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This work is devoted to the estimation of rectilinear and distorted contours in images by high-resolution methods. In the case
of rectilinear contours, it has been shown that it is possible to transpose this image processing problem to an array processing
problem. The existing straight line characterization method called subspace-based line detection (SLIDE) leads to models with
orientations and offsets of straight lines as the desired parameters. Firstly, a high-resolution method of array processing leads to
the orientation of the lines. Secondly, their offset can be estimated by either the well-known method of extension of the Hough
transform or another method, namely, the variable speed propagation scheme, that belongs to the array processing applications
field. We associate it with the method called “modified forward-backward linear prediction” (MFBLP). The signal generation
process devoted to straight lines retrieval is retained for the case of distorted contours estimation. This issue is handled for the first
time thanks to an inverse problem formulation and a phase model determination. The proposed method is initialized by means of
the SLIDE algorithm.

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. INTRODUCTION

The estimation of the characteristics of lines and object con-
tours from a sequence of binary images has been a widely
studied problem over the past few years [1–3]. This type of
problem is faced in robotic way screening, in the measure-
ment of wafer track width in microelectronics, and gener-
ally in aerial image analysis. The image contains straight lines
compound of black pixels with value “1,” over a white back-
ground with pixels value “0.” The detection and localization
of these straight lines are essential issues in image processing
[4].

The Hough transform can be used for this purpose [1, 2].
Although this method gives a good resolution even in pres-
ence of a relatively strong noise, some restrictions remain in
its use. These restrictions are due to the dependence on the
choice of the quantization step and the computational cost
for the bidimensional search of the maxima.

Array processing methods consist in conjugating the pa-
rameters of both arrays and received signals. Their efficiency
has been improved and led to efficient algorithms [5]. In
order to keep the resolution and reduce the computational
cost, the array processing methods [6, 7] have recently been

adapted to give the characteristics of multiple straight lines
out of an image.

In this paper, we first recall in Section 2 how to adapt
the estimation of straight lines as a classical array process-
ing problem as was developed earlier in the SLIDE algorithm
[8–10]. A straight line in an image is characterized by two
parameters that are successively estimated. In order to esti-
mate the orientation of the straight lines, the SLIDE algo-
rithm [6] employs a constant speed propagation scheme and
a high-resolution method [11, 12] that is based on the com-
putation of a covariance matrix [13, 14]. Two different meth-
ods devoted to the estimation of the offsets are set forth; the
first one is the extension of the Hough transform [1–3], and
the second one employs the spectral analysis method “mod-
ified forward-backward linear prediction” (MFBLP) [15] af-
ter setting a variable speed propagation scheme [9] for the
transcription of the content of the image as a signal.

The study dedicated to straight lines retrieval will be used
as a basis for the distorted contours estimation for which
we propose in Section 3 a new algorithm called ECAPMO
(estimation of contours by array processing methods and
optimization). By using this method the estimation of dis-
torted contours is obtained thanks to the contribution of array
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processing methods and numerical optimization by formu-
lating an inverse problem, starting from the data generated
from an image.

In Section 4, we show that it is possible to generalize this
method for single curve detection to a method for the re-
trieval of the characteristics of several curves in an image. In
Section 5, several examples illustrate the performances of the
proposed algorithms. In the case of straight lines estimation,
results obtained on binary images are presented, concerning
especially polygonal contours. Then the results obtained by
the ECAPMO method on distorted curves are commented.
Several examples of practical applications in various domains
are quoted.

2. STRAIGHT CONTOURS ESTIMATION

2.1. Data model: generation of the signals out of
the image data

Let I(x, y) be the recorded image (see [4, Figure 1 (a)]). We
consider that I(x, y) is a compound of d straight lines and
an additive uniformly distributed noise. Moreover, in this
model, image I(x, y) is supposed to contain only pixel val-
ues “1” or “0” [6]. Pixels “1,” which form the straight lines,
are called “useful pixels,” whereas “0” pixels are associated to
the background. The image size is N × C: it contains N lines
and C columns. Each straight line within an image is associ-
ated to an offset x0 on the X axis and to angle θ, between this
straight line and the line of equation x = x0 (Figure 1(b)).

It is possible to establish the analogy between the localiza-
tion of sources [7, 12, 16] in array processing and the recog-
nition of lines in image processing. For this purpose some
signals are generated out of the image data [10]: we create ar-
tificially, out of the N lines of the image matrix, N inputs to a
linear array composed of N equidistant sensors ranged along
the image side. The position of each pixel on a given line has
an influence on the signal received by the corresponding sen-
sor. We can therefore define the signal received by the ith sen-
sor as the superposition of the useful pixels belonging to the
corresponding line. When d lines are present in the image,
there are d nonzero pixels on the ith line of the image-matrix,
localized on the columns x1, . . . , xd, respectively. The signal
received by the sensor in front of the ith line, when no noise
is present in the image, is written as [4]

z(i) =
d∑

k=1

exp
(− jμxk(i)

)
, i = 1, . . . ,N , (1)

where μ is a propagation parameter [9, 10] that can be con-
stant or variable: we can consider a constant or variable pa-
rameter propagation scheme. First we consider the case of
only one line with angle θ and offset x0, as it is shown in
Figure 1(b). Supposing that the width, along the X axis, of
each line is equal to one pixel, the horizontal coordinate of a
straight line pixel in front of the ith sensor is

x(i) = x0 − (i− 1) tan(θ). (2)

Hence the signal received on the ith sensor is written as

z(i) = exp
(− jμx(i)

)
,

z(i) = exp
(− jμx0

)
exp

(
jμ(i− 1) tan(θ)

)
.

(3)

In this expression we took into account the possible values of
each pixel “1” or “0.” In the presence of d different straight
lines in the image and an additive noise, the signal received
on the sensor i is

z(i) =
d∑

k=1

exp
(
jμ(i− 1) tan

(
θk

))
exp

(− jμx0k
)

+ n(i),

(4)

where n(i) is the noise on the ith line that can be due to sev-
eral useful pixels. As a consequence of the presence of noisy
nonzero pixels, the linear variation of the phase in expression
(3) is no longer verified.

Defining

ai
(
θk

) = exp
(
jμ(i− 1) tan

(
θk

))
, sk = exp

(− jμx0k
)
,

(5)

expression (3) becomes

z(i) =
d∑

k=1

ai
(
θk

)
sk + n(i), i = 1, . . . ,N. (6)

Equation (6) gives the signal model that will be employed in
the following, and that fully characterizes the d lines within
the noisy image.

2.2. Estimation of the angles: overview of
the SLIDE method

The method for angles estimation falls into two parts: the
estimation of a covariance matrix and the application of a
total least squares criterion.

Numerous works have been developed in the frame of
the research of a reliable estimator of the covariance matrix
when the duration of the signal is very short or the number
of realizations is small. This situation is often encountered,
for instance, with seismic signals. To cope with it, numerous
frequency and/or spatial means are computed to replace the
temporal mean. In this study the covariance matrix is esti-
mated by using the spatial mean [17]. From the observation
vector we buildK vectors of lengthM with d < M ≤ N−d+1.
In order to maximize the number of subvectors, we choose
K = N + 1−M. By grouping the whole subvectors obtained
in matrix form, we obtain

ZK =
[

z1, . . . , zK
]
, (7)

where

zl = AM(θ)sl + nl, l = 1, . . . ,K. (8)
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Figure 1: The image model (see [4]). (a) The image-matrix provided with the coordinate system and the rectilinear array of N equidistant
sensors. (b) A straight line characterized by its angle θ and its offset x0.

AM(θ) = [a(θ1), . . . , a(θd)] is a Vandermonde-type matrix of
size M × d. The signal is supposed to be independent of the
noise; the components of noise vector nl are supposed to be
uncorrelated and to have identical variance. The covariance
matrix can be estimated from the observation subvectors as it
is performed in [4]. Using the subvectors in the forward and
the backward sense leads to a better estimation of the covari-
ance matrix [16, 18]. The eigen-decomposition of the covari-
ance matrix is, in general, used to characterize the sources
by subspace techniques in array processing. In the frame of
image processing the aim is to estimate the angle θ of the d
straight lines. Several high-resolution methods that solve this
problem have been proposed in the literature [11–13]. SLIDE
algorithm is applied to a particular case of an array consist-
ing of two identical subarrays [9]. It leads to the following
estimated angles [9]:

θ̂k = tan−1

[
1

(μ∗ Δ)
Im

(
ln

(
λk∣∣λk

∣∣

))]
, (9)

where {λk, k = 1, . . . ,M} are the eigenvalues of a diagonal
unitary matrix that relates the measurements from the first
subarray to the measurements resulting from the second sub-
array. Parameter μ is the propagation constant, and Δ is the
distance between two sensors. The determination of the off-
sets (x0k ) of the rectilinear curves forms the last step of the
method. It exploits the straight lines angles θk that have been
estimated previously.

2.3. Estimation of the offsets

The aim of this part is to present two methods that lead to
the estimation of the offsets of the straight lines, when their
angle is known. The first one is the well-known “extension
of the Hough transform” [14]. It is based on the projection
of the image along the straight line angle values. The sec-
ond proposed method remains in the frame of array process-
ing: it employs a variable parameter propagation scheme [8–
10] and uses a high-resolution method. This high-resolution

“MFBLP” method relies on the concept of forward and back-
ward organization of the data [17–19].

2.3.1. “Extension of the Hough transform” Method

We consider the polar parametrization. We call the represen-
tation of the values taken by the Hough transform for all con-
sidered values of polar coordinates θ and ρ “sinogram”. For a
fixed θ value, the sinogram depends only on the ρ variable.
The two polar coordinates can define a straight line. The dis-
tance {ρk} between the origin and the straight line indexed
by k is estimated by projecting the image along the orienta-
tion of polar coordinate θk and by retrieving

ρk = arg max−√2N≤ρ≤√2N

i=Np∑

i=1

c
(
ρ − xi cos θk − yi, sin θk

)
,

k = 1, . . . ,d,
(10)

where N is the size of the image, Np is the number of use-
ful pixels having components (xi, yi), contained in the image
and c is the real function defined for a given variable value r
and a width parameter R by

c(r) =
⎧
⎪⎨
⎪⎩

cos
(
π

2
r

R

)
if |r| < R,

0 otherwise.
(11)

The offsets are obtained by the relation

ρk = x0k cos θk. (12)

This method has a good behavior in the presence of noise.
In practice we will take R = 3 pixels. This parameter can
be reduced in order to improve the estimation of the off-
sets [14]. The drawback of the method is its numerical cost.
When the number of nonzero pixels in the image is large, the
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summation in (10) contains a large number of terms. A ma-
jor property of the extension of the Hough transform is that
the case of several straight lines for a given angle value can be
treated if several local maxima of the sinogram are selected.
These maxima are obtained for values of ρk which are pro-
portional to all offset values for a given orientation.

2.3.2. Proposed method: MFBLP

The variable speed propagation scheme method [8, 9] en-
ables the estimation of the offsets with a lower computa-
tional load than the extension of the Hough transform. We
associate to this specific signal generation scheme a high-
resolution method called “MFBLP” (modified forward back-
ward linear prediction). In a previous work (see [17]), the
concept of using forward-backward averaging led to effective
results when it was applied to the SLIDE algorithm.

The basic idea in this method is to associate a propaga-
tion speed which is different for each line in the image. By
setting artificially a propagation speed that linearly depends
on the index of the lines in the matrix, we will be able to ap-
ply a frequency retrieval method to compute the offset val-
ues. When the first orientation value is considered, the signal
received on sensor i (i = 1, . . . ,N) is then

z(i) =
d1∑

k=1

exp
(− jτx0k

)
exp

(
jτ(i− 1) tan

(
θ1

))
+ n(i);

(13)

d1 is the number of lines with angle θ1. When τ varies linearly
as a function of the line index, the measure vector z contains
a modulated frequency term. Indeed, we set τ = α(i− 1).

z(i) =
d1∑

k=1

exp
(− jα(i− 1)x0k

)

× exp
(
jα(i− 1)2 tan

(
θ1

))
+ n(i).

(14)

This is a sum of d1 signals that have a common quadratic
phase term but different linear phase terms. The first treat-
ment consists in obtaining an expression containing only lin-
ear terms. This goal is reached by dividing z(i) by the nonzero
term ai(θ1) = exp( jα(i− 1)2 tan(θ1)). We obtain then

w(i) =
d1∑

k=1

exp
(− jα(i− 1)x0k

)
+ n′(i), i = 1, . . . ,N.

(15)

The resulting signal appears as a combination of d1 sinusoids
with frequencies :

fk = αx0k

2π
, k = 1, . . . ,d1. (16)

Consequently, the estimation of the offsets can be transposed
to a frequency estimation problem. Estimation of frequencies

from sources having the same amplitude was considered in
[15]. In the following a high-resolution algorithm, initially
introduced in spectral analysis [15], is proposed for the esti-
mation of the offsets.

After adopting our signal model we adapt to it the spec-
tral analysis method called MFBLP [15] for estimating the
offsets.

We consider dk straight lines with given angle θk and ap-
ply the MFBLP method. We consider dk straight lines with
given angle θk and apply the MFBLP method to the vector w.
For a convenient representation the components of w will be
written [w1,w2, . . . ,wN ].

(1) For an N-data vector w, form the matrix Q of size
2 · (N − L)× L, where the subscript “∗” indicates conjugate:

Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

wL wL−1 · · · w1

wL+1 wL · · · w2

wL+2 wL+1 · · · w3

· · · ·
· · · ·

wN−1 wN−2 · · · wN−L
w∗2 w∗3 · · · w∗L+1

w∗3 w∗4 · · · w∗L+2

w∗4 w∗5 · · · w∗L+3

· · · ·
· · · ·

w∗N−L+1 w∗N−L+2 · · · w∗N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (17)

Build the length 2 · (N − L) vector:

h = [
wL+1,wL+2, . . . ,wN ,w∗1 ,w∗2 , . . . ,w∗N−L

]T
; (18)

L is such that

dk ≤ L ≤ N − dk
2
. (19)

(2) Calculate the singular value decomposition of Q:

Q = UΛVH. (20)

(3) Form the matrix Σ by setting to 0 the L− dk smallest
singular values contained in Λ:

Σ = diag
{
λ1, λ2, . . . , λdk , 0, . . . , 0, 0, 0

}
. (21)

(4) Form the vector g from the following matrix compu-
tation:

g = [
g1, g2, . . . , gL

]T = −V∗ Σ′ ∗UHh, (22)

where Σ′ is the pseudoinverse of Σ.
(5) Determine the roots of the polynomial function H ,

where

H(z) = 1 + g1z
−1 + g2z

−2 + · · · + gLz
−L. (23)
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(6) dk zeros of H are located on the unit circle. The
complex arguments of these zeros are the frequency values;
according to (16), these frequency values are proportional
to the offsets, the proportionality coefficient being −α. The
main advantage of this method comes from its low complex-
ity. Indeed, the complexity of the variable parameter prop-
agation scheme associated to MFBLP is much less than the
complexity of the extension of the Hough transform as soon
as the number of nonzero pixels in the image is increased.
This algorithm enables the characterization of straight lines
with same angle and different offset.

3. ESTIMATION OF NONRECTILINEAR CONTOURS IN
AN IMAGE AS AN INVERSE PROBLEM

In the previous sections we will recalled a specific formalism
for image representation and presented an application of the
high-resolution methods of array processing to the retrieval
of straight lines in an image.

In this section, we keep formalism retained for straight
lines retrieval. The more general case of distorted contour es-
timation is proposed. As in the previous sections, this prob-
lem can be considered as an array processing problem in
which a wave front has to be estimated. It is possible to make
an analogy with a physical phenomenon that can be observed
in wave physics. We suppose that the distorted curve actually
contained in the image can be assimilated to a distorted wave
front. Such a distorted front can be observed when the propa-
gation medium is not isotropic. In order to estimate the wave
front distortion, we propose to apply a recursive algorithm.
In [20], a similar problem is solved, in the case of a plane
wave received by a distorted antenna.

We propose a new method called ECAPMO (estimation
of contours by array processing methods and optimization)
for the estimation of continuous nonrectilinear contours. It
relies on the formulation of an inverse problem over the gen-
erated signals and the determination of phase fluctuations.

3.1. Retrieval of a general phase model

The ECAPMO method relies on the idea of a continuous
phase model. We propose to extend the formalism proposed
in [6] that sets the analogy between the phase model used in
array processing and a contour in image processing. Instead
of assuming that the phase model is known, that is, that there
exists a predefined model for the contour that we aim at re-
trieving, we create an artificial evolution of the wave front
and of the corresponding received signal. By setting a recur-
sive algorithm, we modify the phase of a current signal until
it is equal to the input signal generated out of the image. The
proposed ECAPMO method leads to the phase parameters
characterizing the distorted wave front.

In order to retrieve the characteristics of the wave front
corresponding to the distorted curve, we can start from an
initial signal corresponding to a plane wave front. We will
modify recursively the components of a current signal until
it becomes equal to the signal actually generated out of the
image.

3.2. Initialization of the proposed algorithm

Our recursive optimization algorithm needs to be initial-
ized. For this purpose, we choose as initialization param-
eters the phase values corresponding to a plane wavefront.
Through the signal generation formalism that we adopted,
this plane wavefront corresponds to a straight line in the im-
age. Therefore, in order to initialize our recursive algorithm,
we apply the SLIDE algorithm, which is supposed to return
the straight line that fits best the distorted contour which is
present in the image. In this section we consider only the case
where the estimated number d of curves is equal to one. The
parameters angle and offset recovered by the straight line re-
trieval method are employed to build an initialization vector
x0, containing the position of the pixels of the initialization
straight line:

x0 =
[
x0, x0 − tan(θ), . . . , x0 − (N − 1) tan(θ)

]T
. (24)

Figure 2 presents a distorted curve and also presents an ini-
tialization straight line that fits this distorted curve.

3.3. Distorted curve: proposed algorithm

We aim at determining the N unknowns x(i), i = 1, . . . ,N of
the image, forming a vector xinput, each of them taken into
account respectively at the ith sensor:

z(i) = exp
(− jμx(i)

)
, ∀i = 1, . . . ,N. (25)

The observation vector is

zinput =
[

exp
(
jϕ1

)
, . . . , exp

(
jϕN

)]T
(26)

with ϕi = −μx(i) representing the phase of sensor i. So we
try to recreate the signal from which we ignore the N param-
eters. We start from the initialization vector x0, characteriz-
ing a straight line that fits a locally rectilinear portion of the
curve to be studied. Then, with k indexing the steps of this
recursive algorithm, we aim at minimizing

J
(

xk
) = ∥∥zinput − zestimated for xk

∥∥2
, (27)

where ‖ · ‖ represents the norm induced by the usual scalar
product of CN . For this purpose we use gradient methods
with fixed step type. The vectors of the series are obtained by
the relation

∀k ∈ N : xk+1 = xk − λ∇(
J
(

xk
))

, (28)

where 0 < λ < 1 is the step for the descent. The recurrence
loop is

xk −→ zestimated for xk −→ J
(

xk
)
. (29)

The gradient is estimated using finite differences. We stop
when the gradient becomes lower than a threshold.

At this point, by minimizing the function J , we find
the components of vector x leading to the signal z which
is the closest to the input signal. Nevertheless, by employ-
ing the criterion of minimum square error between signals,
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Figure 2: A model for an image containing a distorted curve.

a phase indetermination over the input signal is remaining.
Therefore, we propose an algorithm that aims at canceling
the phase indetermination induced by the criterion that we
chose. This algorithm is based upon the continuity of the
phase of the signal which is actually generated out of the im-
age. Moreover we prove that the series (xk)k∈N actually con-
verges toward, a local minimum argument of the criterion J .
By defining as x̂l the components of x̂ and starting from the
relation

∀p ∈ Z, exp
(
jϕl

) = exp
(− jμxl

) = exp
(− jμx̂l

)

= exp

(
− jμ

(
x̂l +

2pπ
μ

))
,

(30)

we deduce that there exists an N-uplet of relative integers de-
noted by pl such that xinput = x̂ + (2π/μ)[p1, p2, . . . , pN ]T .

This relation is equivalent to a shift which is proportional
to 2π/μ between xl and x̂l for each line l of the image, or
to a phase delay appearing on the signals obtained on the
lines of the image matrix. The general formulation of the N-
components vectors which minimize the cost function J are
defined by

Arg minJ = x̂ +
2π
μ
ZN =

(
x̂1 +

2πp1

μ
, . . . , x̂N +

2πpN
μ

)
,

(
p1, . . . , pN

) ∈ ZN .
(31)

The choice of the descent method towards such a minimum
x̂ is such that

x̂ ∈ Arg miny

{∣∣y − x0
∣∣}

, (32)

where | · | symbolizes here the norm induced by the scalar
product in RN , and y ∈ Arg minJ . This implies that the main
characteristics of x̂ are

(1) to minimize the criterion J ,
(2) to guarantee that its distance to x0, that is, |x̂ − x0|

is minimum with respect to the distances of x0 to the
other solutions x of J .

The next step concerns the determination of the actu-
al values of the vector xinput. The uniqueness of the cor-
rect N-uplet for the reconstruction of the distorted wave re-
quires determination of at least one of the components xl
of x. At this stage of the method, the choice of an initial-
ization by a convenient straight line and the interest of the
work presented about the determination of the curves step
in. The hypotheses of curve continuity is exploited for this
purpose. A reconstruction method (going successively for-
ward and backward over the lines) of the curve is proposed
starting from a fixed point. Before going further, we choose
as an arbitrary point imax the maximum value of the set
{i = 1, . . . ,N} such that x̂i = x0 − (i − 1) tan θ, determined
from the data x0 and x̂. We obtain

pimax = 0, ximax = x̂imax . (33)

We set δ(μ) = Max{|x̂l−x̂l−1|, l = 2, . . . ,N}. For the forward
part over the remaining lines of the image matrix, for each
line l = imax, . . . ,N , we determine successively ml ∈ N such
that |x̂l − x̂l−1 − (2π/μ) sign(x̂l − x̂l−1)ml| < δ(μ) and we set
pl−1 = sign(x̂l − x̂l−1)ml. For the descent method over the
lines, we start anew for l = imax + 1, . . . ,N − 1 by increasing
the index l for the two relations above.

3.4. Convergence of the gradient method

For k → +∞ the series xk converges towards a vector x̂ such
that

zinput = zx̂. (34)

That is to say, x̂ is the argument a local minimum of J con-
tained in the neighborhood (in the sense of topology) of x0.
Let us denote for all k ∈ N, Rk = λ‖∇J(xk)‖. The order-one
Taylor series of J over the Rk radius ball centered on xk allows
us to write

∀ω ∈ RN , |ω| ≤ Rk,

J
(

xk + ω
) = J

(
xk

)
+

〈∇J(xk
)
,ω

〉
+ |ω|ε(ω).

(35)
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Thus for ω = −λ∇J(xk), with λ small enough so that ω
have negligible norm, we obtain

J
(

xk − λ∇J(xk
)

︸ ︷︷ ︸
xk+1

) = J
(

xk
)− λ

∥∥∇J(xk
)∥∥2 ≤ J

(
xk

)
. (36)

That is to say,

∀k ≥ 0, J
(

xk+1
) ≤ J

(
xk

)
. (37)

The series (xk)k∈N induces the decrease of J with

lim
k→+∞

∇J(xk
) = 0. (38)

This proves the convergence of the proposed optimization
algorithm.

3.5. Summary of the proposed algorithm

An outline of the proposed distorted contour estimation
method is given as follows:

(1) derive artificial signals using (1);
(2) apply SLIDE algorithm: estimate line angle and offset

that fits best the distorted contour (see Sections 2.2
and 2.3);

(3) initialize the ECAPMO method using the straight line
parameters obtained after applying the straight line re-
trieval method;

(4) estimate the fluctuations of the position of the pixels
around the initialization straight line by using the gra-
dient algorithm;

(5) solve the phase indetermination problem, by using the
hypothesis of continuity of the curve.

3.6. Numerical complexity of the method

We previously defined Np as the number of nonzero pixels,
and d as the number of straight lines. With given values of
these parameters and of the image size parameter N , the or-
der of magnitude of the complexity of the angle estimation
method is Np + N · (

√
N + d) [9, 14].

Concerning the algorithm of offset estimation, let us re-
call that L is a parameter chosen close to N , and dk is the
number of parallel lines with a given orientation index k. In
practice L is the integer part of (N − dk/2).

For signal generation, 7 · Np operations are needed to
obtain the signal z of (13). For each of the d orientations
found through constant parameter propagation, the signal w
of (15) is obtained from the signal z with 4 + 3 ·N opera-
tions. For the MFBLP method, we consider the case when
one offset is expected for each orientation value. We chose
for the parameter L the value N − 1. The procedure “roots”
employed at step (5) in order to find the zeros of the poly-
nomial function H is based on an eigen-decomposition of
an L × L matrix. This eigen-decomposition dominates the

other operations realized by the MFBLP algorithm in terms
of complexity. Thus the complexity of this dominant step is
L3 or equivalently (N − 1)3. Therefore, the order of magni-
tude of the computational complexity of the offset determi-
nation algorithm is 7 ·Np + d · (4 + 3 ·N + (N − 1)3).

The complexity dominating part of our algorithm for
curve distortion estimation is the iterative algorithm. Let
“Niter” be the number of iterations necessary for the conver-
gence of the algorithm. We count the number of operations,
neglecting the time required by the additions, and including
one storage operation for the current value of the estimated
vector xk of a current iteration k. Computing and storing the
vector x0 from the parameters angle and offset given by the
initialisation step requires N + 1 operations. For each itera-
tion k, including one storage operation for each computed
value of∇J(xk), we obtain the following results.

(1) The numerical derivative∇J(xk) requires the compu-
tation of two values of the function J , computed for vector xk

and an incremented version of xk, and one division by the in-
cremental vector. Then, 10 ·N operations are needed for the
computation of the function J . The substraction of two suc-
cessive values of the function J and a division by the size N
incremental vector needs N operations. So, 2·(10·N)+N+1
operations are needed for the computation and storage of the
derivative∇J(xk).

(2) N operations are needed for the multiplication of
∇J(xk) by λ, so the computation of xk+1 from (28) and the
storage of xk+1 needs N + 1 operations.

So N + 1 operations are needed for the computation of
x0, and 22 · N + 2 operations for the computations of all it-
erations. In total, N + 1 + Niter · (22 ·N + 2) operations are
needed. Some experimental results about the computational
time required for the distorted curve retrieval method will be
presented in the Section 5.

4. GENERALIZATION OF ECAPMO FOR THE
ESTIMATION OF SEVERAL CURVES

In this section we consider the case where the estimated
number of curves d is larger than one. We will suppose
that each curve is composed of a single pixel per line in
the image. Therefore the model for the input signal zinput =
[z(1), z(2), . . . , z(N)]T is

z =

⎡
⎢⎢⎢⎢⎢⎣

z(1)
z(2)

...

z(N)

⎤
⎥⎥⎥⎥⎥⎦
=

d∑

k=1

⎡
⎢⎢⎢⎢⎢⎣

exp
(
jϕ1k

)

exp
(
jϕ2k

)

...

exp
(
jϕNk

)

⎤
⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎣

n(1)
n(2)

...

n(N)

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

exp
(
jϕ11

) · · · exp
(
jϕ1d

)

exp
(
jϕ21

) · · · exp
(
jϕ2d

)

...
. . .

...

exp
(
jϕN1

) · · · exp
(
jϕNd

)

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

1
1
...

1

⎤
⎥⎥⎥⎥⎦

+ n

= A(ϕ)s + n,

(39)
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where A(ϕ) is a matrix of size N × d taken as a model for the
matrix of the directional vectors of the sources and s is the
vector of sources amplitudes, all equal to 1.

So the term ϕik ∈ ] − π,π] represents the phase of the
transfer function of the system source k and sensor i having
an amplitude equal to 1. The source vector related to source
k is

a
(
ϕk

) = [
exp

(
jϕ1k

)
, exp

(
jϕ2k

)
, . . . , exp

(
jϕNk

)]T
. (40)

Referring to matrix notations, we obtain thus

A(ϕ) = [
a
(
ϕ1

)
, a

(
ϕ2

)
, . . . , a

(
ϕd

)]
(41)

so that we can define an application written as z, such that to
every matrix variable

ϕ = [
ϕ1,ϕ2, . . . ,ϕd

] =

⎡
⎢⎢⎢⎢⎣

ϕ11 . . . ϕ1d

ϕ21 . . . ϕ2d
...

. . .
...

ϕN1 . . . ϕNd

⎤
⎥⎥⎥⎥⎦

(42)

we associate the vector z(ϕ) such that

z(ϕ) =
d∑

k=1

⎡
⎢⎢⎢⎢⎢⎣

exp
(
jϕ1k

)

exp
(
jϕ2k

)

...

exp
(
jϕNk

)

⎤
⎥⎥⎥⎥⎥⎦
= A(ϕ)s. (43)

To all z(ϕ), we associate a real value written as J ◦ z(ϕ). If
we consider both J and z as functions of a vector or matrix
variable, ◦ denotes composition between functions J and z.
The function which is obtained is applied to variable ϕ such
that

J ◦ z(ϕ) = ∥∥zinput − z(ϕ)
∥∥2
. (44)

From a numerical point of view we stack successively the
columns ϕi of the matrix ϕ of size N × d in a vector φ of
size N · d such that

φ =

⎡
⎢⎢⎢⎢⎣

ϕ1
ϕ2
...
ϕd

⎤
⎥⎥⎥⎥⎦
. (45)

We set z̃(φ) = z(ϕ) and we replace the previous problem by

Minimize J̃(ϕ) = ∥∥zinput − z̃(φ)
∥∥2
. (46)

We initialize φ taking as column-vectors ϕi the vectors of the
d straight lines obtained by the method for the case of the
rectilinear contours x0k , k = 1, . . . ,d. We use afterwards the
gradient methods in order to estimate a vector φ̂ minimizing
J̃ . In the case when d = 1, we find anew the work presented
in Section 3.

5. SIMULATIONS

This section falls into three parts dedicated to the efficiency
of the use of high-resolution methods that we presented in
this paper. The first part concerns the estimation of rectilin-
ear curves. The second one concerns the estimation of dis-
torted curves. In each part several examples are given in order
to emphasize the potential of the high resolution methods for
image processing.

5.1. Application in the case of rectilinear curves in
binary images

As a first example, we propose an application of our method
in the case of robotic vision. Figure 3(a) is a photography
taken by a camera and transmitted to the automatic com-
mand of a vehicle moving on the railway. This vehicle is used
in particular for servicing of railways, that is, for the replace-
ment of the parallel crosspieces. The vehicle, when moving
along the railway, determines first the position of the rails
from the obtained picture. Then, the position of the near-
est crosspiece is detected. It places itself over the detected
crosspiece and the replacement of this one is performed by
an auxiliary engine. The iterative replacement of the cross-
pieces is realized step by step. First, the position of the rails
is determined. The array processing methods of “SLIDE”
and variable propagation scheme associated to MFBLP are
employed. The result of this determination is presented in
Figure 3(b). Referring to the retrieved position of the rails,
the vehicle decides about the correction to give to its progres-
sion. Once the rails are retrieved, the image is processed once
again. The localization of the first crosspiece is performed
and presented in Figure 3(c). The crosspiece can be detected
by changing the position of the antenna (this technique is de-
scribed in [10]). The process is repeated and the crosspieces
are retrieved iteratively. For this grey-level image, the com-
putational time which is required to retrieve the two rails by
means of SLIDE algorithm, when MFBLP method is associ-
ated to the variable speed generation scheme, is the follow-
ing: the estimation of the angles needs 0.063 second, and the
estimation of the offsets needs 1.1 seconds. As a comparison,
the Extension of the Hough Transform, employed with the a
priori knowledge of the angles, needs 47 seconds to find the
offsets of the two lines that fit the rails.
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Figure 3: (a) Image transmitted to the automatic command of a vehicle that is moving on a railway for the servicing of the railways. (b)
Detection of the rails for the progress of the vehicle. (c) Localization of the first crosspiece that the vehicle has to replace. The process is
iterated crosspiece after crosspiece: photography, detection of the rails, and detection of the next crosspiece.
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Figure 4: (a) Noisy image containing a convex polygon the summits of which we aim at detecting. (b) Superposition of the segments that
fit the sides of the polygon, estimated by our method, and the original image.

We exemplify now the estimation of convex objects con-
tours with polygonal geometry, as a second application case.
Our method is employed to retrieve the characteristics of a
polygon, namely, the number of sides and the coordinates
of the summits. For this purpose, the straight lines that fit
the sides of the polygon are determined by the method. The
number and the parameters (angles, offsets) of the straight
lines allow respectively to estimate the number of sides and
the summits. The summits are fitted by considering the poly-
gon as the smallest convex of the image, corresponding to
the common intersection of the half-plans associated respec-
tively to the support straight lines. Figure 4(a) presents the
case of a polygon included in a noisy image. This image con-
tains 15% of randomly distributed noisy pixels. The straight
lines that fit the sides are given in Figure 4(b) and are deter-
mined in spite of the presence of noise in the image. For an
image with more noisy pixels, a bias on the values of angle
and offset can appear. It is difficult to obtain a valuable result
from images with more than 20% of randomly distributed
noisy pixels.

Figure 5 presents the result obtained on an image con-
taining a set of roughly aligned points. Like images contai-

ning dashed lines, this kind of images leads to generated
signals that are not continuous. Nevertheless the employed
method manages to retrieve the main direction of the points
of the image [21]. The image in Figure 5(a) contains a set
of points. Figure 5(b) shows the result given by our line
detection algorithm; in Figure 5(c) the superposition of the
initial image and the result obtained shows that the overall
orientation of these points is efficiently retrieved by the pro-
posed method.

5.2. Simulations on nonrectilinear contours

This part is dedicated to the method employed in order to re-
trieve distorted curves. Several examples of use of ECAPMO
are presented. Figure 6 presents a curve that we wish to deter-
mine. This distorted contour containing an almost straight
section is a typical example of curve retrieved by the method
ECAPMO. The different steps of the method are presented in
Figure 7.

In the example in Figure 8, we chose a curve presenting
some shift of the useful pixels of the curve at the beginning
and at the end of its shape. The ECAPMO manages to return
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Figure 5: The main direction of a set of points.
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Figure 6: An image the contour of which exemplifies the distorted curves our method can cope with.

the shift values. In the example in Figure 9 are presented the
results obtained with an image containing a single curve. For
this 200 × 200 image, with a 3.0 Ghz pentium processor, the
initialization needs the following computational times: the
estimation of the angle takes 0.047 second, the estimation of
the offset takes 0.66 second. As a comparison, when the ex-
tension of the Hough transform [2] is employed for the esti-
mation of both angle and offset of the initialization straight
line, the computational time is 8.54 second. The computa-
tional time required to run the iterative algorithm of the
ECAPMO method is 0.80 second; 1800 iterations were nec-
essary while solving the inverse problem in order to obtain
this result. Figure 10 shows the results obtained in the case
of a noisy image. This image contains 10% of randomly dis-
tributed noisy pixels. The curve is still efficiently retrieved.
In Figure 11 appears a figure with two distorted curves. The
specific method described in Section 4 is employed in this
case. It manages to retrieve the two curves. Figure 12 shows
that the method for distorted contour estimation copes with
straight lines as well. The specific algorithm was applied in
common to both distorted curve and straight line of the
image. The slight bias on the offset value is canceled by the
algorithm for distorted curves estimation.

Some practical situation was examined in Figure 13.
This image symbolizes a vehicle and two road borders. The

algorithm for the estimation of all contours is the following.

(i) The borders of the road are obtained through an ini-
tialization step: they are the two dominant directions
in the image.

(ii) Referring to the information obtained in step (1), the
vehicle in the center is isolated. Then its contours are
estimated.

(iii) The algorithm dedicated to multiple-curve images is
applied in order to estimate finely the borders of the
road.

6. CONCLUSION

This paper handles the case of the contour retrieval in im-
ages. The formulation and resolution of rectilinear contour
estimation can be transposed to a classical array processing
technique. The rectilinear contours parameters appeared as
real parameters of a source localization problem in array pro-
cessing. In particular, we proposed the association of an ar-
ray processing method and a frequency estimation method
called MFBLP for the estimation of the offsets.

For the main point of the article, that is, estimation of
distorted contours, we adopted the same conventions for sig-
nal generation. The work dedicated to rectilinear contours



S. Bourennane and J. Marot 11

50

100

150

200
50 100 150 200

(a)

20

40

60

80

100

120

140

160

180

200
50 100 150 200

(b)

20

40

60

80

100

120

140

160

180

200
50 100 150 200

(c)

Figure 7: (a) Initialization of the method. (b) Determination of the vector x̂. (c) Junction of the different parts of the curve by determining
the coefficients pl.
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Figure 8: An image and the different steps of the method: original image, initialization, estimation obtained before sticking sections together,
and final estimation. The method manages to return the shifts.
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Figure 9: The main results obtained by distorted contours estimation: (a) image to be treated, (b) initialization, (c) estimation obtained by
the proposed method, (d) difference between the initial image and the estimation.
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Figure 10: Distorted contours estimation on a noisy image: (a) image to be treated, (b) initialization, (c) estimation obtained by the proposed
method, (d) superposition of the initial image and the estimation.
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Figure 11: The case of an image containing two distorted curves: (a) image to be treated, (b) initialization, (c) estimation obtained by the
proposed method, (d) difference between the initial image and the estimation.
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Figure 12: Results obtained by the method for several curves estimation One curve is a straight line: (a) image to be treated, (b) initialization,
(c) estimation obtained by the proposed method, (d) difference between the initial image and the estimation.
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Figure 13: A practical situation is simulated. A vehicle and the two sides of the road are retrieved. (a) Initial image. (b) First estimation of
the borders of the road. (c) Estimation of the sides of the vehicle (d). Refined estimation of the borders of the road.

was employed as an initialization step for an optimization
technique.The contribution of high-resolution methods and
the gradient method led to the elaboration of an efficient
algorithm: ECAPMO. A recursive algorithm that is initial-
ized by means of the straight line retrieval method estimates
the fluctuations of a distorted curve around its main straight
direction. Retrieval of straight and distorted curves was il-
lustrated by numerical simulations showing the efficiency of
the proposed methods. Thanks to the formalisms retained
for the retrieval of general contours from image data, array
processing and image processing got closer to each other.
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