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Abstract. Target detection is an important issue in the HyperSpectral
Image (HSI) processing field. However, current spectral-identification-
based target detection algorithms are sensitive to the noise and most
denoising algorithms cannot preserve small targets, therefore it is neces-
sary to design a robust detection algorithm that can preserve small tar-
gets. This paper utilizes the recently proposed multidimensional wavelet
packet transform with multiway Wiener filter (MWPT-MWF) to im-
prove the target detection efficiency of HSI with small targets in the
noise environment. The performances of the our method are exemplified
using simulated and real-world HSI.
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1 Introduction

HSI consists of spatial locations and spectral signatures [4]. The additional spec-
tral signature information makes it a suitable tool for target detection in many
military and civilian applications, such as military vehicle detection and mine
detection [15]. However, the HSI is always impaired by noise from radiation, at-
mospheric scattering and thermal noise in the sensor instrument [10], which can
degrade the detection performances, therefore it is necessary to use denoising
techniques for improving the detection efficiencies.

The classical denoising methods rearrange the HSI into a matrix whose
columns contain the spectral signatures of all the pixels and principal compo-
nent analysis (PCA) is used to estimate the signal subspace [17]. These methods
own the convenience of using matrix algebra, however they neglect the HSI data
structure which also contains useful information. To preserve the data structure,
a multiway Wiener filter (MWF) [3, 12, 13, 16] is proposed to process a HSI as
a whole entity based on TUCKER3 decomposition [7, 8]. In MWF, the filter in
each mode is computed as a function of the filters in other modes, which re-
flects its capability in integrally utilizing the information in each mode of the
multidimensional data.

Though MWF preserves the data structure of HSI, it also has some nega-
tive side effects in preserving small targets in the denoising process. In fact,

J. Blanc-Talon et al. (Eds.): ACIVS 2013, LNCS 8192, pp. 460–469, 2013.
c© Springer International Publishing Switzerland 2013



Small Target Detection Improvement in Hyperspectral Image 461

MWF is essentially an optimal low-pass filter while small targets are high fre-
quency signals in Fourier basis, therefore MWF might remove small targets in
the denoising process. A multidimensional wavelet packet transform with multi-
dimensional Wiener filter (MWPT-MWF) is recently proposed to reduce noise
in a jointly filtering component way [14]. It decomposes the HSI into different
coefficient tensors (components) by wavelet packet transform [6], and jointly fil-
ter each component by MWF. In [14], we have discussed the SNR improvement
performance of MWPT-MWF. In the subsequent study, we find MWPT-MWF
also performs well in preserving small targets in the denoising process. In fact,
since large target and small target are separated into different components, the
latter can be preserved in the denoising process.

Since small target detection is an important issue in the HSI processing field [1,
11], in this paper, MWPT-MWF is used to reduce noise in HSI with small targets
and hence improve the target detection performances in the noise environment.
The experiments of simulated and real-world images are given to present the
performances of target detection after denoising by MWPT-MWF.

The remainder of the paper is as follows: Section 2 introduces some basic
knowledge about the multilinear algebra. Section 3 introduces the signal model.
Section 4 shows how to use MWF to jointly filter the data component tensor.
Section 5 presents some experimental results and finally section 6 concludes this
paper.

2 Multilinear Algebra Tools

2.1 n-mode Unfolding

Xn ∈ R
In×Mn denotes the n-mode unfolding matrix [5] of a tensorX ∈ R

I1×...×IN ,
where Mn = In+1 . . . I1IN . . . In−1. The columns of Xn are the In-dimensional
vectors obtained from X by varying index in while keeping the other indices fixed.
Here, we define the n-mode rank Kn as the n-mode unfolding matrix rank, i.e.,
Kn = rank (Xn).

2.2 n-mode Product

The n-mode product [5] is defined as the product between a data tensor X ∈

R
I1×...×IN and a matrix B ∈ R

J×In in mode n. It is denoted by C = X ×n

B, whose entries are given by ci1...in−1jin+1...iN  
∑In

in=1 xi1...in−1inin+1...iN bjin
where C ∈ R

I1×...×In−1×J×...×IN

3 Signal Model

A noisy HSI is modeled as a tensor R ∈ R
I1×I2×I3 resulting from a pure HSI

X ∈ R
I1×I2×I3 impaired by an additive noise N ∈ R

I1×I2×I3 . The tensor R can
be expressed as:

R = X +N (1)

In this paper, only the thermal noise is considered, which means that the noise
is modeled as independent white Gaussian noise with noise variance σ.
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4 Noise Reduction by Joint Component Filtering

4.1 Multidimensional Wavelet Packet Transform

By performing wavelet packet transform (WPT) in each mode, the multidimen-
sional wavelet packet transform (MWPT) can be written in tensor form as:

CR = R×1 W1 ×2 W2 ×3 W3 (2)

and the reconstruction can be written as:

R = CR ×1 W
T
1 ×2 W

T
2 ×3 W

T
3 (3)

where Wn ∈ R
In×In , n = 1, 2 indicate the wavelet packet transform matrices.

When the transform level vector is l = [l1, l2, l3]T , where ln ≥ 0 denotes the
wavelet packet transform level in mode n, the coefficient tensor CR

l,m, which
is also called a component in this paper, of scale m = [m1,m2,m3], where
0 ≤ mn ≤ 2lk − 1, can be extracted by:

CR
l,m = CR ×1 Em1

×2 Em2
×3 Em3

(4)

and the corresponding inverse process is:

CR =
∑

m1

∑

m2

∑

m3

CR
l,m ×1 E

T
m1

×2 E
T
m2

×3 E
T
m3

(5)

where the extraction operator Emn
is defined as:

Emn
= [01, I In

2ln
×

In

2ln

,02] ∈ R
In/2

ln×In (6)

where 01 is a zero matrix with size In
2ln

× mnIn
2ln

and 02 is a zero matrix with size
In
2ln

×
(2ln−1−m)In

2ln
.

4.2 Joint Component Filtering

As proposed in [14], the signal coefficient tensor CX
l,m can be estimated by filtering

the noisy data coefficient tensor CR
l,m with MWF.

ĈX
l,m = CR

l,m ×1 H1,m ×2 H2,m ×3 H3,m (7)

where Hn,m is the mode-n MWF filter:

Hn,m = V(n)
s,mΛ

γ
m

[

ΛΓ
m

+ σΓ
n

2
IKn

]−1

V(n)
s,m

T
(8)

where V
(n)
s,m is the n-mode signal subspace basis, Λγ

m
and ΛΓ

m
are the eigenvalues

of γ
(n)
RR = E

[

CRn q
(n)CRn

T
]

and Γ
(n)
RR = E

[

CRn Q
(n)CRn

T
]

respectively, and σΓ
n
2
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is the n-mode noise variance which can be estimated as the mean of the In−Kn

smallest eigenvalues of Γ
(n)
RR with Kn the rank of γ

(n)
RR.

After each signal coefficient tensor being estimated, the signal estimate can
be obtained by:

X̂ = ĈX ×1 W
T
1 ×2 W

T
2 ×3 W

T
3 (9)

where

ĈX =
∑

m1

∑

m2

∑

m3

ĈX
l,m ×1 E

T
m1

×2 E
T
m2

×3 E
T
m3

(10)

Notice that the large and small targets are separated into the approximation
and detail coefficient tensors respectively, which makes it possible to avoid re-
moving the small target in filtering noise. Therefore, MWPT-MWF outperforms
MWF in preserving the small targets.

5 Experimental Results

In the experiments, MWPT-MWF and MWF are compared in the aspect of
improving target detection performances. The results obtained both on simulated
and real-world data are presented in this section. The HSI is modeled as a three-
dimensional tensor, where the first two dimensions indicate the spatial field and
the third dimension indicates the spectral bands. Wavelet db3 is used to do
MWPT-MWF with transform levels [l1, l2, l3] = [1, 1, 0].

SAM detector [9] is used in the experiments to detect targets in the image.
As Spectral Angle Mapper (SAM) does not require the characterization of back-
ground, it can avoid the inaccuracy of the comparison result caused by the noise
covariance matrix estimation error. The SAM detector can be expressed as:

TSAM(x) =
sTx

(sT s)1/2(xTx)1/2
(11)

where s is the reference spectrum, x is the pixel spectrum. To assess the perfor-
mances of detection, the probability of detection (Pd) is defined as:

Pd =

∑ns
i N rd

i
∑ns

i Ni
(12)

and the probability of false alarm (Pfa) is defined as:

Pfa =

∑ns
i N

fd
i

∑ns
i (I1 × I2 −Ni)

(13)

where ns is the number of spectral signatures, Ni the number of pixels with
spectral signature i, N rd

i the number of rightly detected pixels, and N
fd
i the

number of falsely detected pixels.
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5.1 Results on Simulated Data

The simulated data is generated with the spectral signatures presented in Fig. 1
and it has 100 rows, 100 columns and 220 spectral bands, which can be modeled
as a 100×100×220 tensor. There are six target types and three different spatial
sizes 9 × 9, 3 × 3, 1 × 1 of each type, which are shown in Fig. 2(a). These
targets are mixed to the background by using the linear mixing model with
target abundance being 80%. The band 6 of the noisy image with SNR=20dB
is shown Fig. 2(b), from which one can see that the small targets are almost
disappeared in the noise.
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Fig. 1. Spectral signatures of the simulated data

Fig. 2(c) shows the detection result under Pfa = 10−4 after denoising by
MWF. In this figure, it is obvious that most of the 1×1 targets are not detected
and there are two false alarm neighbors with the detected 1× 1 targets. On the
contrast, the detection result after denoising by MWPT-MWF is much better.
The 2 × 2 targets are all detected and only one 1 × 1 target is dismissed. The
experiment result in Fig. 2 implies that MWPT-MWF owns the capability in
preserving the small targets in the denoising process.

To make the experimental results more convincing and show the subtle changes
of the detection results, the receiver operating characteristic (ROC) values are
given in Table 1 in the noise environments from 15dB to 25dB. In 15dB, Pd after
denoising by MWPT-MWF is much greater than that by MWF under the same
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(a) Pure image (band 6) (b) Image before denoising
(band 6,SNR=20dB)

(c) Image denoised by MWF (d) Image denoised by
MWPT-MWF

Fig. 2. Detection results of HYDICE, Pfa=10−4

Table 1. ROC values of MWF and MWPT-MWF for the simulated HSI

Pd of MWF Pd of MWPT-MWF
Pfa 15dB 20dB 25dB 15dB 20dB 25dB

0.0001 0.5458 0.9597 0.9963 0.7125 0.9982 1.0000
0.0002 0.5714 0.9597 0.9963 0.7271 0.9982 1.0000
0.0003 0.5897 0.9597 0.9963 0.7381 0.9982 1.0000
0.0005 0.6190 0.9597 0.9982 0.7637 1.0000 1.0000
0.0008 0.6630 0.9597 0.9982 0.7821 1.0000 1.0000
0.0013 0.7088 0.9615 0.9982 0.8004 1.0000 1.0000
0.0022 0.7271 0.9615 0.9982 0.8132 1.0000 1.0000
0.0036 0.7601 0.9615 0.9982 0.8462 1.0000 1.0000
0.0060 0.8059 0.9689 0.9982 0.8956 1.0000 1.0000
0.0100 0.9011 0.9945 1.0000 0.9908 1.0000 1.0000
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Pfa. From the comparison of ROC in Table 1, it shows that MWPT-MWF can im-
prove the target detection performances more greatly than MWF can in different
noise environments.

5.2 Results on Real-World Data

One high spatial resolution HSI HYDICE [2] is denoised by MWF and MWPT-
MWF to compare their target detection improvement ability in noise environ-
ment. The HYDICE image contains 100 rows, 100 columns and 158 spectral
bands, which is modeled as a 100× 100× 158 tensor. Three types of target spec-
tral signatures are considered, and these targets are mixed to the background
with respect to the linear mixing model when target abundance is 80%;
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Fig. 3. Spectral signatures of targets

Fig. 4(a) and Fig. 4(d) are the pure and noisy images in band 50. The targets
are placed in the field, beside the road and in the trees respectively to contain
the usual target situations in HSI. The detection results after denoising by MWF
and MWPT-MWF are shown in Fig. 4(c) and Fig. 4(d) respectively. In Fig. 4(d),
1 × 1 targets in the field and beside the road are detected. The only dismissed
1 × 1 target is in the trees, which is always a difficult situation to detect small
target in it. On the contrast, in Fig. 4(c) all the 1× 1 targets are dismissed and
a 2 × 2 target in the trees is also lost. The comparison between Fig. 4(c) and
Fig. 4(d) shows that MWPT-MWF owns better capability in preserving small
targets than MWF as expected.
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(a) Pure image (band 50) (b) Image before denoising
(band 50,SNR=20dB)

(c) Image denoised by MWF (d) Image denoised by
MWPT-MWF

Fig. 4. Detection results of HYDICE, Pfa=10−4

Table 2. ROC values of MWF and MWPT-MWF for HYDICE

Pd of MWF Pd of MWPT-MWF
Pfa 15dB 20dB 25dB 15dB 20dB 25dB

0.0001 0.6593 0.8828 1.0000 0.7289 0.8851 1.0000
0.0002 0.6593 0.9048 1.0000 0.7399 0.9084 1.0000
0.0003 0.6630 0.9121 1.0000 0.7546 0.9451 1.0000
0.0005 0.6703 0.9121 1.0000 0.7912 0.9634 1.0000
0.0008 0.6740 0.9487 1.0000 0.7985 0.9670 1.0000
0.0013 0.6777 0.9634 1.0000 0.8315 0.9707 1.0000
0.0022 0.6850 0.9780 1.0000 0.8498 0.9853 1.0000
0.0036 0.6923 1.0000 1.0000 0.8755 0.9927 1.0000
0.0060 0.7106 1.0000 1.0000 0.9341 0.9927 1.0000
0.0100 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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Apart from the binary target detection results in Fig. 4, to better compare the
performances of MWF and MWPT-MWF, the ROC values are also presented
in Table 2. As expected, the Pd of MWPT-MWF is better than that of MWF
in the same Pfa. The comparison of the ROC values implies that MWPT-MWF
performs better than MWF in improving the target detection result of the real-
world data as well.

6 Conclusion

The performances of MWF and MWPT-MWF in improving the target detection
in the noise environment are discussed in this paper. Though MWF performs
well in reducing noise in HSI, it might also remove targets in the image, especially
when the target is small. The reason leading to this phenomenon is that MWF
treats directly HSI as a whole entity by filtering each mode of the HSI in a
Wiener filter like way. Since the energy of the small target is thin, it is easy to
be removed in the filtering process. However, MWPT-MWF decompose the HSI
into several components (coefficient tensors) and filter each one by MWF. As
small and large targets are separated into different components, the small ones
can be preserved in the filtering process. This is why MWPT-MWF performs
better than MWF in improving target detection performance when there exist
small targets in the image.

Simulated and real-world HSIs are considered in the experiments to compare
the performances of MWF and MWPT-MWF in improving target detection in
the noise environment. The experimental results highlight that MWPT-MWF
outperforms MWF in improving the target detection results in the presence of
small targets.
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