runs, Q = 30 search agents and Tmax = 3000 iterations for each
algorithm. The value for η in amixedGWO is empirically set to
η = 3, after performing a comparative evaluation with several
values between 1 and 10.

These experimental conditions are the same as in [11].
We have implemented the GWO, mGWO, and MODGWO (see

[10] and Algorithm 6, and [40] and Algorithm 7) comparative
methods so that they can be compared with the proposed
mixedGWO and amixedGWO (adaptive mixed GWO) in the same
conditions.

In Section 4, programs were written in C + +, and executed on
a PC running Windows, with a 3 GHz double core and 3GB RAM.

The performance metrics are the following:
We consider, for themth run, f (xkα)m, the fitness value obtained

at iteration Tmax for the best wolf, namely α:
• The statistical mean is the average (Avg.) of fitness values

acquired while running an optimization algorithm for different M
runs. The average performance of a given stochastic optimizer is
formulated in Eq. (15):

Avg =
1
M

M∑
m=1

f (xkα)m (15)

• The standard deviation (Std.) is a representation for the varia-
tion of the obtained best solutions foundwhile running a stochastic
optimizer for M different runs. Std is used as an indicator for
optimizer stability and robustness. If Std. is small, this means
that the optimizer converges always towards the same solution.
Conversely, if Std. is large, the results obtained are much more
random and the optimizer is less reliable. The standard deviation
is formulated in Eq. (16):

Std =

√ 1
M

M∑
m=1

(f (xkα)m − Avg)2 (16)

• The median (Med.) is the value separating the M
2 higher half

from the M
2 lower half of values obtained for f (xkα).

4.2. Benchmark functions

In this subsection, the benchmark functions used for the rest of
the section are presented.

Tests have been runon20benchmark functions in order to com-
pare the performance on a fully continuous problem of the pro-
posed mixedGWO algorithm and its adaptive version amixedGWO
to the vanilla GWO method and its modified version mGWO pro-
posed by Mittal et al. in [11].

The benchmark functions have been taken from [11] and can
be divided in 3 categories : the Unimodal functions, the Multi-
modal functions and the fixed dimension Multi-modal functions.
The functions’ expressions are presented on Tables A.2–A.4. The
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unimodal functions exhibit only one minimum, which is the ex-
pected global minimum. The multimodal functions exhibit several
minima, among them the expected global minimum.

Doubting from the expressions of the functions F12, F13 and
F19 presented in [11], we do not present results related to these
functions. For instance, we do not know the value of the constant
used in function F19.

4.3. Numerical results on synthetic data

In this subsection, the numerical results of our methods and
the state-of-the-art are presented. The Sections 4.3.1–4.3.3 are
respectively the results on the continuous functions, the discrete
functions and the mixed functions.

4.3.1. Results on continuous functions
The results we have computed are available in Table A.5 for the

Unimodal functions, Table A.6 for the Multi-modal functions and
Table A.7 for the fixed dimensionmulti-modal functions. Although
the average found minimum are close to each other, it can be
seen in Tables A.5 and A.6 that the vanilla GWO method and
the mGWO method remain slightly better than our method for
the Unimodal functions and the Multi-modal functions. However,
it can be seen in Table A.7 that the proposed mixedGWO and
amixedGWOmethods outperform the state-of-the-artmethods for
the fixed dimension multi-modal functions.

The Fig. 3 showcases the convergence plot of the four studied
methods on some of the fixed dimension multi-modal functions,
e.g. F20 to F23. Starting from the 1500th iteration, the curves of
the proposed amixedGWO remains constant for the functions F21,
F22 and F23, because the variations are on a scale inferior to 10−5,
therefore unseeable on the curves.

In all of the cases, either the mixedGWO or the amixedGWO
converges faster than the state-of-the-art methods.

We compare the proposed method to the state of the art with a
higher number of search agents Q = 48, but a smaller number
of iterations Tmax = 20. The comments that can be inferred by
the results obtained are similar to the case where Q = 30 and
Tmax = 3000 and are presented in Table A.8.

To statistically validate the results obtained on Table A.7 with
the fixed-dimension multi-modal benchmark functions, the
Wilcoxon test is used. The obtained p-value for the continuous
functions and the discrete functions are displayed on Table A.9. The
level of significance is set as p = 0.05. A (+) means that the first
compared method is better than the second, a (−) means that the
second compared method is better than the first and a (=) means
that there is no significant difference between the two compared
methods.

According to the p-values obtained with the Wilcoxon test, it
appears that the proposed method is usually better than the GWO
and the mGWO methods on the fixed dimension multi-modal
benchmark functions. Indeed it is significantly better in 19 cases
out of 36 and only significantly worse in 2 cases.

The proposed method amixedGWO has also been tested on the
CEC2014 benchmark functions [53], except the hybrid functions,
and compared to state-of-the-art methods such as PSO, GWO, ABC,
TSA, a genetic algorithm (GA) and simulated annealing (SA) [6]. The
average residual values obtained are available on Table A.10. The
tests have been done in the same conditions as previously, that is
Q = 30 and Tmax = 3000. When SA is used, we set the number
of ‘control points’ to 30, that is, the same value as the number of
agents Q used in the other methods.

These results follow the logic of what has been observed previ-
ously: the proposed mixedGWO is not the best method on strictly
continuous unimodal and multi-modal problems. However, the
proposed method is not meant for these kinds of problem but

rather for the fixed-dimension multi-modal ones and more partic-
ularly for the mixed problems. Moreover, it has been noted that, in
these conditions, the proposed method is at least twice faster than
the compared methods, for the same number of iterations and for
the same number of search agents.

4.3.2. Results on discrete functions
The unimodal functions from F1 to F6 will be used to test the

proposedmethod on discrete functions. A low dimension problem,
with only three variables, is considered, to be close to the multidi-
mensional image processing issue considered further.

The searching space is as follows: there will be a step of 1 in
between each possible value for the functions F1, F3 and F4 while
the step will be of 0.5 for the functions F2, F5 and F6.

The two proposed methods mixedGWO and amixedGWO are
compared with the MODGWOmethod, which is presented in [40].
The results obtained for each algorithmare presented in Table A.11.
For eachmethod, in addition to the average result and the standard
deviation, the medium value obtained is also indicated.

The results shown in Table A.11 confirm that the proposed
methods (mixedGWO and amixedGWO) outperform the state-of-
the-art method (MODGWO) on discrete problems. Moreover, as
indicated by the medium value, the optimal minimum has been
found on all the benchmark functions on at least 50% of the runs,
even on the function F5, which was not the case on the continuous
functions.

The Table A.12, available in theAppendix , showcases the results
obtained with the MODGWOmethods with much more iterations.
From these results, it appears that theMODGWOmethod needs an
elevated number of iterations in order to converge and approach
the optimal minimum still without reaching it.

To statistically validate the results obtained on Table A.11 with
the discrete benchmark functions, the Wilcoxon test is used. The
obtained p-values for the discrete benchmarks functions are dis-
played on Table A.13. The level of significance is set as p = 0.05.
A (+) means that the first compared method is better than the
second, a (−) means that the second compared method is better
than the first and a (=)means that there is no significant difference
between the two compared methods.

According to the p-values obtained with the Wilcoxon test,
it appears that the differences in the average values between
the MODGWO method and the proposed methods are significant.
However, the twoproposedmethodsmixedGWOand amixedGWO
seem not to hold significant differences between them.

4.3.3. Results on mixed functions
The Unimodal functions from F1 to F6 will be used to test the

mixedGWOmethod on mixed functions.
To be as close as possible to the considered image processing

application, there will only be 6 variables instead of 30. Out of
those 6 variables, 4will be discrete and 2 continuous. The searching
space is always in the same range as in the continuous case. For the
discrete values, there will be a step of 1 in between each possible
value for the functions F1, F3 and F4 while the step will be of 0.5
for the functions F2, F5 and F6. To tackle mixed problems, the com-
parative methods PSO, GWO, mGWO, ABC, TSA, GA and SA should
include a rounding process for the discrete parameters, what we
wish to avoid here. Only the two proposed methods mixedGWO
and amixedGWOwill be tested here. The results obtained for each
algorithmare presented in Table A.14. For eachmethod, in addition
to the average result and the standard deviation, themediumvalue
obtained is also indicated. The medium values obtained indicate
that the proposed methods have found the optimal minimum
value in at least 50% of the runs on the benchmark functions F1 to
F4. However, the proposed methods have difficulties to converge
correctly on the function F5, which is in accordance with the
results obtained on the continuous benchmark functions. But the
algorithms also converged correctly on the function F6.
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Fig. 3. Convergence plot of the functions ‘F20’, ‘F21’, ‘F22’ and ‘F23’.

Fig. 4. PaviaU 32 × 32 × 4 and PaviaU 256 × 256 × 103: Noise-free images.
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Fig. 5. PaviaU 32 × 32 × 4 and PaviaU 256 × 256 × 103: endmembers s1 (black) and s2 (blue), and expected spectrum y (red).

Fig. 6. Mean convergence plot with SNRin = ∞ and noise-free image as reference
X1 .

Fig. 7. Mean convergence plot with SNRin = ∞ and X̂ (16, 16, 4) as reference X1 .

5. Application to multidimensional image processing

5.1. Short state-of-the-art about multispectral image processing with
bio-inspired optimization methods

Generally speaking, an image is a multidimensional array,
whose values are accessed via indices: we need two indices to
access the values of a 2-dimensional (2-D) image, and 3 indices

to access the values of a 3-dimensional (3-D) image. Such a multi-
dimensional array is called ‘tensor’ [54].

A seminal work dedicated to tensor denoising consisted in
adaptingWiener filtering in a tensor framework, yielding the Mul-
tiway Wiener Filtering (MWF) [55], a subspace-based method re-
quiring the estimation of the dimension of the signal subspace,
also called rank, along each mode. The following notations are
adopted:X is the noise-free tensor,R is the noised tensor and X̂ is
the estimated tensor. In this paper, modes are indexed by i, and
third-order tensors are considered: multispectral images of size
I1 × I2 × I3. For i = 1, 2 or 3, Ii is the size of the multispectral
image along the ith mode: I1 is the number of rows, I2 the number
of columns, and I3 the number of bands. Impaired multispectral
images are expressed as: R = X + N , where tensor N stands
for additive independent and identically distributed zero-mean
Gaussian noise.

A signal subspace value for mode i is denoted by Ki. We denote
by X̂ (K1, K2, K3) the estimate provided byMultiwayWiener Filter-
ing applied to R with rank values K1, K2, K3. Details about MWF
can be found in [54,55].

In [56], MWF has been inserted into a wavelet framework to
denoise images while preserving details. The advantage of this
method is to preserve small features while denoising efficiently,
but requires the knowledge of numerous rank values. In [57], a
least squares (LS) criterion isminimizedwith PSO to estimate these
rank values.

In [50], GWO is adapted for hyperspectral band selection: the
authors propose to reduce the dimensionality of hyperspectral
images to improve classification results while removing irrelevant
spectral bands.

5.2. Simultaneous denoising and unmixing issue

Our purpose in this section is to show that the proposed mixed
greywolf optimizer is adequate to perform a simultaneous denois-
ing and unmixing of multispectral images.

5.2.1. Description of the proposed application
Denoising multispectral images is generally a preliminary step

before higher level image processing operations such as target
detection [58] or spectra unmixing [59]. One issue in this context
consists in finding a good compromise between the efficiency of
the image denoising process, and the accuracy of the forthcoming
unmixing process. Let y ∈RI3 be one spectrum of themultispectral
image X . For this spectrum y, supervised unmixing aims at esti-
mating the contributions of the spectral signature of materials in
the scene (called endmembers) for part of or all pixels in the scene.
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Fig. 8. PaviaU 256 × 256 × 103: (a) Noise-free, (b) impaired 10 dB, and (c) reference images.

Fig. 9. PaviaU 256 × 256 × 103. Denoised images obtained with (a) amixedGWO, (b) PSO, (c) GWO.

Note that ‘supervised unmixing’ means that the endmembers con-
tained in the image have been estimated by an endmember extrac-
tion algorithm such as vertex component analysis [60].

An example of linear mixing model involving two endmembers
is as follows:

y(λ) = (1 − λ)s1 + λs2 + n (17)

where λ is a mixing coefficient, and s1 and s2 both ∈ RI3 are the
two endmembers. n is a noise vector, which follows a zero-mean
Gaussian distribution.

The unmixing issue in the case of a linear mixing model is well-
known and tackled by non-negative matrix factorization [61] in
both supervised and unsupervised cases. We wish to exemplify
the ability of our mixed GWO optimization method with non-
linear mixing models. We assume that the endmember spectra are
known, and we wish to determine, among two possible types of
nonlinear mixing models, which one is the more suitable for the
data.

The consideredmodel for spectralmixture is denotedby y(f , λ1,

λ2), where f is the mixing model, either f0 or f1, successively
defined in the following.

The first model is the polynomial post-nonlinear mixing model
[62]:

y(f mix
0 , λ1, λ2) = f mix

0 (λ1, λ2) = gmix(s(λ1), λ2) + n (18)

where s =
[
s1, . . . , sI3

]T follows a linear mixing model of the two
endmembers s1 and s2:

s(λ1) = (1 − λ1)s1 + λ1s2 (19)

and gmix is a second-order polynomial non linearity:

gmix
: [0; 1]I3 → RI3

s ↦→
[
s1 + λ2s21, . . . , sI3 + λ2s2I3

]T
(20)

The second model is the generalized bilinear model [63]:

y(f mix
1 , λ1, λ2) = f mix

1 (λ1, λ2)

= (1 − λ1 − λ2)s1 + λ1s2 + λ2s1s2 + n (21)

In Eqs. (18) and (21), λ1 and λ2 are in [0; 1]. Moreover, n is an
additive independent and identically distributed zero-mean Gaus-
sian noise sequence. It is important to notice that both models
reduce to a linear model if λ2 = 0, such that they may be similar,
particularly for small values ofλ2. In thepolynomial post-nonlinear
mixing model of Eq. (18), the non-linear terms come from second-
order reflections. This model is also a simplified but reliable model
for many types of non-linearities [62]. In the generalized bilinear
model of Eq. (21), the non-linear terms come from multiple scat-
tering of photons between the two components s1 and s2 [63].

We propose, for the first time in this paper, to apply jointly the
denoising and the supervised unmixing process to a multispectral
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Fig. 10. PaviaU 256 × 256 × 103. Denoised images obtained with (a) ABC, (b) TSA, (c) GA, (d) SA.

image: the idea underneath is that the images could be specifically
denoised, in such amanner that the best possible unmixing results
are attained. For this, it is of great importance to choose adequately
a criterion to minimize.

5.2.2. Proposed criterion
With our amixedGWO method, we propose to minimize the

following criterion:

JLS(K1, K2, K3, f , λ1, λ2)

=
1

I1I2I3
∥X1 − X̂ (K1, K2, K3)∥2

+
1
I3

∥y(f mix, λ1, λ2) − ŷ(K1, K2, K3)∥2 (22)

where tensor X1 is a gross estimate of X , and X̂ (K1, K2, K3) is the
estimate provided byMultiwayWiener Filtering applied toRwith
rank values K1, K2, K3. Vector y(f , λ1, λ2) is the spectrum model,
where f , λ1, and λ2 should be estimated, and vector ŷ(K1, K2, K3)
is a spectrum, whose location is known, extracted from the ten-
sor estimate X̂ (K1, K2, K3). Generally, an anomaly detector such
as RX [64] locates some spectra of interest before they can be
unmixed.

5.3. Data description and evaluation criteria

In this subsection, we present the experimental conditions
which, unless specified, are common to the whole Section 5.

Hyperspectral andmultispectral images are now currently used
in remote sensing applications. In this context, devoted sensors
have been developed, such as AVIRIS sensor (Airborne
Visible/Infrared Imaging Spectrometer) [65], or ROSIS sensor (Re-
flective Optics System Imaging Spectrometer) [66]. Amultispectral
image can be obtained by selecting some important bands from the
hyperspectral images obtained by these airborne sensors. Most of
the multispectral aerial images are impaired by noise [58,67] from
solar radiation, or atmospheric scattering [68] for instance.

5.3.1. Image setup
We evaluate the performances of the proposed methods on

multispectral images. These images are extracted from the PaviaU
scene. These data were collected by the ROSIS sensor over the
urban area of Pavia University [66]. The spatial size of this image
is 610 × 340 pixels. The number of spectral bands is 103 in the
wavelength range from about 420 to 850 nm.

In the experiments, the values of the expected image X and
spectral mixture y are normalized between 0 and 1. The spectral
mixture is generated with the reflectance of vegetation for s1 and
the reflectance of soil for s2. The resulting spectrum is placed at
a specific location in the image, this location being known to ex-
tract the spectrum from the denoised image. The expected mixing
parameters are set to: f mix

= f mix
0 = 0, λ1 = 0.15, λ2 = 0.41.

The denoising results obtained are evaluated in terms of SNR.
We remind that SNR = 10 log10( ||X ||2

||X−X̂ ||
2 ).
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Fig. 11. PaviaU 256 × 256 × 103. Actual, denoised, and reconstructed spectra obtained with: (a) amixedGWO, (b) PSO, (c) GWO.

The images are artificially impaired with white, identically dis-
tributed random noise. The input SNR is denoted by SNRin and
the value for each experiment is presented in dB. The results are
evaluated in terms of output SNR denoted by SNRout . The unmixing
results are evaluated in terms of reconstruction error RE between
y and ŷ: RE =

√
1
I3

∥y − ŷ∥2.
We present statistical results obtained with images of size

32 × 32 × 4, from M = 10 runs, each with a different random
noise realization. We present also visual results with images of
size 256 × 256 × 103. For the RGB display of the multispectral
images, 3 representative bands are selected. They are in the red
(690 nm), green (550 nm), and blue (450 nm)wavelength domains
respectively. In Section 5, programs were written in Matlab R⃝, and
executed on a PC running Windows, with a 3 GHz double core and
3 GB RAM.

5.4. Parameter setting for the proposed and comparative optimization
methods

We solve a problem of multispectral image denoising and un-
mixing, involving four discrete parameters and two continuous
parameters.

To evaluate the performance of the proposed adaptive mixed
GWO (amixedGWO), we compare it with famous meta-heuristic
stochastic optimization methods: particle swarm optimization
(PSO) [8], grey wolf optimization (GWO) [11], artificial bee colony
(ABC) [23], tree seed algorithm (TSA) [24], genetic algorithm (GA)
[7], and simulated annealing (SA) [69]. PSO, GWO, ABC, TSA, GA,

and SA search continuous spaces. So, when integer values are
expected, we round the result they provide.

The tested algorithms require a few parameters which are set
once for all processed images: all methods are run with Tmax =

20 iterations. All methods including TSA are run in such a way
that the computational load they require when the image size is
32 × 32 × 4 is the same, that is, 1.5 s for all methods except ABC,
which requires 2.4 s, and SA which requires 2.0 s. For this, the
number of agents is Q = 12 for amixedGWO, PSO, GWO, and GA;
and Q = 6 for TSA and ABC.

We choose this relatively low number of agents and iterations,
compared to the experiments in previous sections, because for this
application the computational load required to compute the crite-
rion value is much higher, in particular when the image contains
more than 100 rows, columns or bands.

We remind that the first three expected parameters are the
ranks K1, K2, K3, the fourth is the type ofmixingmodel f mix, the fifth
and sixth are themixing coefficients λ1 and λ2. Table A.15 presents
the parameters used to define the search spaces for each unknown.

The number Hi of values in the search spaces for the ranks Ki,
i = 1, . . . , 3 is either 8, or the size of the image Ii, i = 1, . . . , 3
if Ii ≤ 16. Note that there are only two possible values for the
mixing model f mix, and that the acceptable values for the mixing
coefficients λ1 and λ2 are between 0 and 1.

For PSO, GWO, ABC, TSA, GA and SA, the search spaces are
continuous, with bounds which, ∀ i = 1, . . . , 6, are the first
and last values of dval

i , unless for i = 4, for which the lower
bound is 0, and the upper bound is 1. For the first four parameters,
that is, the rank values and the type of mixing model, all test
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Fig. 12. PaviaU 256 × 256 × 103. Actual, denoised, and reconstructed spectra obtained with:(a) ABC, (b) TSA, (c) GA, (d) SA.

values are rounded when the criterion is evaluated. Each run is
performed with a random initialization of the search agents in the
optimization algorithms. The ABC method is run with 4 onlooker
bees. In PSO, the acceleration constants γ1 and γ2 [8] are set to 2
and 3 respectively. The TSA algorithm is runwith ST = 0.9: a value
close to 1 is recommended for lower dimensional optimization
problems [24] and TSA should provide a fast convergence.

For GA the crossover probability is 0.9, and the mutation prob-
ability is 0.1. For SA we set a number of control points equal to 12,
that is, the same value as the one used for Q in the other methods.

5.5. Experimental results

In this subsection we provide results obtained from a multi-
spectral image extracted from PaviaU scene: statistical results are
computed on a small image, and visual results are computed on a
larger image.

Fig. 4 shows the noise-freemultispectral imageswhich are used
for the tests; and Fig. 5 shows the two endmembers, and the
expected spectrum, obtained with the parameters f mix

= f mix
0 = 0,

λ1 = 0.15, λ2 = 0.41.
In Section 5.5.1, we propose a school-case study in the ideal

situation where SNRin = ∞, in two cases, with two different
versions of the reference X1. In this noise-free case we expect the
optimization methods to yield a result tensor which is exactly the
reference X1.

In Section 5.5.2, we consider a realistic case: the image R is
impaired with some finite input SNR value, and the reference
image is obtainedwith aWiener filtering in Fourier domain, which
is a basic parameter-freemethod. This denoisingmethod is applied
band-by-band, for each spectral band of the processed image.

5.5.1. Convergence study on a school case
In this subsubsection, the input SNR is SNRin = ∞, and the

reference tensor X1 is either the noise-free image or the output of
MWF when applied to X with a priori known rank values.

First case: the reference is the noise-free tensor
The reference tensor X1 is here the noise-free tensor, and the

expected rank values are then K1 = I1 = 32, K2 = I2 = 32,
and K3 = I3 = 4. Fig. 6 presents the mean convergence plot
for this experiment, obtained with M = 10 runs. Table A.16
presents statistical results obtained on the expected parameters,
and Table A.17 presents the mean reconstruction error RE over the
M runs.

The convergence plot in Fig. 6, and the numerical results in
Table A.16 show that the proposed amixedGWO, PSO, andGWObe-
have best in this experiment. For instance, nomean estimated rank
value differs from the expected one by more than 1. TSA, ABC, GA
and SAunderestimate rank values,whichmay have an influence on
the estimation of themixing parameters. It also can be noticed that
themean estimated values ofmixingmodel f are elevated:wemay
face amultimodal optimization problemwith two relativeminima
which are very close to each other. Still, our method surpasses the
comparative methods in terms of convergence as shown in Fig. 6.
Also, we can see from Table A.17 that the reconstruction errors are
the smallest when the proposed amixedGWO or the comparative
GWOmethods are used.
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Fig. 13. Mean convergence plot with SNRin = 10 dB and Fourier Wiener as
reference X1 .

Second case: the reference is the output of MWF
In this paragraph, the input SNR is still infinite, but the expected

rank values are less than the image size. Indeed, the reference is the
output of MWF applied to the noise-free tensorX with rank values
which are as follows: K1 = 0.5I1 = 16, K2 = 0.5I2 = 16, and
K3 = I3 = 4. We expect from the optimization methods that they
retrieve these rank values.

Fig. 7 presents the mean convergence plot for this experiment,
obtained with M = 10 runs. Table A.18 presents statistical results
obtained on the expected parameters, and Table A.19 presents the
mean reconstruction error RE over the M runs. We notice there
exists a bias on the mixing model for all optimization methods,
possibly due to two local minima with a very similar score. Indeed
the RE values in Table A.19 are similar for amixedGWO, GWO,
TSA, and PSO, although, as we can see in Table A.18, PSO yields
an estimated value for the mixing model which is significantly
different.

In Table A.19, we can see that the reconstruction error is more
elevated than in the previous case: through filtering with low
rank values, the denoised spectrum is significantly different from
the expected spectrum. As the optimization methods aim for the
denoised spectrum, the RE value increases. The convergence plots
in Fig. 7, and show that our method surpasses the comparative
methods in terms of convergence.

5.5.2. Realistic case
In this subsection we consider a realistic case where the ref-

erence tensor is obtained with a parameter-free, simple method.
This method is a Wiener filtering process applied band-by-band
in Fourier domain. In this realistic case, the input SNR is less than
∞. We exemplify our method on a large image, with five different
values of input SNR: SNRin = 0, 5, 10, 15, and 20 dB. For SNRin =

10 dB we provide visual results for one run (see Figs. 8, 9, and 10),
as well as the mean convergence curves obtained on M = 3 runs
(in Fig. 13).

Tables A.20–A.22 present respectively the output SNR, the re-
construction error values and the global best for all input SNR
values. The overall rank for amixedGWO is 1 in all of these aspects,
though the output SNR is smaller than for at least one comparative

method, on input SNR values 5 and 15 dB. This means that, overall,
amixedGWOmay not yield the best rank values in terms of the sole
denoising. However, a good behaviour in terms of exploitation can
explain the values of reconstruction error, which are the smallest
for all input SNR value except 0 dB (see Table A.21). Table A.22
shows that the global best values are the smallest for amixedGWO
except on input SNR values 5 and 15 dB. In these cases amixedGWO
may yield a denoised spectrum which is the closest to the model
spectrum, but at the expense of the first term of the criterion in
Eq. (22).

From these resultswe can infer the following comments: thanks
to the improved discrete optimization process used to estimate the
rank values, the proposed amixedGWO seems to converge quickly
towards rank values which minimize both terms of the criterion
in Eq. (22), and has time to refine the estimation of the continuous
parameters (themixing coefficients). A compromisemust be found
in some cases: the spectrum of interest in the denoised image
may be the closest possible to the model spectrum, and not to the
corresponding spectra in the reference image.

Here are details about one run, which yielded the images in
Figs. 9 and 10, and the spectra in Figs. 11 and 12:

In this case, all methods except ABC and SA yield approximately
the same global best after convergence: 6.75 10−4 for amixedGWO,
8.63 10−4 for PSO, 6.87 10−4 for GWO, 1.97 10−3 for ABC, 8.61 10−4

for TSA, 7.60 10−4 for GA, 2.16 10−3 for SA.
The output SNR for the reference image is 12.79 dB. The output

SNR values (in dB) are respectively 18.35 for amixedGWO, 14.88 for
PSO, 17.83 for GWO, 8.64 for ABC, 16.26 for TSA, 18.91 for GA, and
8.54 for SA. So the denoised image with the best output SNR value
is provided by GA, but as can be seen in Figs. 9 and 10, a significant
difference only exists between the result obtained by ABC and SA
and the other methods, but the other images are very similar.

The reconstruction error values are respectively 1.20 10−3 for
amixedGWO, 1.94 10−3 for PSO, 2.47 10−3 for GWO, 2.92 10−3 for
ABC, and 2.69 10−3 for TSA, 2.90 10−3 for GA, and 1.08 10−2 for SA.

The RE value obtained with GWO or TSA is higher than for
amixedGWO, because one the one hand the RE is computed be-
tween the actual spectrum and the reconstructed one; on the other
hand the criterion which is minimized involves the difference
between the denoised spectrum and the reconstructed spectrum.

This is confirmed by the spectra displayed in Fig. 11: when
amixedGWO is used, the reconstructed spectrum (in red) is the
closest to the actual spectrum (in black), because the denoised
spectrum (in blue) is the closest to the actual spectrum. Somehow,
in this case, the balance between denoising and unmixing is better
when amixedGWO is used. Consequently, the denoised spectrum
is the closest possible to the model. As concerns the estimated
parameters, we could notice that the spatial ranks are elevated
(between 255 or 256 for all methods except ABC and SA), and
that the spectral rank is small (between 60 and 97 for all methods
except ABC and SA); it can also be noticed that TSA andGAprovided
f1 as spectrum model whereas f0 was expected, yielding though
small RE values. From this we infer that there may exist at least
two close relative minima in the minimized criterion. That is, we
faced a multimodal optimization problem.

6. Discussion

We have evaluated the behaviour of the proposed mixed GWO
and its adaptive version in the cases where the search spaces
are either continuous, discrete or mixed. From the results ob-
tained in Section 4, it can be concluded that the proposedmethods
mixedGWO and amixedGWO exhibit a good behaviour, with re-
spect to the algorithms of the GWO family (the original GWO and
mGWO), on the continuous case, reaching almost the same per-
formance as the state-of-the-art methods in most of the functions
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of a first benchmark [11], and outperforming them on the fixed
dimension multi-modal benchmark functions.

The proposed amixedGWOhas also been compared to the state-
of-the-art methods GWO, PSO, ABC, TSA, GA and SA using a second
benchmark, namely the CEC2014 functions. The obtained results
show the limits of the proposed method on strictly continuous
unimodal and multi-modal functions of the CEC2014 benchmark.
Indeed, the proposed method is outperformed by the state-of-the-
art methods, at the exception of GWO, and especially by TSA. How-
ever, the amixedGWO is at least twice faster than the comparative
methods.

On the discrete case, our mixedGWO and amixedGWO outper-
form the comparative MODGWO for all the functions we have
tested. Our mixedGWO and amixedGWO methods seem to be
applicable to a wider range of functions, and thereby possibly to
a wider range of concrete problems, which makes them promising
algorithms. In the mixed case, we have reached promising results
with mixedGWO, which are even better with amixedGWO. In
Section 5, we have considered an application to denoising and un-
mixing ofmultispectral images. This is a typical casewhere someof
the parameters, the rank values and the type ofmixingmodel, take
their values in discrete search spaces, and some other parameters,
themixing coefficients, on continuous search spaces.We infer from
the results obtained that the criterion we have chosen is a multi-
modal function of the parameters, because there exists a bias on
the estimatedmixingmodel, for some of the tested algorithms and
not for the others, with a small difference on the global best value
which is reached. The limitation of the proposed strategy relies on
the choice of the reference tensor: the convergence performance of
amixedGWO is good, but the criterion isminimizedwith respect to
a reference which may not be reliable.

7. Conclusion

In this paper, a short review of existing meta-heuristic, and
particularly bio-inspired methods such as PSO, ABC, TSA, GA, SA
and GWO has been firstly made. A novel method based on GWO
which is able to tackle continuous problems as well as discrete
or mixed problems has been proposed and named mixed GWO.
This method and its adaptive variant have been compared to the
already existing versions of the GWO algorithm on 20 contin-
uous benchmark functions. From these comparison, it has been
proven that the amixedGWO is able to tackle correctly continuous
problems with performances comparable to the other versions of
GWO, and outperforming them in the resolution of multi-modal
functions. Though outperformed by TSA in continuous functions
such as the CEC2014, the proposed amixedGWObehaves correctly,
and exhibits a smaller computational load.

The proposedmethods have also been tested on discrete bench-
mark functions and compared to the only discrete version of GWO
which is not restricted to binary problems, the MODGWO. In this
case, the amixedGWO method clearly outperforms the MODGWO
method and finds the optimal minimum, with a null standard
deviation, in 5 out of the 6 discrete benchmark functions. The
amixedGWO method has then been tested on mixed benchmark
functions. In these cases, the optimal minimum has been found
in 4 out of the 6 benchmark functions, while the amixedGWO
has correctly converged on all of the functions. These tests run on
several benchmark functions show that the proposed amixedGWO
method is able to tackle correctly various kinds of problems, disre-
garding the shape of their search spaces, whether they are contin-
uous, discrete, or mixed.

The robustness of the proposed approach has been tested on a
real-world application: for the first time, simultaneous denoising
and unmixing of multispectral images has been performed with
a bio-inspired optimization method. The goal of this application

Table A.1
Updated index values for cases illustrated in Fig. 2.
Case Wolf update

hl ∆ sgn(hl
− h(iter)) h(iter) h(iter + 1) x(iter + 1)

2(a) 6 1 +1 4 (4 + 1)mod 7 = 5 58
2(b) 6 4 +1 4 (4 + 4)mod 7 = 1 11
2(c) 2 1 −1 4 (4 − 1)mod 7 = 3 29

Table A.2
Unimodal benchmark functions.
Function Dim Range fmin

F1(x) =

n∑
i=1

x2i 30 [−100, 100] 0

F2(x) =

n∑
i=1

|xi| +

n∏
i=1

|xi| 30 [−10, 10] 0

F3(x) =

n∑
i=1

(
i∑

j=1
xj

)2

30 [−100, 100] 0

F4(x) = max{|xi|, 1 ≤ i ≤ n} 30 [−100, 100] 0

F5(x) =

n−1∑
i=1

[
100

(
xi+1 − x2i

)2
+ (xi − 1)2

]
30 [−30, 30] 0

F6(x) =

n∑
i=1

(xi + 0.5)2 30 [−100, 100] 0

F7(x) =

n∑
i=1

ix4i + random(0, 1) 30 [−1.28, 1.28] 0

being to find the best balance between the quality of the denoising
and the quality of the spectrum unmixing.

However, this application requires a reference image, involved
in the criterion which is minimized. Therefore, it could be in-
teresting to implement an iterative process, taking as an input
reference the image obtained from the amixedGWO method at
each iteration, in order to compensate the potential problem of
a bad reference. However, this study in out of the scope of the
paper, which aimed at studying the comparative performances of
bio-inspired optimizationmethods on simultaneous denoising and
unimixing of multispectral images.

In the future, it could be interesting to study the comparative
performances of various versions of GWO when the number of
parameters to estimate is changing, and, for the discrete version of
GWO, when the number of values in the search spaces is changing.
An adaptive search space combined with the graph theory could
be a solution. Moreover, it seems interesting to study the perfor-
mance of the proposed amixedGWO algorithm on other applica-
tions, and to create its multi-objective version. Finally, concerning
bio-inspired optimization in general, it could be interesting to
create a discrete version of the comparativemethodswe have used
such as ABC and TSA, which is not restricted to binary, and getting
inspired by the formalism we propose for our mixed GWO.
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Algorithm 5 Pseudo-code: Particle SwarmOptimization for multi-
ple parameter estimation
Inputs: fitness function, small factor ϵ set by the user, to stop the
algorithm, lower and upper bounds for each parameter.

1. Set iteration number iter = 1, create an initial population
composed of Q random particles with all required param-
eter values xkq (iter), q = 1, . . . ,Q . This initial population
takes the form of a matrix with Q rows and N columns.

2. Evaluate the fitness function value f (xkq (iter)) of each
particle xkq (iter), q = 1, . . . ,Q .

3. Update the local best particles pk
q (q = 1, . . . ,Q ), and the

global best particle gk,
4. Repeat steps for each particle q, q = 1, . . . ,Q :

(a) Compute displacement also called velocity
vkq (iter + 1)

(b) Compute position xkq (iter + 1)

5. Exchange the current populationwith the newone, obtained
at step 4.

6. If iter < Tmax or ||xkq (iter + 1) − xkq (iter)||> ϵ, increase iter,
and go to step 2.

Output: estimated parameter values K̂1, K̂2, . . . , K̂N contained in
gk.

Algorithm 6 Pseudo-code: Grey Wolf Optimization for multiple
parameter estimation
Inputs: fitness function, maximum number of iterations Tmax,
small factor ϵ set by the user, to stop the algorithm, lower and
upper bounds for each parameter.

1. Set iteration number iter = 1, create an initial herd
composed of Q wolves with all required parameter values
xkq (iter), q = 1, . . . ,Q . This initial population takes the form
of a matrix with Q rows and N columns.

2. Evaluate fitness function value f (xkq (iter)) of each wolf
xkq (iter), q = 1, . . . ,Q .

3. Sort the wolves through their fitness value and update the
α, β , and δ wolves which hold respectively the first, second
and third best fitness value. Store their position in vectors
xkα , xkβ , and xkδ respectively.

4. Repeat steps for each wolf xkq (iter), q = 1, . . . ,Q :

(a) Compute the contributions yα , yβ , and yδ of wolves α,
β , and δ respectively to the displacement of the qth
wolf.

(b) Compute the updated position xkq (iter + 1) of the qth
wolf:

xkq (iter + 1) =
1
3
(yα

+ yβ
+ yδ) (A.1)

5. Exchange the current population with the new one.

6. If iter < Tmax or f (xkq (iter)) > ϵ, increase iter, and go to step
2.

Output: estimated parameter values K̂1, K̂2, . . . , K̂N contained in
xkα .

Fig. A.14. The mixedGWO’s main flowchart.

Algorithm 7 Update rules for the Multi-Objective Discrete Grey
Wolf Optimizer

Kα
1 , K

β

1 , K
δ
1 , K

α
2 , K

β

2 , K
δ
2 hold for the first and second components

respectively of the leader vectors xkα, xkβ , xkδ . Let rand be a random
real number between 0 and 1.

K1 =

⎧⎨⎩
Kα
1 if rand ≤

1
3

Kβ

1 if rand > 1
3 and rand ≤

2
3

K δ
1 if rand > 2

3 and rand ≤ 1
(A.2)

K2 =

{
Kα
2 , Kβ

2 , or K δ
2 if rand ≤ a

K
′

2 if rand > a and rand ≤ 1
(A.3)



B. Martin, J. Marot and S. Bourennane / Applied Soft Computing Journal 74 (2019) 385–410 403

Table A.3
Multi-modal benchmark functions.
Function Dim Range fmin

F8(x) =

n∑
i=1

−xi sin
(√

|xi|
)

30 [−500, 500] −418.9829 × n

F9(x) =

n∑
i=1

[
x2i − 10 cos (2πxi) + 10

]
30 [−5.12, 5.12] 0

F10(x) = −20 exp

(
−0.2

√
1
n

n∑
i=1

xni

)
− exp

(
1
n

n∑
i=1

cos (2πxi)
)

+ 20 + e 30 [−32, 32] 0

F11(x) =
1

4000

n∑
i=1

x2i −

n∏
i=1

cos
(

xi√
i

)
+ 1 30 [−600, 600] 0

Table A.4
Fixed dimension multi-modal benchmark functions.
Function Dim Range fmin

F14(x) =

⎛⎜⎝ 1
500 +

25∑
j=1

1

j+
2∑

i=1
(xi−aij)

6

⎞⎟⎠
−1

2 [−65, 65] 1

F15(x) =

11∑
i=1

[
ai −

x1
(
b2i +bix2

)
b2i +bix3+x4

]2
4 [−5, 5] 0.00030

F16(x) = 4x21 − 2.1x41 +
1
3 x

6
1 + x1x2 − 4x22 + x42 2 [−5, 5] −1.0316

F17(x) =

(
x2 −

5.1
4π2 x21 +

5
π
x1 − 6

)2
+ 10

(
1 −

1
8π

)
cos x1 + 10 2 [−5, 5] 0.397887

F18(x) =
[
1 + (x1 + x2 + 1)2

(
19 − 14x1 + 3x21 − 14x2 + 6x1x2 + 3x22

)][
30 + (2x1 − 3x2)2

(
18 − 32x1 + 12x21 + 48x2 − 36x1x2 + 27x22

)]
2 [−2, 2] 3

F20(x) = −

4∑
i=1

ci exp

(
−

6∑
j=1

aij
(
xj − pij

)2) 6 [0, 1] −3.32

F21(x) = −

5∑
i=1

[
(X − ai) (X − ai)T + ci

]−1
4 [0, 10] −10.1532

F22(x) = −

7∑
i=1

[
(X − ai) (X − ai)T + ci

]−1
4 [0, 10] −10.4028

F23(x) = −

10∑
i=1

[
(X − ai) (X − ai)T + ci

]−1
4 [0, 10] −10.5363

Table A.5
Results of unimodal continuous benchmark functions with Tmax = 3000.
F GWO mGWO mixedGWO amixedGWO

F1 Avg. 1.08e − 205 3.03e − 263 1.17e − 177 2.50e − 115
Std. 0 0 0 6.53e − 115
Rank 2 1 3 4

F2 Avg. 1.15e − 118 1.30e − 152 2.80e − 104 6.55e − 66
Std. 3.62e − 118 2.79e − 152 7.11e − 104 6.78e − 66
Rank 2 1 3 4

F3 Avg. 6.23e − 41 8.60e − 53 2.83e − 41 4.24e − 31
Std. 3.24e − 40 4.69e − 52 1.52e − 40 2.31e − 30
Rank 3 1 2 4

F4 Avg. 1.69e − 40 2.97e − 58 3.38e − 38 3.17e − 22
Std. 7.18e − 40 7.15e − 58 8.43e − 38 5.92e − 22
Rank 2 1 3 4

F5 Avg. 26.336 26.375 27.248 26.556
Std. 0.843 0.743 0.959 0.674
Rank 1 2 4 3

F6 Avg. 0.487 0.495 1.916 0.834
Std. 0.282 0.238 0.524 0.382
Rank 1 2 4 3

F7 Avg. 3.06e − 04 2.09e − 04 3.10e − 04 2.27e − 03
Std. 1.8e − 04 1.33e − 04 1.75e − 04 8.78e − 04
Rank 2 1 3 4

Average rank 1.86 1.29 3.43 3.72
Overall rank 2 1 3 4
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Table A.6
Results of multi-modal continuous benchmark functions with Tmax = 3000.
F GWO mGWO mixedGWO amixedGWO

F8 Avg. −6311.745 −6378.536 −5970.654 −5783.265
Std. 1053.778 603.356 835.292 555.451
Rank 2 1 3 4

F9 Avg. 0 0 0 0
Std. 0 0 0 0
Rank 1 1 1 1

F10 Avg. 5.77e − 15 4.47e − 15 6.84e − 15 7.31e − 15
Std. 1.81e − 15 1.23e − 15 1.45e − 05 9.01e − 16
Rank 2 1 3 4

F11 Avg. 1.12e − 03 0 4.51e − 03 7.01e − 03
Std. 4.58e − 03 0 8.52e − 03 7.95e − 03
Rank 2 1 3 4

Average rank 1.75 1 2.5 3.25
Overall rank 2 1 3 4

Table A.7
Results of fixed dimension multi-modal continuous benchmark functions Tmax = 3000.
F GWO mGWO mixedGWO amixedGWO

F14 Avg. 4.1333240 2.9999936 4.9999841 2.8362586
Std. 4.6068296 3.8506485 5.0854562 3.6191509
Rank 3 2 4 1

F15 Avg. 3.09e − 03 3.68e − 03 4.40e − 03 9.90e − 04
Std. 6.90e − 03 7.59e − 03 8.12e − 03 3.66e − 03
Rank 2 3 4 1

F16 Avg. −1.03162845222 −1.03162845227 −1.03162845241 −1.03162845331
Std. 3.19e − 10 4.82e − 10 2.02e − 09 2.04e − 09
Rank 4 3 2 1

F17 Avg. 0.3979427 0.3979661 0.3979500 0.3979117
Std. 6.52e − 05 8.18e − 05 5.81e − 05 2.59e − 05
Rank 2 4 3 1

F18 Avg. 5.7000011 3.0000007 3.0000007 3.0000010
Std. 14.7885089 9.36e − 07 7.40e − 07 1.02e − 06
Rank 4 1 1 3

F20 Avg. −3.2563368 −3.2635423 −3.2980638 −3.2780500
Std. 0.0635625 0.0645893 0.0486790 0.0600625
Rank 4 3 1 2

F21 Avg. −9.8163635 −9.2886724 −9.9847094 −9.9847752
Std. 1.2818425 1.9692828 0.9224400 0.9224418
Rank 3 4 2 1

F22 Avg. −10.2257553 −10.2257344 −10.4028815 −10.4029327
Std. 0.9704291 0.9704252 4.02e − 05 5.98e − 06
Rank 3 4 2 1

F23 Avg. −10.1758610 −10.0856251 −10.5363495 −10.5364004
Std. 1.3720325 1.7518213 6.00e − 05 7.40e − 06
Rank 3 4 2 1

Average rank 3.11 3.11 2.33 1.33
Overall rank 3 3 2 1
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Table A.8
Results of fixed dimension multi-modal continuous benchmark functions with Q = 48 and Tmax = 20.
F GWO mGWO mixedGWO amixedGWO

F14 Avg. 6.6279133 6.0040172 5.4039278 4.8373139
Std. 4.4045817 4.4292795 4.9401453 3.9127446
Rank 4 3 2 1

F15 Avg. 6.33e − 03 5.16e − 03 2.47e − 03 2.12e − 03
Std. 8.84e − 03 8.12e − 03 5.41e − 03 4.43e − 03
Rank 4 3 2 1

F16 Avg. −1.0316125 −1.0315843 −1.0316106 −1.0314833
Std. 7.11e − 05 2.04e − 04 1.80e − 05 4.58e − 04
Rank 1 3 2 4

F17 Avg. 0.4028292 0.4061008 0.4059269 0.4015930
Std. 6.13e − 03 6.52e − 03 7.78e − 03 3.89e − 03
Rank 2 4 3 1

F18 Avg. 3.0068726 3.0047267 3.0038818 3.0036725
Std. 0.0112383 7.33e − 03 5.53e − 03 0.0107389
Rank 4 3 2 1

F20 Avg. −3.2051662 −3.2277292 −3.2343476 −3.2707007
Std. 0.1354030 0.09749126 0.0816793 0.0732078
Rank 4 3 2 1

F21 Avg. −7.4236776 −6.7810457 −7.0626588 −7.7753623
Std. 3.4666437 3.4520468 3.2961559 3.1887887
Rank 2 4 3 1

F22 Avg. −7.3167512 −8.7080669 −7.3722878 −9.2020850
Std. 3.5471189 2.5870188 2.7819184 2.3578537
Rank 4 2 3 1

F23 Avg. −8.8736678 −7.4909987 −8.9657624 −9.0310124
Std. 2.8332950 3.4994928 1.7369446 2.8311698
Rank 3 4 2 1

Average rank 3.11 3.22 2.33 1.33
Overall rank 3 4 2 1

Table A.9
Results of the Wilcoxon test on the fixed-dimension multi-modal functions in continuous search space.
Function mixedGWO vs. GWO mixedGWO vs. mGWO amixedGWO vs. GWO amixedGWO vs. mGWO

F14 0.057 (=) 0.277 (=) 0.154 (=) 0.631 (=)
F15 0.936 (=) 0.612 (=) 0.485 (=) 0.467 (=)
F16 1.94e − 08 (+) 4.11e − 03 (+) 4.20e − 11 (+) 9.04e − 07 (+)
F17 0.046 (−) 0.644 (=) 0.0345 (+) 0.406 (=)
F18 0.45 (=) 0.096 (=) 0.0120 (+) 2.41e − 05 (−)
F20 0.21 (=) 0.959 (=) 0.164 (=) 0.020 (+)
F21 3.06e − 08 (+) 0.018 (+) 3.13e − 09 (+) 3.06e − 08 (+)
F22 1.43e − 09 (+) 2.34e − 03 (+) 2.48e − 12 (+) 1.43e − 09 (+)
F23 2.16e − 11 (+) 0.0243 (+) 4.84e − 13 (+) 3.14e − 07 (+)

+/= /− 4/4/1 4/5/0 6/3/0 5/3/1

Table A.10
Average residual errors on the CEC2014 functions.
Function amixedGWO PSO GWO ABC TSA GA SA

F1 3070.2 462.8 1534.9 434.4 45.6 152.4 462.6
F2 396.6 514.7 1126.2 63 25.5 508.5 1033.2
F3 542.5681 342.5489 684.1074 96.8305 21.4919 162.4 3631.7
F4 1.00e − 04 0 4.6e − 03 0 0 1.14e − 13 3.41e − 13
F5 9.6e − 03 0 6.84e − 01 0 0 1.7e − 13 5.96e − 11
F6 3.8e − 03 0 8.2e − 03 0 0 2.27e − 13 1.36e − 12
F7 4.2e − 03 4.8e − 03 9.5e − 03 3.5e − 03 0 8.4e − 03 4.4e − 03
F8 1.33e − 01 0 7.18e − 02 0 0 2.27e − 13 1.48e − 12
F9 1.99e − 01 0 9.96e − 02 0 0 3.41e − 13 2.27e − 12
F10 49.2603 1.69e − 01 30.30 1.02e − 01 0 6.24e − 3 5.32e − 07
F11 4.0561 2.39e − 01 4.0174 9.89e − 02 4.8e − 02 3.5807 10.0860
F12 4.96e − 01 1.12e − 01 3.73e − 01 4.49e − 01 9.39e − 02 5.12e − 13 1.39e − 10
F13 3.38e − 02 3.81e − 02 4.18e − 02 4.78e − 02 1.41e − 02 2.75e − 02 6.25e − 02
F14 7.5e − 03 1.32e − 02 1.14e − 02 2.49e − 02 3.5e − 03 1.67e − 02 3.94e − 02
F15 2.24e − 02 0 1.04e − 02 2.00e − 04 0 1.38e − 02 1.38e − 02
F16 6.9e − 03 1.09e − 02 1.10e − 02 1.15e − 02 0 1.94e − 02 1.94e − 02
F23 99.0327 33.6887 112.9178 39.3915 7.56 160.4773 79.6581
F24 80.9750 89.8178 69.7263 57.1990 19.6872 100.6363 59.5095
F25 1.60e − 02 1e − 04 4.23e − 02 4.2e − 03 0 47.9145 1.34e − 05
F26 2.47e − 01 3.81e − 01 1.53e − 01 1.09e − 01 0 1.1451 12.8945
F27 2.08e − 01 5.37e − 02 4.18e − 01 1.02e − 01 5.5e − 03 5.96e − 01 2.85e − 01
F28 260.5198 28.8892 297.3808 107.5971 9.4956 176.3242 176.3536
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Table A.11
Results of unimodal benchmark functions in discrete search space with Tmax = 3000.
F Step MODGWO mixedGWO amixedGWO

Avg. Std. Med. Avg. Std. Med. Avg. Std. Med.

F1 1 8.100 5.880 6 0 0 0 0 0 0
F2 0.5 0.183 0.278 0 0 0 0 0 0 0
F3 1 7.100 4.428 5 0.067 0.254 0 0 0 0
F4 1 2 0.695 2 0.067 0.254 0 0 0 0
F5 0.5 23.217 17.849 18 4.650 8.394 0 2.583 5.173 0
F6 0.5 8.692 6.060 7.5 0 0 0 0 0 0

Table A.12
Results of MODGWO on unimodal benchmark functions in discrete search space with Tmax = 15,000
and Tmax = 30,000.
F Step Tmax = 15,000 Tmax = 30,000

Avg. Std. Med. Avg. Std. Med.

F1 1 2.73 1.64 2 1.20 0.98 1
F2 0.5 0.08 0.19 0 0.10 0.20 0
F3 1 2.60 1.81 2 1.40 0.97 1
F4 1 1.13 0.68 1 1.17 0.53 1
F5 0.5 7.93 6.42 7.5 4.53 3.77 4
F6 0.5 2.74 2.04 2 1.72 1.34 1.25

Table A.13
Results of the Wilcoxon test on discrete functions.
Function mixedGWO vs. MODGWO amixedGWO vs. MODGWO

F1 4.12e − 12(+) 4.12e − 12(+)
F2 1.09e − 02(+) 1.09e − 02(+)
F3 9.92e − 13(+) 1.96e − 12(+)
F4 4.62e − 12(+) 2.90e − 13(+)
F5 5.46e − 11(+) 8.05e − 10(+)
F6 1.18e − 12(+) 1.18e − 12(+)

+/= /− 6/0/0 6/0/0

Table A.14
Results of unimodal benchmark functions in mixed search space with Tmax = 3000.
F Step mixedGWO amixedGWO

Avg. Std. Med. Avg. Std. Med.

F1 1 0 0 0 0 0 0
F2 0.5 0 0 0 0 0 0
F3 1 0.100 0.257 0 0 0 0
F4 1 0.033 0.182 0 0 0 0
F5 0.5 6.351 8.749 2.771 4.084 5.318 2.771
F6 0.5 2.93e − 13 9.18e − 13 4.74e − 14 6.39e − 14 1.00e − 13 1.61e − 14

Table A.15
Search spaces for the optimization methods. Symbol • means irrelevant.
Expected parameter index i Search space

Hi dind
i dval

i

1,2,3 min(Ii, 8) [1, 2, . . . , Ii]T
[
1, Ii

Hi
, 2 Ii

Hi
, . . . , Ii

]T
4 2 [0, 1]T

[
f mix
0 , f mix

1

]T
5,6 • • [0; 1]T

Table A.16
Estimated parameters with SNRin = ∞ and noise-free image as reference X1 .
Parameters Expected values amixedGWO PSO GWO ABC TSA GA SA

K1 Avg. 32 32.0000 31.5858 31.9088 27.2380 32.0000 24.7749 15.0052
K2 Avg. 32 31.1999 32.0000 31.9635 27.2451 30.1649 30.1359 17.4724
K3 Avg. 4 3.900 3.9631 3.8694 3.1280 3.6024 2.6075 2.7257

f mix Avg. 0 0.2000 0.4023 0.2884 0.4048 0.4173 0.2926 0.5756
λ1 Avg. 0.15 0.1587 0.1387 0.1390 0.1037 0.0539 0.2137 0.1575
λ2 Avg. 0.41 0.5008 0.5352 0.4172 0.4683 0.3790 0.3836 0.3174
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Table A.17
Spectrum reconstruction error RE with SNRin = ∞ and noise-free image as reference X1 .
SNRin amixedGWO PSO GWO ABC TSA GA SA

∞ 1.85e − 03 4.14e − 03 1.77e − 03 1.41e − 02 7.68e − 03 4.14e − 02 5.90e − 02
Rank 2 3 1 5 4 6 7

Table A.18
Estimated Parameters with SNRin = ∞ and X̂ (16, 16, 4) as reference X1 .
Parameters Expected values amixedGWO PSO GWO ABC TSA GA SA

K1 Avg. 16 16.10 16.84 16.11 22.67 20.39 19.34 13.57
K2 Avg. 16 15.90 15.77 16.05 19.85 19.57 20.05 22.02
K3 Avg. 4 4 3.94 3.77 3.54 3.72 3.75 2.79

f mix Avg. 0 0.2 0.45 0.22 0.40 0.28 0.46 0.57
λ1 Avg. 0.15 0.114 0.097 0.088 0.162 0.124 0.053 0.404
λ2 Avg. 0.41 0.534 0.610 0.456 0.649 0.537 0.495 0.9999

Table A.19
Spectrum reconstruction error RE with SNRin = ∞ and X̂ (16, 16, 4) as reference X1 .
SNRin amixedGWO PSO GWO ABC TSA GA SA

∞ 7.20e − 03 8.90e − 03 7.748e − 03 1.017e − 02 8.022e − 03 1.35e − 02 1.20e − 01
Rank 1 4 2 5 3 6 7

Table A.20
Results denoising SNRout with various SNRin values in dB and Fourier Wiener as reference X1 .
SNRin Ref. amixedGWO PSO GWO ABC TSA GA SA

0 dB 3.99 9.333 7.659 7.745 5.560 8.429 8.45 6.42
Rank 8 1 4 5 6 3 2 7

5 dB 8.79 12.180 11.477 13.258 7.878 11.893 7.97 8.34
Rank 5 2 4 1 7 3 8 6

10 dB 13.24 17.777 14.159 17.108 7.719 15.310 8.88 2.49
Rank 5 1 4 2 7 3 6 8

15 dB 16.61 17.804 18.587 19.733 13.388 15.815 15.22 14.43
Rank 4 3 2 1 8 5 6 7

20 dB 18.26 22.664 20.869 22.653 17.417 18.504 15.37 13.21
Rank 5 1 3 2 6 4 7 8
Avg. Rank 5.4 1.6 3.4 2.2 6.8 3.6 5.8 7.2
Overall Rank 5 1 3 2 7 4 6 8

Table A.21
Results spectrum reconstruction error RE with various SNRin values in dB and Fourier Wiener as reference X1 .
SNRin amixedGWO PSO GWO ABC TSA GA SA

0 dB 2.81e − 03 4.44e − 03 3.51e − 03 5.30e − 03 2.80e − 03 4.00e − 03 2.53e − 02
Rank 2 5 3 6 1 4 7

5 dB 2.34e − 03 4.41e − 03 3.41e − 03 5.45e − 03 3.12e − 03 5.63e − 03 5.59e − 03
Rank 1 4 3 5 2 7 6

10 dB 2.47e − 03 3.12e − 03 3.02e − 03 3.68e − 03 2.69e − 03 2.79e − 03 5.17e − 03
Rank 1 5 4 6 2 3 7

15 dB 1.89e − 03 2.82e − 03 3.13e − 03 4.40e − 03 2.66e − 03 2.83e − 03 5.63e − 03
Rank 1 3 5 6 2 3 7

20 dB 1.92e − 03 2.82e − 03 2.09e − 03 2.75e − 03 2.59e − 03 4.26e − 03 4.28e − 03
Rank 1 5 2 4 3 6 7
Avg. Rank 1.2 4.4 3.4 5.4 2 4.6 6.8
Overall Rank 1 4 3 6 2 5 7
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Table A.22
Results Global best with various SNRin values in dB and Fourier Wiener as reference X1 .
SNRin amixedGWO PSO GWO ABC TSA GA SA

0 dB 2.094e − 03 2.894e − 03 2.699e − 03 2.264e − 03 2.433e − 03 6.14e − 03 1.74e − 02
Rank 1 5 4 2 3 6 7

5 dB 1.372e − 03 1.556e − 03 1.166e − 03 3.540e − 03 1.653e − 03 3.81e − 03 4.54e − 03
Rank 2 3 1 5 4 6 7

10 dB 6.642e − 04 1.044e − 03 7.137e − 04 2.046e − 03 7.620e − 04 2.26e − 03 7.88e − 03
Rank 1 4 2 5 3 6 7

15 dB 5.032e − 04 4.641e − 04 5.538e − 04 9.461e − 04 5.480e − 04 1.08e − 03 1.48e − 03
Rank 2 1 4 5 3 6 7

20 dB 2.929e − 04 3.418e − 04 2.931e − 04 4.792e − 04 3.919e − 04 7.71e − 04 1.90e − 03
Rank 1 3 2 5 4 6 7
Avg. Rank 1.4 3.2 2.6 4.4 3.4 6 7
Overall Rank 1 3 2 5 4 6 7

Fig. A.15. The mixedGWO’s Update Wolves Step flowchart.
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