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Abstract

In the free-space optical (FSO) links, atmospheric turbulence and pointing errors

lead to scintillation in the received signal. Due to its ease of implementation,

intensity modulation with direct detection (IM/DD) based on ON-OFF-keying

(OOK) is a popular signaling scheme in these systems. For long-haul FSO links,

avalanche photo diodes (APDs) are commonly used, which provide an internal

gain in photo-detection, allowing larger transmission ranges, as compared with

PIN photo-detector (PD) counterparts. Since optimal OOK detection at the

receiver requires the knowledge of the instantaneous channel fading coefficient,

channel estimation is an important task that can considerably impact the link

performance. In this paper, we investigate the channel estimation issue when

using an APD at the receiver. Here, optimal signal detection is quite more deli-

cate than in the case of using a PIN PD. In fact, given that APD-based receivers

are usually shot-noise limited, the receiver noise will have a different distribu-

tion depending on whether the transmitted bit is ‘0’ or ‘1’, and moreover, its

statistics are further affected by the scintillation. To deal with this, we first con-

sider minimum mean-square-error (MMSE), maximum a posteriori probability

(MAP) and maximum likelihood (ML) channel estimation over an observation
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window encompassing several consecutive received OOK symbols. Due to the

high computational complexity of these methods, in a second step, we propose

an ML channel estimator based on the expectation-maximization (EM) algo-

rithm which has a low implementation complexity, making it suitable for high

data-rate FSO communications. Numerical results show that for a sufficiently

large observation window, by using the proposed EM channel estimator, we can

achieve bit error rate performance very close to that with perfect channel state

information. We also derive the Cramer-Rao lower bound (CRLB) of MSE of

estimation errors and show that for a large enough observation window, this

CRLB can be adequately tight.

Keywords: Free-space optics (FSO), atmospheric turbulence, ON-OFF

keying, avalanche photo-detector (APD), channel estimation, Cramer-Rao

lower bound.

1. Introduction

1.1. Background

Under clear sky conditions, the reliability and performance of free space opti-

cal (FSO) links can be severely affected by atmospheric conditions and pointing

errors [1]. Due to the inherent complexity of phase modulation and the related

high implementation complexity, most current commercial FSO systems use in-

tensity modulation with direct detection (IM/DD) based on ON-OFF keying

(OOK) [2]. This way, at the receiver, the optical signal is converted to an elec-

trical one by a photo-detector (PD). While PIN PDs are typically suitable for

ranges up to several hundred meters, for long-haul links, avalanche PDs (APDs)

are the preferred solution, despite their higher cost [3]. Thanks to their high

internal gain, they can provide improved signal-to-noise ratio (SNR) capability,

as compared with PIN-based receivers. In such receivers, shot noise is mostly

dominant [3], whose distribution can be well approximated by a Gaussian [4].

The mean and the variance of this random process will depend on the received

signal intensity, thus on the transmitted symbol (i.e., whether the transmitted
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bit is ‘0’ or ‘1’) as well as on the actual channel fading coefficient. Note that for

OOK demodulation, the receiver requires the knowledge of the channel state

information (CSI) to adjust the detection threshold [5, 6]. Since the channel

fading affects both the received signal intensity and the receiver noise parame-

ters, the CSI should be estimated of enough accuracy. It is worth mentioning

that the coherence time of FSO channels is usually very large (typically on

the order of ms), and hence, the channel fading coefficient remains constant

over a large number of consecutive bits for typical transmission rates of FSO

communications [1].

1.2. Related Works

Channel estimation has been extensively investigated in the context of radio-

frequency (RF) networks (see [7], and the references therein). However, due to

the particularities of OOK modulation and APD-based receivers, such channel

estimation techniques and results are not directly applicable to FSO systems.

So, it is important to develop appropriate channel identification solutions and

decision metrics for optimal signal detection. A number of previous works have

studied this issue. In [8, 9], the authors investigated channel estimation over

atmospheric turbulence for the case of pulse position modulation (PPM). Note

that PPM has a lower bandwidth efficiency compared to OOK [1]. In [10, 11]

for an FSO system using OOK modulation, the channel is estimated using some

pilot symbols. Also, in [12], the estimated channel was exploited to adjust the

detection threshold at the receiver. However, it is well known that the insertion

of pilot bits inside each data frame, incurs a signaling overhead, i.e., a loss in

the effective data throughput. Obviously, it is highly preferable to avoid using a

pilot overhead while ensuring the good receiver performance, i.e., accurate data

detection.

1.3. Contributions

In this paper, to increase the bandwidth efficiency of FSO links and to avoid

any pilot overhead at the transmitter, we propose efficient data-aided chan-

nel estimation methods. We firstly consider the minimum mean-square-error

3



(MMSE), the maximum a posteriori probability (MAP) and the maximum like-

lihood (ML) criteria to develop channel estimators. We show that the MMSE

estimator requires evaluating complex integrals whereas the MAP and ML es-

timators need complex numerical computations to find the instantaneous chan-

nel attenuation coefficient. Hence, from a practical (real-time) implementation

point of view, the computational complexity of these estimators may not be

suitable for an FSO system working at very high data-rates. To reduce the

complexity of the channel estimator, in a second step, we propose an iterative

ML estimator based on the expectation-maximization (EM) algorithm. Never-

theless, as known from the general convergence property of the EM algorithm,

there is no guarantee that the iterative steps of EM converge to the global max-

imum unless an accurate initial estimate is provided [13]. In practice, several

initial estimates are used to initialize the EM algorithm in order to guarantee

its convergence toward a global maximum. However, obtaining these initial es-

timates requires sending several training sequences which leads to a loss of the

bandwidth efficiency. To solve this problem, we use a blind averaging scheme

to calculate the initial channel estimate, without requiring any training symbol.

The important point is that the proposed EM-based channel estimator incurs

a negligible increase in the receiver’s computational complexity and processing

delay since it requires only one iteration to converge, making it particularly

suitable for practical implementations. We will show that the proposed estima-

tor can achieve performance very close to the perfect CSI case, provided that

the observation window is sufficiently large. We also derive the Cramer-Rao

lower bound (CRLB) that we use as a benchmark and show that for a large

enough observation window, the CRLB becomes a quite tight bound for the

mean-square-error (MSE) of the proposed channel estimator.

1.4. Paper Structure

In Section 2, we describe our system model along with our main assumptions.

In Section 3, we present the different proposed channel estimators for the FSO

receiver and derive the expression of the CRLB. Next, in Section 4, we present
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our numerical results to study the performance of the proposed method, and

lastly in Section 5, we draw our conclusions.

2. System Model

We assume an IM/DD FSO link with non-return-to-zero (NRZ) OOK modu-

lation over an atmospheric turbulence channel in the presence of pointing errors.

In the sequel, we first introduce the received signal model and data detection

under consideration and then, summarize the channel model that we consider

in this study.

2.1. Signal Model and Data Detection

As mentioned previously, we consider the use of an APD at the receiver.

The exact distribution of APD output electrons in response to the mean of

absorbed photons is rather complex [4], but it can accurately be approximated

by a Gaussian, provided that the mean of absorbed photons is sufficiently large,

what is usually the case in practice [3]. This simplifies the derivation of closed

form analytical expressions for evaluating the system performance. This way,

the mean and the variance of this Gaussian distribution will be mG and mG2F ,

respectively, where m denotes the average number of the absorbed photons, G

is the average APD gain and F is its excess noise factor [4]. The APD output

photocurrent corresponding to the k-th symbol interval, i.e., [(k − 1)Tb, kTb)

with Tb being the symbol duration, can be written as [14]:

rk = µhsk + nk, (1)

where h denotes the channel attenuation coefficient, incorporating the channel

loss and the effects of atmospheric turbulence and pointing errors, assumed

to be constant over a large number of transmitted bits. Also, sk denotes the

transmitted symbol with transmitted optical power Pt, which takes the values

of P1 or P0 for the cases of the transmission of a bit ‘1’ or ‘0’, respectively,

for the considered NRZ OOK signaling scheme. In the sequel, without loss of
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generality, we assume that P0 = αeP1 where αe is the optical source extinction

ratio and has the range 0 ≤ αe < 1. Furthermore in (1), the parameter µ equals

eGη

h̃pν
, where e denotes the electron charge, η is the APD quantum efficiency,

ν is the optical frequency and h̃p stands for the Planck constant. Also, nk

is the photo-current noise, including thermal noise, dark current, as well as

the shot noise arising from the received signal and the background radiations.

While dark current noise can practically be neglected, a Gaussian distribution

can accurately model the sum of other noise sources with the variance given as

follows

σ2
tot = σ2

s,ih+ σ2
0 ; for i ∈ {0, 1}, (2)

where σ2
s,1 = 2eGFµBP1 and σ2

s,0 = αeσ
2
s,1 are the variances of the shot noise for

the cases of the transmission of a bit ‘1’ and a bit ‘0’. Also, B is the bandwidth

of the receiver low-pass filter, which is placed at the transimpedance amplifier

(TIA) output, and is set approximately to 1/Tb [3]. Also, σ2
0 = σ2

b + σ2
th where

σ2
b = 2eGFµBPb is the variance of shot noise due to background power Pb and

σ2
th = 4KbTrB

Rl
is the variance of thermal noise with Kb being the Boltzmann

constant, Tr the receiver’s equivalent temperature, and Rl the resistance of the

TIA. Note that the presented formulation can be simplified to the case of PIN

PD by setting F = 1 and G = 1. According to (2), the variance of the signal-

induced shot noise depends on the transmit optical power (here, P0 or P1) and

also on the channel coefficient h. Then, for optimal signal detection (i.e., OOK

demodulation) the received signal rk should be compared with a threshold γth.

The average link bit error rate (BER) is given by

P (e) =

∫ ∞
0

P (e|h)fh(h)dh, (3)

where P (e|h) is the BER conditioned on the channel coefficient h and fh(h) is

the probability density function (PDF) of h. According to (1) and (2), it can

be easily verified that P (e|h) is equal to

P (e|h) =
1

4
erfc

 γth − αeµhP1√
2
(
αeσ2

s,1h+ σ2
0

)
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+
1

4
erfc

 µhP1 − γth√
2
(
σ2
s,1h+ σ2

0

)
 (4)

where erfc(.) is the well known complementary error function [15].

Under perfect CSI conditions, the optimal ML decision threshold that mini-

mizes the BER is obtained by differentiating (4), and setting the result to zero.

By doing so, the optimum threshold γth,opt is obtained as in (5).

γth,opt = −µP1σ
2
0

σ2
s,1

+

(
µ2P 2

1 σ
4
0

σ4
s,1

+
αeµ

2P 2
1 σ

2
sh

2 + (1 + αe)µ
2P 2

1 σ
2
0h

σ2
s,1

+
(σ2
s,1h+ σ2

0)(αeσ
2
s,1h+ σ2

0)

(αe − 1)σ2
s,1h

ln

(
αeσ

2
s,1h+ σ2

0

σ2
s,1h+ σ2

0

))0.5

. (5)

In the special case of signal-independent noise (e.g. when using a PIN PD), the

optimal ML decision threshold is simplified as

γth,opt =
(αe + 1)µP1h

2
. (6)

Notice that according to (5), the optimum threshold depends on the channel

coefficient h, which means that for optimal ML detection, the receiver needs to

estimate continuously the variations of h and to adjust the threshold accordingly.

2.2. FSO Channel Model

In FSO links, in addition to the atmospheric turbulence which is commonly

modeled by the Gamma-Gamma distribution, pointing errors cause further fluc-

tuation of the received signal intensity. This latter can be due to beam wander-

ing, building sway, thermal expansion and weak earthquakes of tall buildings,

etc. We model the channel coefficient as the product of three components, i.e.,

h=hlhahp. Here, hl is the (deterministic) propagation loss, and ha and hp rep-

resent the effects of atmospheric turbulence, and pointing errors, respectively

[16]. Modeling ha by the Gamma-Gamma distribution, we denote by α and β

the effective numbers of large-scale and small-scale turbulence eddies, respec-

tively. Under the assumption of plane wave propagation, α and β are given by
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[17],

α =

[
exp

(
0.49σ2

R

/(
1 + 1.11σ

12
5

R

) 7
6

)
− 1

]−1

, (7)

and

β =

[
exp

(
0.51σ2

R

/(
1 + 0.69σ

12
5

R

) 5
6

)
− 1

]−1

, (8)

where σ2
R denotes the Rytov variance. The PDF of h is then given by [16, Eq.

(12)]

fh(h) =
αβγ2

A0hlΓ(α)Γ(β)

×G3,0
1,3

(
αβ

A0hl
h

∣∣∣∣∣ γ2

γ2 − 1, α− 1, β − 1

)
, (9)

where G3,0
1,3 (.) is the Meijer's G function, Γ(.) is the well-known Gamma func-

tion. Also, γ = wLeq
/2σj is the ratio between the equivalent beam radius at

the receiver wLeq and the pointing jitter standard deviation σj [16]. We have

w2
Leq

=w2
L

√
π.
(
1−erfc(v)

)/ (
2v exp

(
−v2

))
, with wL being the beam spot radius

at the receive plane (at distance d0), v=
√
πr/

(√
2wL

)
and r the radius of a cir-

cular detector aperture. Moreover, the parameter A0=[erf(v)]2 represents the

geometric loss, i.e., the fraction of the collected power (when no pointing error

or turbulence occurs).

3. Channel Estimation

As stated previously, for optimal signal detection at the receiver, we need

to estimate the channel coefficient h. Here, we propose three approaches for

channel estimation, i.e., MMSE, MAP, and ML estimators and an efficient al-

gorithm for implementing the last one based on the EM algorithm with no need

to any training symbol. We assume that we receive data in an observation

window of length Ls, r = {r1, r2, ..., rLs
}, related to Ls transmitted signals,

s = {s1, s2, ..., sLs} during which the channel is assumed to remain unchanged

(the quasi-static or frozen channel model). By assuming that the two OOK
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symbols are equally likely and independent, the PDF of r conditioned on h, can

be written as

p(r|h) =

Ls∏
k=1

p(rk|h)

=
1

2

Ls∏
k=1

[
p(rk|sk = P1, h) + p(rk|sk = P0, h)

]
. (10)

According to the system model in Section 2, p(rk|sk, h) for sk = P1 and sk =

P0 = αeP1 are given by

p(rk|sk = P1, h) =
1√

2π(σ2
s,1h+ σ2

0)

× exp

(
− |rk − µP1h|2

2
(
σ2
s,1h+ σ2

0

)), (11)

and

p(rk|sk = P0, h) =
1√

2π(αeσ2
s,1h+ σ2

0)

× exp

(
− |rk − αeµP1h|2

2
(
αeσ2

s,1h+ σ2
0

)). (12)

3.1. MMSE Channel Estimation

As its name indicates, the MMSE estimation method minimizes the MSE,

which is a common measure of estimator quality. The estimation error vector

is given by h− ĥ and its MSE is written as

MSE = E
{

(h− ĥ)2|r
}
. (13)

Differentiating (13) with respect to ĥ gives the MMSE estimate of h, denoted

by ĥMMSE as

ĥMMSE = E{h|r}

=

∫ ∞
0

hp(h|r)dh

=

∫∞
0
hp(r|h)fh(h)dh

p(r)

=

∫∞
0
hp(r|h)fh(h)dh∫∞

0
p(r|h)fh(h)dh

. (14)
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Substituting (10) to (14), ĥMMSE can be obtained as in (15), where fh(h) is

given by (9).

ĥMMSE =

∫ ∞
0

h

2

Ls∏
k=1

[
1√

2π(σ2
s,1h+ σ2

0)
exp

(
− |rk − µP1h|2

2
(
σ2
s,1h+ σ2

0

))+
1√

2π(αeσ2
s,1h+ σ2

0)
exp

(
− |rk − αeµP1h|2

2
(
αeσ2

s,1h+ σ2
0

))]fh(h)dh

∫ ∞
0

1

2

Ls∏
k=1

[
1√

2π(σ2
s,1h+ σ2

0)
exp

(
− |rk − µP1h|2

2
(
σ2
s,1h+ σ2

0

))+
1√

2π(αeσ2
s,1h+ σ2

0)
exp

(
− |rk − αeµP1h|2

2
(
αeσ2

s,1h+ σ2
0

))]fh(h)dh

.

(15)

Given the relatively high computational complexity of this estimator, it is not

well suitable for real-time implementation in a typically high data-rate FSO

system. Note that in addition, this estimator needs the knowledge of the channel

statistical distribution. For theses reasons, we consider in the following channel

estimation based on the MAP and ML criteria.

3.2. MAP and ML Channel Estimation

The MAP channel estimate is obtained by maximizing the logarithm of the

posterior function, ln p(h|r), as

ĥMAP = arg max
h

ln p(h|r)

= arg max
h

ln p(r|h) + ln (fh(h))

= arg max
h

ln

Ls∏
k=1

[
p(rk|sk = P1, h) + p(rk|sk = P0, h)

]
+ ln (fh(h))

= arg max
h

Ls∑
k=1

ln

[
p(rk|sk = P1, h) + p(rk|sk = P0, h)

]
+ ln (fh(h))

= arg max
h

Ls∑
k=1

ln

[
1√

2π(σ2
s,1h+ σ2

0)

× exp

(
− |rk − µP1h|2

2
(
σ2
s,1h+ σ2

0

))
+

1√
2π(αeσ2

s,1h+ σ2
0)
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× exp

(
− |rk − αeµP1h|2

2
(
αeσ2

s,1h+ σ2
0

))]+ ln (fh(h)) , (16)

where the last equality is according to (9), (11) and (12). Similarly, the ML

channel estimate is obtained by maximizing the log-likelihood function ln p(r|h),

as

ĥML = arg max
h

ln p(r|h)

= arg max
h

Ls∑
k=1

ln

[
1√

2π(σ2
s,1h+ σ2

0)

× exp

(
− |rk − µP1h|2

2
(
σ2
s,1h+ σ2

0

))
+

1√
2π(αeσ2

s,1h+ σ2
0)

× exp

(
− |rk − αeµP1h|2

2
(
αeσ2

s,1h+ σ2
0

))] , (17)

where the last equality is according to (11) and (12). The advantage of MAP

estimation compared to ML estimation is the exploitation of the knowledge of

fading statistics (if available). The common way for deriving the optimum h

from (16) or (17), is to differentiate and set the result to zero. However, as we

can see form (16) and (17), such an operation is not straightforward. Hence,

to obtain the optimum h based on MAP or ML criterion, we have to resort

to numerical methods which are however complex to implement, especially, for

high data rate FSO communications.

3.3. EM-Based Channel Estimation

Given the high computational complexity of MMSE, MAP and ML estima-

tors, here, we propose to use the EM algorithm which is an iterative procedure

to estimate the channel state based on its previous estimate [13]. According to

the terminology of the EM algorithm, the received sequence r and Y = (r, s) are

referred to as incomplete and complete data sets, respectively. Each iteration

of the EM algorithm is composed of two steps: the E-step and the M-step.
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3.3.1. E-step

The E-step finds the so-called auxiliary function Θ(h|hi), which is defined

as the expectation of the log-likelihood of h, log p(Y |h), where the expectation

is taken with respect to s conditioned on r and the latest i-th estimate of h,

denoted by hi [13]. We have

Θ(h|hi) = Es

{
log
(
p(r, s|h)

∣∣ r, hi}. (18)

The joint PDF of r and s conditioned on h, can be obtained as

p(Y |h) = p(r, s|h) =

Ls∏
k=1

p(rk, sk|h)

=

Ls∏
k=1

p(rk|sk, h)p(sk). (19)

Based on (19) and by assuming that the two OOK symbols are equally likely,

Θ(h|hi) can be obtained after straightforward calculation as given in (22), where

Ak =
p(rk|sk = P1, h

i)

2p(rk|hi)
, (20)

and

Bk =
p(rk|sk = P0, h

i)

2p(rk|hi)
. (21)

Θ(h|hi) =

Ls∑
k=1

[
ln
(
p
(
rk|sk = P1, h

)
p
(
sk = P1

))
p
(
sk = P1|rk, hi

)
+ ln

(
p
(
rk|sk = P0, h

)
p
(
sk = P0

))
p
(
sk = P0|rk, hi

)]
=

Ls∑
k=1

[
ln

(
p(rk|sk = P1, h)

2

)
p(rk|sk = P1, h

i)

2p(rk|hi)

+ ln

(
p(rk|sk = P0, h)

2

)
p(rk|sk = P0, h

i)

2p(rk|hi)

]
= −

Ls∑
k=1

[(
|rk − hµP1|2

2
(
σ2
s,1h+ σ2

0

) +
1

2
ln
(

8π
(
σ2
s,1h+ σ2

0

)))
Ak

+

(
|rk − αehµP1|2

2
(
αeσ2

s,1h+ σ2
0

) +
1

2
ln
(

8π
(
αeσ

2
s,1h+ σ2

0 +
)))
Bk
]
. (22)
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3.3.2. M-step

The M-step finds hi+1, i.e., the next value of h that maximizes Θ(h|hi).

More precisely, we have

hi+1 = arg max
h

Θ(h|hi). (23)

Given (22), we can rewrite (23) as in (24).

hi+1 = arg min
h

Ls∑
k=1

(
|rk − hµP1|2

σ2
s,1h+ σ2

0

+ log
(
σ2
s,1h+ σ2

0

))
Ak

+

(
|rk − αehµP1|2

αeσ2
s,1h+ σ2

0

+ log
(
αeσ

2
s,1h+ σ2

0

))
Bk. (24)

To solve (24), the optimum h can be obtained by differentiating the argument

with respect to h and setting the result equal to zero. By doing so, we obtain

<4h
4 + <3h

3 + <2h
2 + <1h+ <0 = 0, (25)

where

<0 =

Ls∑
k=1

(
σ6

0σ
2
s,1 − σ4

0σ
2
s,1r

2
k − 2µP1σ

6
0rk
)

(Ak + αeBk) , (26)

<1 =

Ls∑
k=1

(
2(µP1)2σ6

0 + σ4
0σ

4
s,1

) (
Ak + α2

eBk
)

+
(
2σ4

0σ
4
s,1 − 2σ2

0σ
4
s,1r

2
k − 4µP1σ

4
0σ

2
s,1rk

)
(αeAk + αeBk) , (27)

<2 =

Ls∑
k=1

(
σ2

0σ
6
s,1 − σ6

s,1r
2
k − 2µP1σ

2
0σ

4
s,1rk

) (
α2
eAk + αeBk

)
+
(
4(µP1)2σ4

0σ
2
s,1 + 2σ2

0σ
6
s,1

) (
αeAk + α2

eBk
)

+ (µP1)2σ4
0σ

2
s,1

(
Ak + α3

eBk
)
, (28)

<3 =

Ls∑
k=1

(
2(µP1)2σ2

0σ
4
s,1

(
αe + α2

e

)
+ α2

eσ
2
s,1

)
Ak

+
(
2(µP1)2σ2

0σ
4
s,1

(
α2
e + α3

e

)
+ α2

eσ
2
s,1

)
Bk, (29)

<4 =

Ls∑
k=1

α2
e(µP1)2σ6

s,1Ak + α3
e(µP1)2σ6

s,1Bk. (30)
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After solving (25) using [18], the EM estimate of h at the (i+ 1)-th iteration is

obtained as

hi+1 =

−<3 + 2<4

√
2<r

3 +Q+ 2<4

√
4<r

3 −Q+ 2<s√
2<r
3 +Q

4<4
, (31)

where

Q = 2
3

√
Q1 +

√
Q2 + 2

3

√
Q1 −

√
Q2, (32)

Q1 =
2<3

r + 27<2
s

432
, (33)

Q2 =
(

4<6
r + 108<5

r + 729<4
s − 144<4

r<t

− 1728<2
r<2

t − 6912<3
t

)/
186624, (34)

<r =
3<2

3 − 8<4<2

8<2
4

, (35)

<s =
<3

3 − 4<4<3<2 + 8<2
4<1

8<3
4

, (36)

<t =
−3<4

3 + 16<4<2
3<2 − 64<2

4<3<1 + 256<3
4<0

256<4
4

. (37)

Equation (31) consists of a series of simple additions and multiplications, whose

number increases linearly with Ls, unlike MMSE and ML estimators as in (15)

and (17), respectively. In the special case of signal-independent noise (e.g. by

using a PIN PD), the EM-based estimate of h at the (i+ 1)-th iteration can be

simplified as

hi+1 =

∑Ls

k=1(Ak + αeBk)rk

µP1

∑Ls

k=1Ak + α2
eBk

. (38)

As known from the general convergence property of the EM algorithm, there

is no guarantee that the iterative steps converge to the global maximum unless

an accurate initial estimate is made available for h. Hence, to initialize the

EM algorithm, one requires an initial estimate h0, which is usually acquired by

means of some pilot symbols. However, to ensure an accurate initial estimate, we

need to send multiple pilot symbols, which reduces the spectral efficiency. Let

us denote by M the number of bits ‘1’ in the observation window of length Ls.

Obviously, M is unknown to the receiver. However, the receiver knows that M
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belongs to the set {0, 1, ..., Ls} and distributed as a Binomial random variable.

For large values of Ls, M tends to its expected value, i.e., M ≈ E[M ] = Ls

2 . To

obtain an initial estimate for h, without requiring any pilot symbol, we use an

unbiased initial estimate as

h0 =
2

LsµP1(1 + αe)

Ls∑
k=1

rk

=
2µP1

(
M + (Ls −M)αe

)
LsµP1(1 + αe)

h+ Z ′, (39)

where Z ′ =
∑Ls

k=1 nk, is the additive white Gaussian noise with zero mean and

variance

σ2
Z′ = 4

Ls(σ
2
0 + αeσ

2
s,1) +Mσ2

s,1(1− αe)(
LsµP1(1 + αe)

)2 , (40)

which is a decreasing function of Ls. Hence, it is clear that when Ls is chosen

sufficiently large, M becomes very close to Ls/2 and h0 becomes close to h. We

will later refer to this initial estimate calculation as ”Blind” estimator.

3.4. Cramer-Rao Lower Bound

The CRLB on the variance of an unbiased estimate of h, is given by [13],

CRLB(h) =
1

Ifish
, (41)

where Ifish is referred to as the Fisher’s information. In our considered system

model, for a received sequence r, Ifish is defined as

Ifish = −Er,h
{
∂2

∂h2
ln p(r, h)

}
= −Er,h

{
∂2

∂h2
ln
(
p(r|h)fh(h)

)}
= −Er,h

{
∂2

∂h2
ln p(r|h)

}
− Eh

{
∂2

∂h2
ln fh(h)

}
. (42)

We define the vector r′ =
[
r′1, r

′
2, ..., r

′
Ls

]
, where the first M elements of r′

correspond to the transmitted bits ‘1’ and the remaining Ls − M elements

correspond to the transmitted bits ‘0’. For simplicity, we assume the transmitted

15



sequence s, is known at the receiver. According to this assumption, p(rk|h) is

equal to p(r|sk, h) and then we have

Ifish = − 1

2Ls

Ls∑
M=1

(
Ls
M

)
× Er′,h

{
∂2

∂h2

(
M∑
j=1

ln p(r′j |h)

+

Ls∑
j=M+1

ln p(r′j |h)

)}
− Eh

{
∂2

∂h2
ln fh(h)

}

=
1

2Ls

Ls∑
M=1

(
Ls
M

)
Er′,h

{
∂2

∂h2

(
M

2
ln
(
σ2
s,1h+ σ2

0

)
+
Ls −M

2
ln
(
αeσ

2
s,1h+ σ2

0

)
+

M∑
j=1

(r′j − µP1h)2

2(σ2
s,1h+ σ2

0)

+

Ls∑
j=M+1

(r′j − αeµP1h)2

2(αeσ2
s,1h+ σ2

0)

)}

− Eh
{
∂2

∂h2
ln fh(h)

}
, (43)

where
(
n
m

)
is the number of combinations of m items out of n. Given that

1

2Ls

∑Ls

M=1

(
Ls

M

)
M = Ls

2 and after straightforward algebra, we obtain

Ifish =
Ls
4

∫ ∞
0

{
3σ4

s,1

(σ2
s,1h+ σ2

0)2
+

3α2
eσ

4
s,1

(αeσ2
s,1h+ σ2

0)2

+
2(µP1)2

σ2
s,1h+ σ2

0

+
2α2

e(µP1)2

αeσ2
s,1h+ σ2

0

+
∂2

∂h2
ln fh(h)

}
fh(h)dh. (44)

4. Performance Study of the Proposed Estimators

In this section, we provide numerical results in terms of BER and MSE to

evaluate the performance of the proposed MMSE, MAP, ML, blind and EM-

based channel estimators while considering the case of perfect CSI and the

CRLB as benchmarks. We consider uncoded NRZ-OOK modulation and set the

system parameters as specified in Table 1, following our parameter definition in

Section II.
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Table 1: System Parameters for Simulations

Description Parameter Setting

APD Gain G 100

APD Quantum Efficiency η 0.9

Avalanche Unization Factor keff 0.028

Plank's Constant h̃p 6.6× 10−34

Wavelength λ 1550 nm

Boltzmann's Constant KB 1.38× 10−23 J.s

Receiver Load Rl 1 kΩ

Receiver Temperature Tr 300° K

Symbol Duration Tb 10−9

Modulation Extinction Ratio αe 0.2

Aperture Radius r 5 cm

Normalized Beam Width wL/r 6

Normalized Jitter σj/r 2

Background Power Pb 10 nW

Link Range d0 1 km

Rytov Variance σ2
R 0.2
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Figure 1: BER performance of MMSE estimator for different length of the

observation window Ls ∈ {8, 12, 16}.

4.1. BER Analysis

In Figs. 1 and 2, we have presented the simulated BER as a function of

the average transmit power Pt = (P1 + P0) /2 for the cases of MMSE, MAP

and ML channel estimation, respectively. Results show that (as expected) with

increasing the length of the observation window, i.e., Ls, the performance of

the estimators become closer to that with perfect CSI. For instance, by setting

Ls to 16 for MMSE, MAP and ML estimators, their BER performance is very

close to the perfect CSI case.

In Fig. 3, we have shown plots of BER for the proposed EM-based channel

estimation after one and ten iterations. We have also presented the correspond-

ing BER plots for the blind method that we use for deriving an initial channel

estimate, see (39). Firstly, we notice that with increasing the length of the

observation window, the performance of proposed EM-based method becomes

quite close to the perfect CSI case. More specifically, to achieve average target

BERs of 10−4 for instance, Ls should be larger than 24. We also notice that
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Figure 2: BER performance of MAP and ML estimators for different length of

the observation window Ls ∈ {8, 12, 16}.

after a single iteration, the receiver converges (i.e., attains the global maximum)

and further iterations result in a negligible performance improvement. This is

a clear advantage of the proposed method, since it implies a relatively low com-

putational complexity and also a low and fixed processing delay. As noticed, in

order to achieve the BER performance close to the receiver with perfect CSI, a

large enough Ls should be selected. However, a large Ls increases the process-

ing load and delay. To show the optimum Ls for each of the proposed channel

estimators, we have plotted the BER curves as a function of Ls in Fig. 4, for

a transmitted power of -9 dBm (corresponding to an average target BER of

≈ 10−3 for perfect CSI), and in Fig. 5, for a transmitted power of -3.8 dBm (for

an average target BER of ≈ 10−4 for the perfect CSI case). As expected, the

best performance is achieved by the MMSE estimator, followed by MAP, ML,

and EM-based estimators, and the simple blind estimator has the worst perfor-

mance. For instance, from Fig. 4, we notice that the receiver with EM-based

estimator can achieve an error probability close to the receiver with perfect CSI
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Figure 3: BER performance of EM-based and blind (Eq. (39)) estimators for

different length of the observation window Ls ∈ {8, 16, 24}.

for Ls = 20, while, for MMSE, MAP, ML and blind estimators, Ls is equal to

16, 17, 18 and 120, (not shown in the figure), respectively. The receiver with

EM-based estimator can still achieve an error probability close to the receiver

with perfect CSI for Ls = 20, while, for MMSE, MAP, ML and blind estima-

tors, Ls is equal to 16, 18, 19 and 210, respectively. From Figs. 4 and 5 we can

conclude that the required observation window length does not really depend

on the transmit power Pt.

Note that although the EM-based estimator needs a larger Ls compared

to MMSE, MAP and ML estimators to achieve the same estimation accuracy,

according to Equations (15), (16), (17) and (31), the computational complexity

of the EM-based estimator is significantly lower than the three other methods.

4.2. MSE Analysis

In Fig. 6, we have shown the normalized MSE of the proposed MMSE, MAP,

ML, blind and EM-based estimators and compared them with the CRLB for
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Figure 4: BER performance of EM-based, MAP, ML and MMSE estimators

versus the length of the observation window Ls; Pt = −9 dBm and the average

target BER is equal to 10−3.
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Figure 5: BER performance of EM-based, MAP, ML and MMSE estimators

versus the length of the observation window Ls; Pt = −3.8 dBm and the average

target BER is equal to 10−4.
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Table 2: Comparison of Complexity of the Proposed Channel Estimators

Channel estimator MMSE MAP ML EM (with one iteration)

Requirement to the channel PDF YES YES NO NO

Minimum required Ls to attain 0.95 BER Ls=16 Ls=17 Ls=18 Ls=20

performance with perfect CSI at Pt=-9 dBm

Minimum required Ls to attain 0.95 BER Ls=16 Ls=18 Ls=19 Ls=26

performance with perfect CSI at Pt=-3.8 dBm

High due to com- High due to high High due to high Relatively low; only requires

Overall complexity plex integral cal- computational computational the simple addition and mult-

culations, see (15) load, see (16) load, see (17) iplication operations, see (24)

different Ls values. We can see from these figures that, as expected, the ML

and the EM-based estimators have the same MSE, which approaches that of

the MMSE estimator by increasing Ls. Also, by increasing Ls, the MSE of the

proposed methods become closer to the CRLB as it can be seen from Fig. 6c,

for Ls=24.

4.3. Complexity and Latency Comparison and Discussion

Due to typically high date rate of FSO links, computational complexity is

an important issue for the implementation of these systems [1]. Besides the pre-

sented simulation results, in order to draw general conclusions on the advantage

of the proposed EM-based estimator, we compare here the processing load of

the four considered estimators. According to (15), (16), (17), (31) and (39),

the computational complexities of all proposed methods increase linearity with

Ls. In other words, their complexity is in order of O(Ls). As we noticed from

simulation results, the proposed EM-based estimator has a performance close to

the MMSE and the MAP estimators for large enough Ls while benefiting from

a significantly lower computational complexity. We have summarized our com-

ments on the implementation complexity of the proposed estimators in Table

II.

Lastly, note that typical Ls of about 24 is quite acceptable, given the quasi-
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static nature of the FSO channel and the fact that it is equivalent to an esti-

mation delay on the order of ns for a Gbps FSO link.

5. Conclusions

We considered in this work the case of long-range FSO links with APD-based

receivers and investigated optimal signal demodulation for the case of NRZ OOK

signaling, in the presence of signal-dependent shot noise. For optimal OOK

signal demodulation, the receiver requires the knowledge of the instantaneous

channel attenuation coefficient. A channel estimation step is hence unavoidable

prior to signal detection. For this purpose, we first studied three estimators

based on MMSE, MAP and ML criteria, that calculate the channel coefficient

over an observation window encompassing several consecutive received symbols.

Due to the computational complexity of these estimators, we then proposed an

ML channel estimator based on the iterative EM algorithm. We investigated

the performance of the proposed EM-based estimator through numerical simu-

lations, which alleviated the advantage of this estimator compared to the three

other methods. It is worth mentioning that this estimator converges after a

single iteration, and in addition, does not require the knowledge of the chan-

nel statistical distribution. The relatively low computational complexity and

the low estimation delay of the proposed method and the fact that it does not

rely on the transmission of pilot sequences, makes it particularly suitable for

implementation in FSO communication links.
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[11] F. Xu, A. Khalighi, P. Caussé, S. Bourennane, Channel coding and time-

diversity for optical wireless links, Optics express 17 (2) (2009) 872–887.

[12] K. Kiasaleh, Receiver architecture for channel-aided, OOK, APD-based

FSO communications through turbulent atmosphere, IEEE Transactions

on Communications 63 (1) (2015) 186–194.

[13] S. M. Kay, Fundamentals of Statistical Signal Processing, volume I: Esti-

mation Theory, Prentice Hall, 1993.

[14] R. Gagliardi, S. Karp, Optical Communications, Wiley, 1995.

[15] J. G. Proakis, Intersymbol Interference in Digital Communication Systems,

Wiley Online Library, 2003.

[16] H. G. Sandalidis, T. A. Tsiftsis, G. K. Karagiannidis, Optical wireless

communications with heterodyne detection over turbulence channels with

pointing errors, Journal of Lightwave Technology 27 (20) (2009) 4440–4445.

[17] L. C. Andrews, R. L. Phillips, Laser Beam Propagation Through Random

Media, Vol. 1, SPIE press Bellingham, WA, 2005.

[18] E. W. Weisstein, Quartic Equation (2002).

26



Average Transmitted Power (dBm)
-20 -15 -10 -5 0

N
or
m
al
iz
ed

M
ea
n
S
q
u
ar
e
E
rr
or

10
-5

10
-4

10
-3

10
-2

10
-1

CRLB

Blind

EM, 1-iteration

EM, 10-iteration

ML

MAP

MMSE

Ls = 8

(a)

Average Transmitted Power (dBm)
-20 -15 -10 -5 0

N
or
m
al
iz
ed

M
ea
n
S
q
u
ar
e
E
rr
or

10
-5

10
-4

10
-3

10
-2

10
-1

CRLB

Blind

EM, 1-iteration

EM, 10-iteration

ML

MAP

MMSE

Ls = 16

(b)

Average Transmitted Power (dBm)
-20 -15 -10 -5 0

N
or
m
al
iz
ed

M
ea
n
S
q
u
ar
e
E
rr
or

10
-5

10
-4

10
-3

10
-2

10
-1

CRLB

Blind

EM, 1-iteration

EM, 10-iteration

ML

MAP

MMSE

-5 -4.5 -4 -3.5 -3

×10
-4

1

1.2

1.4

1.6

1.8

2

Ls = 24

(c)

Figure 6: MSE performance of EM-based, MAP, ML and MMSE estimators

versus the length of the observation window Ls for (a) Ls = 8, (b) Ls = 16 and

(c) Ls = 24.
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