
Improvement of a Wavelet-Tensor Denoising

Algorithm by Automatic Rank Estimation

Julien Marot(B) and Salah Bourennane

Ecole Centrale Marseille, Institut Fresnel, Aix Marseille University,
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Abstract. This paper focuses on the denoising of multidimensional data
by a tensor subspace-based method. In a seminal work, multiway Wiener
filtering was developed to minimize the mean square error between an
expected signal tensor and the estimated tensor. It was then placed in
a wavelet framework. The reliable estimation of the subspace rank for
each mode and wavelet decomposition level is still pending. For the first
time in this paper, we aim at estimating the subspace ranks for all modes
of the tensor data by minimizing a least squares criterion. To solve this
problem, we adapt particle swarm optimization. An application involving
an RGB image and hyperspectral images exemplifies our method: we
compare the results obtained in terms of signal to noise ratio with a
slice-by-slice ForWaRD denoising.
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1 Introduction

Hyperspectral images (HSI) are now currently used in remote sensing applica-
tions, for instance for aerial survey [1]. Most of HSIs, acquired by Hyperspec-
tral Digital Imagery Collection Experiment (HYDICE) and Airborne Visible/
Infrared Imaging Spectrometer (AVIRIS) sensors, are impaired by noise from
solar radiation, or atmospheric scattering [2]. Hence the interest of denoising
HSIs, before applying further processings such as target detection.

Relation with Previous Work in the Field. A seminal work consisted in
adapting Wiener filtering in a tensor framework, yielding the Multiway Wiener
Filtering (MWF) [3], a subspace-based method requiring the estimation of ranks,
usually performed with the statistical Akaike information criterion (AIC) [4],
working best with a very high number of signal realizations. Recently, the
MWPT-MWF (Multidimensional Wavelet Packet Transform-Multiway Wiener
Filtering) method has been proposed [1,5], yielding good results in terms of
signal to noise ratio (SNR) and classification accuracy. The drawback of this
method is that a large number of subspace rank values must be estimated to
ensure accurate denoising results. In [1], a study about the accurate depth of
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the wavelet decomposition has been performed, but the subspace ranks are still
estimated with AIC.

Goal and Contributions. In this paper, we propose a criterion and an opti-
mization strategy based on particle swarm optimization (PSO) [6] to estimate
the subspace ranks in MWF. We extend this strategy to the case where MWF is
included in a wavelet framework. We infer from the large number of rank values
to be thereby estimated that an accurate estimation has even more influence on
the denoising quality.

Outline. Section 2 sets the problem of the subspace rank estimation in MWF
and propose a criterion to minimize. In Section 3 we adapt PSO to rank esti-
mation. In Section 4, we integrate rank estimation in a wavelet framework. In
Section 5, the denoising results obtained with PSO or AIC are compared with
truncation of HOSVD, MWF, or ForWaRD method [7].

2 Problem Setting

We consider a noisy multidimensional signal, also called tensor: a signal X
impaired by a multidimensional additive white noise N [8]. The additive case
generally holds for hyperspectral images [4,9]. As concerns the white noise
assumption, it is also generally adopted for multidimensional images [8], and
permits to focus on the main issue of this paper. In the case where the noise is
not white, a prewhitening process could be applied as proposed in [10]. Thus,
this tensor can be a model for an HSI, expressed as : R = X +N . Tensors R, X ,
and N are of size I1 × I2 × I3. For each spectral band indexed by i = 1, . . . , I3,
the noise N(:, :, i) is assumed stationary zero-mean. We aim at denoising tensor
R with a subspace-based method. Subspace-based methods have been shown
to exhibit good denoising results when applied to data with salient main ori-
entations in the image [11]. They provide an estimated signal tensor which,
generally in the literature and in the remainder of this paper, is denoted by X̂ .
This estimate depends on the so-called ’subspace ranks’ {K1,K2,K3} which
must be estimated. In the literature, the method which is proposed to estimate
the subspace ranks is the AIC (Akaike Information Criterion) [8]. AIC estimates
correctly the number of sources in an array processing problem. However, a large
number of realizations of the same random signal are then available, hence the
good behavior of AIC. Usually, in the frame of HSI processing, through a sta-
tionarity hypothesis, a covariance matrix is computed from the column vectors
of the unfolded matrix obtained from the HSI, which are considered as real-
izations of the same random signal. AIC is applied to the eigenvalues of the
covariance matrix obtained for each mode of the HSI [4]. However, it has been
shown empirically that there is no clear domination of a subset of eigenvalues
with high magnitude with respect to the others [4]. Hence, evaluating the best
subspace ranks based on the eigenvalues only is not reliable. We propose to
estimate the rank values through the minimization of a least squares criterion.
MWF minimizes the MSE (mean square error) between expected and estimated
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tensor. So, we propose to minimize an MSE criterion to estimate the subspace
ranks. It should increase the SNR values compared to an estimation with AIC.
As a scalar criterion to estimate the subspace ranks K1, K2, K3, we choose:

J(K1,K2,K3) = ||R − X̂ ||2, (1)

where ||.|| represents the Frobenius norm. The criterion J is a nonlinear function
of the parameters K1,K2,K3, hence the need for an adequate optimization
method, which must be global.

3 Particle Swarm Optimization for Rank Estimation

Some global optimization methods may be available to minimize the criterion
J of Eq. (1), but they exhibit some drawbacks: the DIRECT method [12], for
instance, would assume J to be a Lipschitzian function of the ranks, which
may not handle. The Nelder-Mead Simplex Method [13] is meant to minimize
a scalar-valued nonlinear function of several real variables, without any deriva-
tive information. However, as specified in [13], the global convergence of the
Nelder-Mead method is ensured only in a one-dimensional problem, and only if
some conditions about the parameters involved in the method are respected. On
the contrary, particle swarm optimization [6] provides the global minimum of a
scalar function of several variables and is gradient-free. The basic PSO algorithm
consists, for the current iteration number it, in computing the velocity:

v
K1,K2,K3

q (it + 1) = W v
K1,K2,K3

q (it)...

... + γ1q r1q(p
K1,K2,K3

q − y
K1,K2,K3

q (it))

... + γ2q r2q(G
K1,K2,K3 − y

K1,K2,K3

q (it)) (2)

and the position:

yK1,K2,K3
q (it + 1) = yK1,K2,K3

q (it)

... + vK1,K2,K3
q (it + 1) (3)

In (2) and (3), vK1,K2,K3
q (it) is the velocity of particle q at iteration it in a

3-dimensional space because there are 3 unknowns, W is the inertia weight, γ1q

and γ2q are the acceleration constants encouraging a local and a global search
respectively, r1q and r2q are random numbers between 0 and 1, applied to the
qth particle, pK1,K2,K3

q is the best position found for particle q, GK1,K2,K3 is

the best position found over the whole group, and yK1,K2,K3
q (it) is the current

position of particle q at iteration it. A large inertia weight (W ) facilitates a
global search while a small inertia weight facilitates a local search. We look for-
ward to encourage a global search for the first iterations, and a local search
for the last iterations. Hence, we fix an initial value WInit and a final value
WFinal for the weighting coefficient. At the iteration it, the weighting coefficient

is computed as: W = WInit −
(WInit−WF inal)∗it

maxit , where maxit is the final iter-
ation number. When this last iteration number is attained, the position vector
yK1,K2,K3(maxit) contains the final estimated values K̂1, K̂2, K̂3, of the signal
subspace ranks.
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4 Extension to the Wavelet Framework

We wish to adapt rank estimation to the most recent version of MWF, that is, its
implementation in a wavelet framework [1]. This makes a reliable rank estimation
method even more relevant: one triplet of rank values must be estimated for
each wavelet coefficient. Following [1], minimizing the MSE between X and its
estimate X̂ is equivalent to minimizing the MSE between CX

l,m and ĈX
l,m for

each m:

‖X − X̂‖2 = ‖CX
l
− ĈX

l
‖2 =

∑

m

‖CX
l,m − Ĉ

X
l,m‖

2
(4)

where CX
l

is the wavelet packet coefficient tensor for levels in l = [l1, l2, l3]
T
, CX

l,m

is the coefficient subtensor of CX
l

where m = [m1,m2,m3]
T

is the index vector,
1 ≤ mk ≤ 2lk − 1, k = 1, . . . , 3.

We wish to minimize all terms of the summation in Eq. (4), knowing that the
noise-free tensor X is not available. For this we propose Algorithm 1, multidi-

mensional wavelet packet transform and multiway Wiener filtering with rank esti-

mation by particle swarm optimization (MWPT-MWF-PSO). In Algorithm 1,
H1,m,H2,m,H3,m denote the n-mode filters of MWF, which depend on rank
values (K1,K2,K3) [1,8]; CR

l,m denote the wavelet coefficients of R.

Algorithm 1 MWPT-MWF-PSO

Input: noisy tensor R.
• compute the wavelet decomposition of the noisy tensor R: CR

l = R×1 W1×2 W2×3

W3

• extract the wavelet coefficients [1]:
CR

l,m = CR

l ×1 Em1
×2 Em2

×3 Em3
,

• for each wavelet coefficient CR

l,m:

i) estimate with PSO the optimal rank values K̂1, K̂2, K̂3 in terms of the criterion:
Jm(K1, K2, K3) = ||CR

l,m − Ĉ
X

l,m||
2

where ĈX

l,m = CR

l,m ×1 H1,m ×2 H2,m ×3 H3,m.
As PSO is a global optimization method, algorithm 1 is supposed to converge asymp-
totically towards the best set of rank values. In practice, the total number of iterations,
that is, the parameter maxit is fixed automatically: the algorithm stops when the cri-
terion Jm(K1, K2, K3) does not vary from an iteration to another by a small factor ε

set by the user.
ii) apply MWF to each coefficient subtensor CR

l,m, with the optimal rank values.

• obtain ĈX

l by concatenating all coefficients ĈX

l,m.

• reconstruct the final estimated tensor by inverse wavelet transform: X̂ = ĈX

l ×1

WT
1 ×2 WT

2 ×3 WT
3

Output: denoised tensor X̂ .
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5 Results

In this section, we apply the proposed method based on multiway Wiener fil-
tering, multidimensional wavelet packet transform and particle swarm optimiza-
tion, and comparative methods such as ForWaRD [7] on an RGB image and on
real-world HSIs acquired by an AVIRIS sensor. ForWaRD is originally a decon-
volution and denoising method. It includes first a Fourier Wiener filtering step
and secondly a Wavelet filtering step. In the first step, a deconvolution process
is proposed in the original paper [7]. In this paper, we avoid deconvolution as it
is not required for the processed data, and use ForWaRD strictly as a denois-
ing method. Programmes were written in Matlabr language, and executed on
a PC computer running Windows, with a 3GHz double core and 3GB RAM.
The images are artificially impaired with white, identically distributed random
noise. The denoising performance will be evaluated through SNR and PSNR:

SNR = 10 log( ||X ||2

||X−X̂ ||2
) and PSNR = 10 log( ||max(X )||2

||X−X̂ ||2
), where max denotes

maximum value. The numerical results are computed from images truncated to
the size 200 × 200 × 64 to avoid the border issues. In the wavelet decomposi-
tion, following the recommendations in [1] we choose Coiflets and Daubechies
wavelet functions. To choose adequately the number of decomposition levels for
the considered noise level, we tested the two combinations proposed in [1]: either
two or three decomposition levels for the space modes and no decomposition in
the wavelength mode. Choosing l = [2, 2, 0]

T
, the results obtained with PSO are

slightly better than with three decomposition levels, and those obtained with
AIC hardly change. This yields 16 wavelet coefficients (4 coefficients for each
level), which are 3rd-order tensors of size 64×64×64 for which the rank for each
mode must be estimated. We initialize the ranks with a random value between
8 and 64. For this purpose we run the PSO algorithm with a swarm size 25
and a parameter ε = 10−6. This generally yields maxit = 150 iterations. The
acceleration constants γ1i and γ2i are set to 2 and 3 respectively; the initial
and final values of W are set to 0.9 and 0.4. ForWaRD is implemented with
Daubechies wavelets, and two decomposition levels [7]. In the following subsec-
tions we present the numerical and visual results obtained with either ForWaRD
algorithm [7], the truncation of HOSVD [8], or MWF [8] with the rank values
which have been empirically found to yield the best results in terms of SNR;
and MWF-MWPT in two configurations: the subspace ranks being estimated
by AIC, and the subspace ranks being estimated with PSO (the proposed algo-
rithm). As specified throughout the section, the input SNR is set to 10 dB for
the first experiments, and then to 5, and 15 dB. For the RGB display of the
hypespectral images throughout the section, we select 3 representative bands in
the red, green, and blue wavelength domains respectively.

5.1 RGB Image

We apply denoising to the standard three-channel color image ‘Lena’ truncated
to size 256 × 256. First, Table 1 provides the numerical results obtained when
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we impair the image in such a way that the input SNR is 10 dB. The original
noise-free, noisy, and denoised images are displayed in Fig 1. Table 1 and Fig. 1

Table 1. SNR and PSNR values for the noised image; MWF with ranks fixed to 50,
50, 3; MWF of the multidimensional wavelet packet coefficients with rank estimation
by AIC or by PSO (proposed method).

X
X

X
X

X
X

X
X

X
Method

Criterion
SNR PSNR

Noised image 10.00 20.20
MWF 14.17 19.06

MWF-MWPT:
• AIC 14.85 19.75
• PSO 17.00 21.90
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Fig. 1. a) Raw image; b) Noised image (10 dB); Denoising result: c) MWF, d) AIC,
e) PSO.

show that the proposed method performs well on a color image, compared to
MWF and the case where AIC criterion is used to estimate the ranks in a wavelet
framework. Indeed for an input SNR of 10 dB the proposed method provides a
denoised image with an output SNR of 17.00 dB, MWF provides 14.17 dB and
AIC 14.85 dB. In the next two subsections, hyperspectral images are considered.
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5.2 Hyperspectral Image AVIRIS 1

The HSI AVIRIS 1 is of size 256×256×64, containing 64 wavelength channels. It
contains rather straight orientations crossing the image. Hence, we expect that
the original MWF, which applies a subspace-based filtering on the whole image,
without wavelet decomposition, will provide rather good results. The ranks for
the truncation of HOSVD and MWF are fixed to 50,50,20. The numerical results
are provided in Table 2.

Table 2. AVIRIS 1: SNR and PSNR values for the noised image; Truncation of the
HOSVD; MWF; MWF of the multidimensional wavelet packet coefficients with rank
estimation by AIC or by PSO (proposed method).

X
X

X
X

X
X

X
X

X
Method

Criterion
SNR PSNR

Noised image 10.00 20.20
Truncation HOSVD 21.20 30.68

MWF 22.72 32.83
MWF-MWPT:

• AIC 15.96 26.07
• PSO 21.30 31.41

When PSO is used, along the spatial modes, the ranks obtained for the
approximation coefficients are between 20 and 64 (the maximum possible value),
decreasing to 8 for the detail coefficients; along the wavelength mode, the rank is
8 (the smallest possible value). When AIC is used, along the spatial modes, the
rank values vary from 1 to 64 without distinguishing between approximation and
detail coefficients; along the wavelength mode, the rank values vary between 47
and 64, therefore much more elevated than in the case where PSO is used. Hence
the lower noise magnitude in the case where PSO is used. Table 2 shows that, in
the particular case of this image, MWF performs slightly better, in terms of SNR,
than the proposed method. We notice however that estimating the rank values
with PSO yields a better result than when AIC is used. However, the proposed
method based on PSO provides the best visual result, as shown in Fig. 2 which
presents the original noise-free (a), the noised (b), and denoised images for the
comparative methods from c) to e) and the proposed method (f). Particularly,
the contours are better preserved. See for instance the region between rows 120
to 140 and columns 30 to 80. A zoom on these regions is provided in Fig. 3. We
infer from Fig. 3 that the proposed method better preserves the grey level values
of each band in small regions.

The results obtained on the HSI AVIRIS 1 yields the following overall
comments: when horizontal and vertical contours are present, there is no
improvement -in terms of SNR- provided by the combination of wavelet decom-
position and a subspace-based method such as MWF. However, the visual aspect
is improved when the wavelet decomposition is performed. For the HSI AVIRIS
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Fig. 2. AVIRIS 1: a) Raw image; b) Noised image (SNR 10 dB); Denoising result: c)
Truncation of HOSVD, d) MWF, e) AIC, f) PSO.
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Fig. 3. Zoom on AVIRIS 1: a) Raw image, b) truncation of the HOSVD, c) MWF,
d) AIC, e) PSO.

1, MWF takes advantage of the vertical and horizontal features present along
the two spatial modes [8]. When small features are present instead, the interest
of wavelet decomposition and of a correct subspace rank value in each mode will
be emphasized.
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5.3 Hyperspectral Image AVIRIS 2

In this subsection, we present results obtained on the HSI AVIRIS 2, of size
256 × 256 × 64, where the relevant features are localized on some regions of the
image. From the presence of such small local features we expect methods based
on wavelet decomposition to provide better results compared to subspace-based
methods, because wavelet decomposition permits to separate the processing of
high frequency and low frequency features. We compare the results obtained with
the wavelet-based ForWaRD algorithm [7] and MWF with ranks fixed to 50, 50, 20.

Input SNR 10 dB: Numerical and Visual Results. First, we impair the
image with an input SNR 10 dB. We obtain the numerical results (SNR and
PSNR) presented in Table 3.

Table 3. AVIRIS 2: SNR and PSNR values for the noised image; comparative For-
WaRD method; MWF; MWF of the multidimensional wavelet packet coefficients with
rank estimation by AIC or by PSO (proposed method).

X
X

X
X

X
X

X
X

X
Method

Criterion
SNR PSNR

Noised image 10.00 23.13
ForWaRD 11.58 24.52

MWF 12.21 25.85
MWF-MWPT:

• AIC 14.61 28.24
• PSO 18.58 32.21

Table 3 shows the superiority of the proposed method combining wavelet
decomposition and rank estimation by PSO. The comparison with ForWaRD
algorithm, which also works in the wavelet domain, shows that the proposed
method is more appropriate to denoise such an HSI. Indeed, each spectral band
is processed independently from the others with ForWaRD, whereas the tensor
based methods using AIC or PSO take into account the relationships between
bands. The original noise-free, noisy, and denoised images are displayed in Fig. 4.
They show firstly that the result provided by MWF enhances some of the rows
and columns which results in blurring the contours which are neither horizontal
nor vertical. Also, they show that the homogeneous regions are better denoised
with PSO than with AIC, or ForWaRD. In Fig. 5 we focus on the region con-
taining the building and its frontiers (between rows 50 to 120 and columns 70 to
140 of AVIRIS 2). Comparing the result obtained by MWF and wavelet decom-
position with rank estimation by PSO, we notice that the frontiers are much less
blurred and that the details are better preserved when wavelet decomposition is
used, and that the homogeneous regions are better denoised when PSO is used
compared to the case where AIC is used. In this experiment, a close examina-
tion of the estimated rank values shows that, for the third mode, AIC tends
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to overestimate the ranks. We remind that the wavelet packet decomposition is
performed with 2 levels on the two space modes, and that no decomposition is
performed on the wavelength mode. When PSO is used, along the spatial modes,
the rank values obtained are between 59 and 64; along the wavelength mode,
the rank is always 8 (the smallest possible value). When AIC is used, along the
spatial modes, the rank values vary from 2 to 64 with a much higher variability
than in the case where PSO is used; along the wavelength mode, AIC yields
elevated rank values between 51 and 64. PSO yields a stronger denoising in the
wavelength mode and hence, overall, a better preservation of the spatial details
and a higher output SNR.
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Fig. 4. AVIRIS 2: a) Raw image; b) Noised image (SNR 10 dB); Denoising result:
c) ForWaRD, d) MWF, e) AIC, f) PSO.

The results obtained on AVIRIS 2 show the superiority of the proposed
method not only in terms of image quality but also in terms of output SNR.
To confirm this good behavior, we present, in the following, the results obtained
on AVIRIS 2 with two other values of input SNR: 5 and 15 dB.

Input SNR 5 and 15 dB: Numerical Results. Here are some numerical
results obtained with the image AVIRIS 2 and SNR=5 dB and SNR=15 dB in
Table 4.

As a balance for the numerical results presented in Tables 3 and 4, we can
assert that the rank values chosen by PSO yield the best denoising result in terms
of SNR and PSNR at least when AVIRIS 2 is considered. We infer from these
results that it is important to perform Wiener filtering in the wavelet domain,
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Fig. 5. Zoom on AVIRIS 2: a) Raw image, b) MWF, c) AIC, d) PSO.

Table 4. SNR and PSNR values for the noised image; comparative MWF; MWF-
MWPT with rank estimation by AIC or by PSO (proposed method).

X
X

X
X

X
X

X
X

X
Method

Criterion
SNR PSNR SNR PSNR

5.00 dB 15.00 dB

Noised image 5.00 19.22 15.00 28.73
MWF 10.61 24.23 12.99 26.62

MWF-MWPT:
• AIC 11.17 24.79 18.98 32.60
• PSO 13.73 27.36 22.56 36.18

but also to use appropriate rank values to reach the best possible result in terms
of SNR. This is the case as for AVIRIS 2 when the processed image contains
small features such as buildings in aerial images, but also any small objects of
interest. This appears very often in the case of other multidimensional images
such as medical ones. Other experiments were performed with different images
and SNR values. The corresponding numerical and visual results are provided
at: www.fresnel.fr/perso/marot/Documents/Resultsacivs.html.

6 Conclusion

Recently, a common framework was proposed for multiway Wiener filtering and
multidimensional wavelet decomposition, where a rank parameter must be avail-
able for each mode of the processed tensor, that is, 3 for an HSI, and for each
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decomposition level. This makes an automatic rank estimation method very
valuable. AIC overestimates the expected values. We propose a novel approach
which consists in minimizing a least squares criterion with particle swarm opti-
mization, for each coefficient of the wavelet decomposition of the noisy tensor.
Results obtained on an RGB image and noisy HSIs containing small features
and details show the superiority of the proposed approach compared to AIC,
FoRwaRD, HOSVD or MWF algorithms.
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