OPTICAL INTERFERENCE COATINGS

Tucson 2004

DESIGN CONTEST

Organized by **Pierre Verly** — •••• and Markus Tilsch Q JDS Uniphase Submissions

 13 submissions for problem A^O 12 submissions for problem BO

More information: http://www.osa.org

DESIGN PROBLEM A

Problem A Introduction

Maximum number of layers: 35 Minimum physical layer thickness: 5 nm

References

J. A. Dobrowolski et. al., "Toward perfect AR coatings", Appl. Opt. 41, 3075-3083 (2002) J. A. Dobrowolski, "Optical properties of films and coatings," in Handbook of Optics, M. Bass, ed (McGraw-Hill, NY, 1995), p. 42.19 – 42.34 G. DeBell, Proc SPIE 401, 127-137 (1983)

Evaluation program

Problem A design specifications: broadband, wide-angle AR coating

- Maximize AR bandwidth (500 ??? nm)
- Angles = <u>0</u>, 20, 40, 50, 55, 60, 65, <u>70 degs</u>.
- <u>R<3%</u>, average polarization
- <u>Glass</u> substrate (n=1.52)
- n = 1.38, 1.45, 1.65, 1.80, 2.05, 2.35
- <u>50% yield</u>, 1nm random optical thickness errors (RMS)
- ≤ <u>35 layers</u>

Design

DebeTru1

3

5

6

10

12

13

14

Lemarchand

Amotchk2

Amotchk1

Trubets1

YagolaA1

SharapA1

YagolaA2

SharapA2

Southw2

Schultz

Fan2

Oliver1

Demo

Verly

2 x 50.000

iters (NRC)

66.34

66.11

66.01

64.23

61.68

61.45

60.45

58.59

58.04

55.06

48.60

66.11

• Layer $t \ge 5$ nm

Contest results

	# Design Width		Width (nm)	Author	Address Debell Design and MSU	
	1	DebeTru1 68.01		G. Debell, M. Trubetskov		
	2	Amotchk1	66.22	Tatiana Amotchkina	MSU (Moscow State U.) - Russia	
	3	Amotchk2	66.15	Tatiana Amotchkina	MSU	
	4	Lemarchand	66.09	Fabien Lemarchand	Institut Fresnel - France	
	5	Trubets1	64.60	Michael Trubetskov	MSU	
k and tical opes	6	SharapA1	[61.22]	Dmitri Sharapov	MSU	
	7	YagolaA1	61.03	Svetlana Yagola	MSU	
	8	YagolaA2	60.43 C	Svetlana Yagola	MSU	
	9	SharapA2	60.25 J	Dmitri Sharapov	MSU	
	10	Southw2	59.11	Bill Southwell	Table Mountain Optics - USA	
	11	Schultz	58.14	Ulrike Schulz, Minghong Yang	Fraunhofer IOF - Germany	
VS	12	Fan2	55.07	Bin Fan	Optorun Co - Japan	
sina	13	Oliver1	48.41	James Oliver	U. of Rochester - USA	
vidth	14	Demo	25.67	OIC2004	demo solution	
		Verlv *	66.10	Pierre Verly	NRC - Canada	
		* Non contect	66.10	Pierre Veriy	NRC - Canada	

Tests with 50,000 iterations ++

100 x 5,000 (TOL_OIC04)

66.33

66.13

65.94

64.26

61.69

61.41

60.63

60.47

58.55

58.01

55.05

48.64

Widths (nm

Average

66.34

66.12

65.97

65.03

64.25

61.68

61.43

60.64

60.46

58.57

58.03

55.06

48.62

66.11

Contest

68.01

66.09

66.15

64.60

61.03

61.22

60.43

60.25

59.11

58 14

55.07

48.41

25.67

66.10

6

10

12

13

DESIGN PROBLEM B

Problem B Introduction

Winning design has highest angular tolerance in a cone of light centered around 45° angle of incidence

Materials

1.38, 1.45, 1.65, 1.8, 2.05, 2.35, non-dispersive, non-absorptive, non-dispersive silver (0.055 + 3.32i) Substrate index: 1.52

Maximum number of layers: 100 Minimum physical layer thickness: 5 nm

References

Contest results

2

3

7

Submitted by

Michael Trubetskov 1

Tatiana Amotchkina 2

Bill Southwell

Michael Trubetskov 2

Dave Cushing

Tatiana Amotchkina 1

Svetlana Yagola 1

Dmitri Sharapov 1

Fabien Lemarchand

A. Thelen, "Design of Optical Interference Coatings", (McGraw-Hill, NY, 1989), Chapter 9 H. A. Macleod, "Thin Film Optical Filters", (Institute of Physics Publishing, London, 2001), Chapters 6 and 8 P. Baumeister, "Optical Coating Technology", UCLA Short Course Notes, Chapter 5

Valid Angle Range

(degrees from 45°)

± 5.52

± 5.51

± 5.23

± 5.20

± 5.16

± 5.12

± 4.98

± 4.71

 ± 4.67

Evaluation procedure

• Performance evaluated from 400 to 700 nm in 0.1 nm increments and from 39 degrees to 51 degrees in 0.1 degree increments

• To determine the winner a finer angle increment was used: 0.01 degree increments

Design Problem B Minimum Tp and Rp vs Angle

Sample performance plots

Design approaches for submissions

• Starting mirror design using 1.65/2.35 selected by almost

• Optimization methods included damp least squares, gradual

Other materials and layers added using needle optimization

• Some designs were started using an analytical design, while

layers could be used without effecting transmission band.

• Silver added to suppress reflectance dips, but only thin

evolution, Newton method, conjugate gradients method and

Stability of the top designs (5,000 random-error iterations)

- Fluctuations > differences between the results
- Lemarchand is very stable
- Same set of random numbers used for all the designs in a aiven test

DEBETRU1 design

- Thick, 3-material solution (possibility of 6 materials)
- The yield curve is flat near 50% => AR width instability

Design control

- Starting designs: multiple random, rugate, wideband AR, none, etc.
- Thick layers on the substrate side
- Desensitization: suppression or modification of sensitive thin layers (index or thickness changes)
- Target definition & progressive tuning:
 - AR widths, tolerances, reflectance values, qualifiers (=, <, >), etc.
 - Control of the perturbed reflectance curves (RMS) envelopes).

- Thick, (almost) 3-material solution
- Yield curve is higher above 50% => better AR width stability

OPTICAL THICKNESS (um

• Very smooth reflectance & yield curves

Design techniques

Author	Software	Approach		
Debell / Trubetskov	OptiLayer + plug in	Needle synthesis + optimization of non- smooth functions		
Lemarchand	Own software ★	Needle + global optimization + directed TF synthesis		
Amotchkina	OptiLayer	Directed TF synthesis		
Yagola	OptiLayer	Refinement + directed TF synthesis		
Sharapov	OptiLayer	Refinement + directed TF synthesis		
Southwell	OptiLayer + LayerPro	Needle + target optimization		
Schultz	OptiLayer	Needle + directed TF synthesis		
Fan	Essential Macleod	Directed TF synthesis		
Oliver	OptiLayer	Directed TF synthesis		
Verly	NRC	Inhomogeneous refinement + Needle		

10	Dmitri Sharapov 2	± 4.60
11	Svetlana Yagola 2	± 4.58
12	James Oliver	± 2.00

Trends in design submissions

Submitted by	Layers	Thinnest layer	Total thickness	Indices used
(Units)	(#)	(nm)	(μm)	
Requirement	≤ 100	≥ 5	≤ 50.0	1.38, 1.45, 1.65, 1.8, 2.05, 2.35, Ag
Fabien Lemarchand	100	7.2	9.9	1.65, 2.35, Ag
Michael Trubetskov 1	100	6.2	10.9	1.65, 2.35, Ag
Tatiana Amotchkina 2	100	5.1	10.8	1.65, 2.35, Ag
Bill Southwell	100	12.3	10.1	1.38, 1.65, 2.35
Dave Cushing	99	57.6	10.0	1.45, 1.65 , 1.8, 2.35
Michael Trubetskov 2	99	70.4	10.5	1.65, 2.35
Tatiana Amotchkina 1	99	72.8	10.8	1.65, 2.35
Svetlana Yagola 1	99	45.8	10.0	1.45, 1.65, 1.8, 2.05, 2.35
Dmitri Sharapov 1	99	45.8	10.0	1.45, 1.65, 2.05, 2.35
Svetlana Yagola 2	99	45.3	9.9	1.45, 1.65, 1.8, 2.05, 2.35
Dmitri Sharapov 2	99	45.8	10.0	1.45, 1.65, 1.8, 2.05, 2.35
James Oliver	87	5.0	10.1	1.45, 1.65, 1.8, 2.35, Ag

Addition of silver layers

• Addition of silver layer can broaden reflectance band Addition of silver layer has a mixed influence on angle shift • Widening of the reflectance band is the dominant effect

- The limit on the number of layers (100) dictates the indices chosen. There is a tradeoff between: Stopband width
- Reflectance level
- Angle shift
- The addition of one thin silver layer improves the design performance by widening the reflectance region.

Thank you to all of the Contributing Designers!

RCMO

Institut

F. Lemarchand Global Optimization Design Technique

Home made-program using a global optimization procedure developed by T. Csendes et Al. in respiratory system modelling. The multi-dimensional space composed of the different parameters (thickness) is divided into clusters formed by single linkage method.

-The distance between a set of initial parameters X_0 and the parameters X_{10} corresponding to the local minimum found is evaluated. A new point X_1 will join the (X_0, X_{10}) cluster if there is a point in the cluster with which the distance is less than a critical distance calculated automatically by the program. If the new point is not clustered, a new local minimum X_{11} is searched

- The process is repeated until the whole space, possibly reduced to a nominal interval is clustered. The local search procedure is an algorithm of Quasi-Newton type which uses the Davidon-Fletcher-Powell formula.

For more details, see FRESNEL

T. Csendes, B. Daroczy, Z. Hanos, "Nonlinear parameter estimation by global optimization: comparison of local search methods in respiratory system modelling", System Modelling and Optimization, 188-192, Springer Verlag, Berlin, 1986

• Indices chosen always include 1.65, 2.35

- Top 3 winning designs use one thin layer of silver (Ag)

Problem B Conclusions

all designers.

direct synthesis.

and gradual evolution.

others were computer generated.