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Minimum Description Length Synthetic Aperture

Radar image segmentation
Frédéric GALLAND, Nicolas BERTAUX and Philippe REFREGIER

Abstract— We present a new Minimum Description Length
(MDL) approach based on a deformable partition - a polyg-
onal grid - for automatic segmentation of speckled image
composed of several homogeneous regions. The image seg-
mentation thus consists in the estimation of the polygonal
grid, or, more precisely, its number of regions, its number
of nodes and the location of its nodes. These estimations
are performed by minimizing a unique MDL criterion which
takes into account the probabilistic properties of speckle
fluctuations and a measure of the stochastic complexity of
the polygonal grid. This approach then leads to a global
MDL criterion without undetermined parameter since no
other regularization term than the stochastic complexity of
the polygonal grid is necessary and noise parameters can be
estimated with maximum likelihood-like approaches. The
performance of this technique is illustrated on synthetic and
real Synthetic Aperture Radar imnages of agricultural regions
and the influence of different terms of the model is analyzed.

Keywords— Image segmentation, Synthetic Aperture
Radar, Minimum Description Length, Statistical models.

I. INTRODUCTION
A. Background

YNTHETIC Aperture Radar (SAR) instruments have

been widely used in the past years for remote sensing
applications [1]. These microwave active sensors actually
offer interesting complementary properties to the classi-
cal passive optical systems: they can operate at an time
of day, in any weather conditions and offer a high spatial
resolution. On the other hand, the speckle [2] effect, inher-
ent to coherent imaging technique, drastically limits the
interpretation of the image. A crucial point for SAR im-
age automatic interpretation is the low level step of scene
segmentation, i.e. the decomposition of the image in a tes-
sellation of uniform areas. Within that domain, a large
effort has been done in order to cope with the influence of
speckle noise on image segmentation such as edge detection
or direct global segmentation.

Edge-based segmentation schemes aim at finding out the
transitions between wuniform areas, rather than directly
identifying them. The related algorithms generally work in
two stages: they firstly compute an edge strength map of
the scene and finally extract the local maxima of this map.
The first stage is usually achieved using an edge detection
filter. With SAR images the speckle effect can generally
be modeled as a multiplicative noise with a Gamma proba-
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bility density function (pdf) and edge filters with constant
false alarm rate (CFAR) have been developed. Bovik [3]
and Touzi [4] defined filters which compute the normalized
ratio of averages between two adjacent small regions in an
a priori window which is translated on the analyzed image.
In the framework of statistical decision theory, Oliver et
al. determined an optimal filter, based on the likelihood
ratio (LR) principle [5]. However, it has been shown [6],
[7] that these edge-based detectors introduce a bias and in-
crease the variance in the estimation of the edge position
when the window has not the same orientation as the edge
(which is the typical practical situation since the edges may
have arbitrary orientation in the image). It has also been
shown that an efficient technique to refine edge location
can be obtained using statistical active contours [6]. But
this approach is still far to provide an automatic segmenta-
tion procedure. Other approaches such as region growing
or region merging [8], [9], [10] have also been developed but
they lead to similar limitations.

Global approaches generally consist in optimizing an en-
ergy function depending on the whole image. These ap-
proaches start from a given model and let it evolve in order
to optimize the considered energy criterion.

Many techniques have been proposed for direct global
segmentation of SAR images, but because they permit to
take into account the noise model, statistical image seg-
mentation techniques have become more and more attrac-
tive since the work of Geman and Geman [11]. Markov
random fields [12], [13], [14], present many interesting prop-
erties. Indeed, they not only allow one to design segmen-
tation techniques which are able to take into account the
nature of the speckle noise in a statistically optimal way but
they also provide an efficient regularization method. Such
regularization is necessary since segmentation is an inverse
problem generally ill posed from the mathematical point
of view. However, Markov random field models introduce
ad hoc parameters which cannot be easily automatically
determined and which can lead to difficult optimization
problem.

Recently, a large interest has been devoted to variational
methods for image segmentation [15], [16], [17], [18], [19],
[20], [21], [22], [23], [24]- In the case of deformable models,
the desirable properties such as continuity and smoothness
of the contours are enforced by introducing regularization
terms in the functional to optimize. More precisely, this
kind of approaches leads to the minimization of an energy-

like criterion similar to:
E= (1 - /\) Eeut (V7I) + A B (V) (1)

where Equy (v, 1) is an external potential energy which de-
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pends on both the observed image I and the segmentation
map v, and E;,; (v) is an internal energy which allows one
to introduce regularization constraints on the segmented
image. Regularity properties may correspond for exam-
ple to smoothness of the contour, penalization of small re-
gions, etc. These approaches require the introduction of
parameters, such as for example A in EQ.(1), which per-
mit, to balance between the external potential energy and
regularization terms. The value of these parameters may
have great influence on the segmentation result and may
not be eagily predicted by the user. Thus, the situation is
analogous to the one obtained with Markov random field
approaches.

Recently, deformable models and statistical approaches
have been coupled, allowing efficient estimation and regu-
larization of the contours. Whereas some of these methods
permit to segment a unique object in the scene ([25], [26],
[27], [28], [29], [30]), other are able to segment the scene
in several regions ([31]). Based on statistical polygonal
snakes, Germain et al. [30], [32] proposed a method to
correct the bias observed in SAR edge location. However,
the extension of this approach to multi region needs an ini-
tial segmentation to determine the number of regions and
their approximate locations. Furthermore, the fast algo-
rithm developed in [33] and used in this approach was not
generalized to non simply connected regions.

Reducing the number of undetermined or free param-
eters in the criterion to optimize appears as one of the
key problems in image segmentation. The Minimum De-
scription Length (MDL) principle, introduced by Rissanen
[34], [35] in 1978, has been early used to address this is-
sue. Based on information theory, this principle allows one
to estimate the number of needed parameters for paramet-
ric description of observed data. The estimation of the
values of the parameters are generally obtained using sta-
tistical techniques such as maximum likelihood estimation
for example. In the context of image segmentation, the
estimation of the number of needed parameters for para-
metric description of observed data can be an interesting
alternative to the introduction of regularization terms.

Leclerc [36] proposed very early to apply the Minimum
Description Length principle to image segmentation in or-
der to obtain a method without undetermined parameter.
The obtained results were illustrated on optical images.
Kanungo et al. [37] then proposed a MDL merging scheme
for multi-band image segmentation leading to a free pa-
rameter segmentation method, but which supposes to start
with a correct initial over-segmentation. More recently,
Zhu and Yuille [31] proposed a region competition algo-
rithm deduced from a MDL criterion. Their approach,
combining region growing, region merging and region com-
petition, allows one to segment complex images and pro-
vides a general scheme to unify snakes, region growing and
Bayesian methods. However, the proposed segmentation
algorithm still contains free parameters in the energy cri-
terion which have been introduced in order to obtain bet-
ter image segmentation. Moreover, the three previous seg-

mentation methods were developed and tested for Gaus-
sian noise and their ability to segment speckle images has
not been demonstrated. On the other hand, Figueiredo
et al. [29] recently demonstrated in the context of snake-
based models that the MDL principle can be useful to de-
sign a segmentation technique without free parameter and
adapted not only to Gaussian but also to Rayleigh noise.
More precisely, they proposed to use a MDL method to es-
timate the order of their contour model, which corresponds
to the number of control points of their B-splines contour.
They then obtained a global criterion for image segmenta-
tion without undetermined parameter and adapted to seg-
ment a unique object in the scene. These results have been
generalized by Ruch et al. [38] in the context of polygonal
statistical snake. The MDL criterion introduced previously
in [29] has thus allowed them to estimate the number of
nodes of the polygonal contour in presence of highly non
convex objects in speckle images with a fast and simple
algorithm [38].

B. Proposed approach

Applied to image segmentation, the basic idea of the
MDL principle consists in finding the image description
which has the lowest complexity. The measure of the com-
plexity of a particular image is a difficult problem. In
particular, the Kolmogorov complexity of a given image,
which corresponds to the length of the smallest program
which generates the image, is most of the time uncom-
putable. Rissancn thus proposed to consider the stochastic
complexity which corresponds to the mean number of bits
(in the Shannon meaning - see [39]) needed to describe the
image with an entropic code. This entropic code is then
determined with a probabilistic image model (see [35]).

Our goal in this paper is to propose an automatic image
segmentation algorithm adapted to simple speckled SAR
images. More precisely, images composed of an unknown
number of homogenous speckle fluctuations will be consid-
ered. Thus, thanks to this simple image model and based
on the MDL principle, one will obtain a global criterion
for speckled image segmentation without parameter that
needs to be adjusted by the user. Since the MDL criterion
corresponds to the stochastic complexity, it depends on a
probabilistic model of the image. This approach will thus
lead to an algorithm:

1) which does not need a priori knowledge on the num-
ber of regions,

2) which does not need an initial over-segmentation ob-
tained thanks to another technique,

3) without undetermined paramecter in the criterion,

4) adapted to speckle images,

5) and which uses a fast algorithm analogous to the
one proposed in [33], but extended to deal with non simply
connected regions.

In the proposed approach, the segmentation image model
is a polygonal partition, denominated active grid in the
following. It is defined as a set of nodes, some of which
are joined by segments to delimit regions. The goal of the
segmentation algorithm is thus to determine the number of
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regions in the image, the number of nodes of the grid and
their location in the image. These parameters are obtained
by minimizing an appropriatc MDL critcrion.

In section II, we describe the image model and we de-
termine its stochastic complexity. The precise stochastic
complexity for speckled image segmentation degraded by
Gamma noise is detailed in the second part of this section.
In section III, we propose a simple approach to minimize
the stochastic complexity. Starting with an arbitrary regu-
lar thin grid, the global optimization procedure is separated
in three different procedures which will be used alterna-
tively: a merging procedure where the regions delimited
by the grid can be merged, a moving procedure where the
nodes of the grid can be moved, and a node’s removing
procedure to estimate the optimal number of nodes needed
in the grid (which is equivalent, from a practical point of
view, to a regularization of the contour of the segmented
image). Moreover, one will discuss about a fast implemen-
tation using contour summation. In section IV, examples of
results of the proposed approach on synthetic and real SAR
images are presented. We notably show that for simple
segmentation purpose like agricultural regions, the above
optimization procedure permits one to converge to satis-
factory segmentation results and that it also allows one to
estimate the speckle order in the image simultaneously.

II. MDL CRITERION FOR IMAGE SEGMENTATION
A. Determination of the stochastic complexity

Let the image s be composed of N = N, x N, pixels:
s = {s(x,y)|(x,¥) € [1,Nx] x [1,Ny]} and of R regions
Q, (r € {1,2...R}), each containing N, pixels. The gray
levels of each region ), will be considered as independent
random vectors with statistically independent components
respectively distributed with a probability density function
(pdf) of parameter vector 6,. Let w be the function so
that w (z,y) = r if and only if the pixel {z,y) belongs to
region €1,.. This function w - 7.e. its order R and its values
w (x,y) - represents the partition of the image in R regions.
So, obtaining this partition function w can be considered
as the purpose of an image segmentation technique. We
propose to implement this partition w with a polygonal
grid - a set of nodes linked by segments - in order to define
boundaries of regions. Let us note that to define w thanks
to a polygonal grid, we adopt the convention developed in
[32], i.e. the partition grid is translated by (1/2,1/4) with
respect to the pixel grid, so that the grid defines regions
without ambiguity.

In order to apply the MDL principle, let us now estimate
the stochastic complexity, or in other words, the mean code
length of the whole image description with a given partition
function w. The number of bits necessary to encode the
image is composed of two terms: the sum Ag = Zle A,
of the total number of bits A, needed to describe the pixel’s
gray levels in each region {1, with an entropic code [39] and
the length of the grid description.

Let us first determine the number of bits needed to en-
code the pixels’ gray levels of a given region (2,, knowing

the partition w. To encode the gray levels in the region
Q, composed of N, pixels, one first needs to encode the
paramcter vector 6, of the pdf Py, in this region and then
to encode the gray levels of the pixels of this region. Let
o be the dimension of the parameter vector': so, one has
to encode « scalar parameters. Since each of them are es-
timated on a sample of N, pixels, an approximation of the
code length associated to the parameter vector is aloga/N,
(cf. [35]). Knowing the pdf parameter vector, the average
code length of an entropic code of the pixels’ gray levels of
region (2, is given by (¢f. [39]):

~L [0 =— > loga [Py, (s(z,y))]

(z,9)€Q

2)

where the base 2 log-likelihood has been used.
One finally obtains A, = § loga N, — 2 [Q2,|6,] and so for
the whole image:

R
As=Y (% l0ga Ny — Iy [Qr|9r]) 3)

r=1

The determination of the code length Ag of the grid
is less straightforward. Two nodes of the grid will be said
neighbors if there exists a unique segment of the grid which
links them. We will also define a segment vector as the
vector which links the current node to the corresponding
neighbor node. The coordinates of the segment vector are
thus the difference between the coordinates of the neighbor
node and the coordinates of the current node.

Only some particular graphs can be drawn continuously
- i.e. without jump between non neighbor nodes - and
with passing one and only one time by all the segments:
they correspond to Eulerian graphs. In the particular case
of Eulerian graphs, an obvious coding method of the grid
may consist in coding the coordinates of a starting node
and then in successively encoding the coordinates of the
segment vectors so that the grid has been drawn contin-
uously by meeting one and only one time each segment.
In the general case of non Eulerian graph, this procedure
will not be applicable without making jumps between non
neighbor nodes. A simple way to describe the grid can thus
be obtained as follows:

1) choose a starting node and code its coordinates in
the image,

2) encode the coordinates of the segment vector formed
by the current node and one of its neighbor nodes (the
segment vector corresponds to a segment of the grid),

3) then, consider this neighbor node as the current node
and go to (2) until no segment has to be encoded twice,

4) when no segment vector coding is possible on the
grid without encoding twice the same segment, specify -
just after having given the coordinates code of the starting
node - the number of segments which have been encoded
and then jump to another starting node (i.e. go to (1)),

IFor example, for a gamma law we have a = 1 (the only parameter
is the mean) and for a Gaussian law, o = 2 (the 2 parameters are the
mean and the variance).
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Fig. 1. Minimum number of starting points needed to describe o
grid. To meet one time - and only one - each segment, one travels
around the followings nodes: (2, 3, 4, 5, 6, 7, 1, 2, 8, 9, 7) then (9,
10, 11, 5) then (16, 17, 18, 19, 20, 21, 16, 19) and finally (12, 13,
14, 15). So the number of starting nodes - marked with a cross - is
n = 4. These starting nodes include non /2 = 3 odd nodes (2, 9 and
16) and one even node (12) which leads to the only simply connected
component of the graph without any odd node (C).

5) continue until all the segment vectors have been en-
coded.

Let us now determine the minimum number 7 of starting
nodes (i.e. of jumps) which are needed to draw the grid
by passing one and only one time by all the segments (thus
n = 1 for an Eulerian graph). A node with an odd number
of segments starting from it (denominated an odd node
in the following) must be cither a starting or an arrival
node, when one wants to encode the segments of the grid
with a minimum number of jumps (¢f Fig.1). In that case,
the number of starting nodes has to be equal to half the
number of odd nodes, noted nox. However, for each simply
connected graph, the coordinates of a starting node has also
to be specified. Let ngc be the number of simply connected
components without odd node. One then obtains:

TL:nOTN-f—’rLSC (4)

Since there are N pixels in the image, the location of a
node will then be coded with logs N bits. Let p denote the
number of segments of the grid. Given a starting node,
one must encode the number of segments that will be con-
tinuously encoded before a jump. This number can vary
between 1 and p, needing at most logop bits. Then to en-
code the list of connected segments (i.e. the coordinates of
the vector formed by neighbor nodes) one will have to en-
code p segment vectors since each segment will be encoded
one and only one time.

It is clear that coding the segment vector coordinates
of neighbor nodes can be performed by using logs N bits.
However, it is far to be an appropriate estimation of the
minimum mean number of bits which are necessary. A bet-
ter approximation can be obtained using a Shannon code
of the segment vector coordinates of neighbor nodes. How-
ever, for determining such a Shannon code, one needs to de-
termine the underlying probability distribution of the vec-

tor coordinates of neighbor nodes. Let d; (i) and d, (i) be
the absolute value of the horizontal and vertical coordinates
of the segment vector number i: d, (¢) = |z2 (¢) — z1 ()]
and dy, (1) = |y2 (1) — y1 (4)| where (21,31) and (x2,y2) are
the coordinates of the extremities of the segment number i.
One supposes that d, (i) (resp. dy (¢)) is distributed with
a pdf Py, (d) (xresp. Py, (d)) with m, (resp. m,) the pa-
rameter of the pdf. Since both d, (i) and d, (4) will play
equivalent role in the following, = or y index will not be
noted unless necessary. Knowing the parameter m of the
pdf Py, (d), the average code length needed to encode the
p horizontal or vertical components of the segment vectors
can be approximated by the negative of the base 2 log-
likelihood I [x|m] with x = (d(i))c); ,)- However, since
d is in fact the absolute value of the abscissa or the ordi-
nate, to encode the p segment vectors’ horizontal or ver-
tical components, p bits of sign have to be added to the
log-likelihood. So the Shannon code length of the whole
grid is:

Ag = n(logaN +logap) — ls [xz|ma]

Iy [xylmy] + 20+ Ag (1mg) + Ag (my) )

where xo = (de (i) ;e[1 ) and Xy = (dy (i))ie[l’p] and where
Ay (my) and Ay (my) are the number of bits needed to
encode the parameters m, and m,,. According to [35], since
m, and m, are estimated on a p-sampling, each one can
be encoded in logz./p bits. For simplicity reasons, let us
now consider natural logarithms log instead of the base 2
logarithms log,. The length coding are thus measured in
nats instead of bits, leading to:

Ac = n(log N +logp) — . [xz|mz]

=l [xy|lmy] +2plog2 +logp (©)

where [, [.] denotes the log-likelihood expressed with natu-
ral logarithms.

In order to determine an appropriate pdf P, (d), we pro-
pose to apply the maximum entropy principle with the con-
straint that the statistical mean value is assumed known.
In other words, one determines the pdf P which maximises
the entropy S = — 0+°° P (z)log P (z) dx with the con-
straint that its mean is equal to m: f0+o° x P(z)dz = m.
The obtained corresponding pdf is thus an exponential law:

Po(d) =~ ™)

m

where m is the statistical mean value. Then one gets:

le [xIm] = Zlog [P (d ()] (8)

and replacing m by its ML estimate m = * 37

5 2.1 d(i), one
obtains:
le [x|] = —plog (M) — p 9)

The code length to encode the grid is then deduced from
(6):

A¢ = n(logN +logp)+logp

+p (2 + log (2m;) + log (21)) (10)
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where my = > 30, d, (i) and fmy = £ 377, d, (i)
In conclusion, one proposes to evaluate the stochastic
complexity of the image using a particular segmentation

(i.e. a particular grid) by:

A = n(logN +logp)+logp
+p (2 + log (2my) + log (2my))

+ Zf:l (5 log N» — 1. [92,16,])
Since the log-likclihood of the image

(11)

R
L [stw, O)repmy| = 2oL [0016] (12)
r=1
has to be specified in order to determine the stochastic
complexity A, this criterion can be adapted to the gray
level pdf of the image. This is the object of the next section.

B. Determination of the log-likelihood

The classical model to describe speckle fluctuation (see
[2]) is to describe the gray level fluctuation by a Gamma
law of order L which pdf is:

Lt “Le
P, = gl
9 () LT (D) " e
where 6§ is the statistical mean value. The log-likelihood in
the region ), is then:

. [Q:8,] = NTL(L logL — Llog8, —logT'(L))
9, Z(z,y)EQT s (.73, y)
+ (L - 1) Z(z,y)eQr l()g (S ('/'L?y))

(13)

(14)
The ML estimate 6, of 6, is thus the simple sufficient
statistic of the gamma law:

b, = Ni Z s(z,y)

" (@y)ER.

(15)

Replacing 6, by 8, in EQ.(14),0ne obtains:

L [s|w, (ar)rm] _

NLlogL—L Y% N,logb,

—NlogT(L)-NL+(L-1)

X Z(z,y)elmage lOg (S (.73, y))
(16)

where [, [s|w, (@\r) = Zle l, [QT|§T]

rE[l,R]:‘

In this expression, one can note that only — L Zle erog@«

will vary for different partitions (i.e. segmentations) of the
image. Thus, the log-likelihood can be written

R
le [slw, <9r)r€[1,R]] =-L ;Nr log8, + K (L) (17)

with K (L) independent of the segmentation result but is
dependent on L.

The log-likelihood for other statistical laws belonging to
the exponential family have been determined in [33] for the
statistical snake technique and could be generalized for the
segmentation method proposed here.

III. MDL SEGMENTATION
A. General algorithm

Once the description length, measured by the stochastic
complexity A - also called MDL criterion in the following -
associated to a given grid for a specific image has been de-
termined, the segmentation problem consists in finding the
partition function w, or in other words, the grid which min-
imizes the criterion A. The segmentation problem is thus
an optimization problem and the variable is the partition
grid i.e. the region labeling, the number of nodes of the
grid and their location in the image. For this purpose, we
propose a simple approach which consists in alternatively
optimizing the region labeling with a merging procedure,
the nodes’ number k£ with a removing method and the lo-
cation of the nodes with a moving technique.

Let us now briefly describe these three different opti-
mization procedures.

B. Regions’ merging

To find the region labeling, a merging scheme can be im-
plemented. The principle is quite simple: two neighboring
regions 24 and {1p are merged if this merging leads to a
decrease of the stochastic complexity A. The stochastic
complexity of EQ.(11) can be rewritten:

R
A=F-> 1[0,

r=1

(18)

where F' = Ag + Zle log N, and Ag given by EQ.(10).
Let us denote A and F (resp. A’ and F') these values
before (resp. after) merging and #4p the parameter vector
of the region Qap = Q4lJOB. Q4 and Qp are merged
when A’ — A <0, i.e. when

I [Q4]04] + 1. [2B|08] — 1. [Qapl0aB] < S (19)
where S = F — F’. One can remark that this test is similar
to a Generalized Likelihood Ratio Test (GLRT)[40] with
a threshold S determined thanks to the MDL criterion A.
In order to allow a graduated convergence, in the follow-
ing, one may combine two GLRT approaches, one with a
threshold S = F' — F” obtained with the MDL criterion A
and an other with an ad hoc threshold S. We will show in
section IV-C that this ad hoc procedure is not absolutely
necessary. Indeed, a simpler procedure which only uses a
MDL region merging can be implemented when the speckle
order L is also estimated.

C. Nodes’ mouving

The obtained grid after a merging - as well as with the
initial grid - may contain regions which are not homoge-
neous. In other words, a region of the grid may contain
different parts of regions of the image (i.e. with different
reflectivity). Instead of considering a splitting procedure
which may lead to very small regions and then to difficult
statistical tests, we propose to implement a moving pro-
cedure. This moving approach allows one to move a node
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in order to minimize the MDL criterion A. The advan-
tage of this method is that at each step of the algorithm,
one deals with regions of sufficiently large pixel numbers,
which is more reliable than using regions with very small
pixel numbers.

This procedure is similar to the one presented in [32] and
will not be detailed here. It simply consists in considering
successively each node of the grid and in randomly moving
it: the move is accepted if it has lowered the MDL criterion
A, otherwise it is canceled.

D. Nodes’ removing

Since the grid may have many parameters (essentially the
coordinates of the nodes), the segmentation task is an ill
posed problem. As a consequence, the minimization of the
MDL criterion A with a very large number of nodes leads
to very fluctuating boundaries. A classical approach in
that context consists in regularizing the solution by adding
to the criteria a Tikhonov-like regularization term, such as

an elastic energy penalization analogous to the one used

HAVAUEGL apprUatiicos =D 1D
regularization techniques present many drawbacks in our
context. The first one is that it introduces ad hoc param-
eters which cannot be easily estimated. The second one is
due to the fact that the moving and the merging proce-
dures are driven by the minimization of the MDL criterion
A. Then if the grid contains more nodes than necessary,
one will obtain an overestimation of the grid complexity
Ag and thus an erroneous segmentation result.

We thus propose to implement a removing step which
is very simple from an algorithmic point of view. It sim-
ply consists in scanning each double connected node of the
grid and suppressing it if this allows to decrease the MDL
criterion A. However, in order to obtain a graduated re-
moving procedure in the proposed implementation, we first
determine the MDL decrease involved by the suppression
of respectively each node of the grid, and then suppress
the one which leads to the most important decrease. This
procedure is analogous to the one presented in [38] in the
context of the statistical snake.

However these
|44, nowever these

E. Global optimization and fast implementation

Since for the three above optimization procedures, the
most computational task is to determine the sufficient
statistics 6, of EQ.(15), each step can be very time con-
suming. We thus propose to generalize and to implement
a fast algorithmic approach which consists in substituting
to the surface summmation of the gray levels in EqQ.(15),
a contour summation on a preprocessed image. The pro-
posed approach is analogous to the one described in [33],
[32] and has been generalized in order to deal with non
simply connected regions. This generalization is discussed
in appendix A.

In order to apply the previous optimization procedure,
one has to start with an initial grid. In the following we
consider rectangular initial grid but other choices - maybe
more suited to grid dynamics - could have been consid-
ered. Since our goal in the following will be to illustrate the

robustness of the proposed MDL segmentation technique,
this suboptimal choice of the initial grid also contributes to
this purpose. The final segmentation is obtained when the
MDL criterion cannot decrease anymore. More precisely,
the region merging and node removing optimization pro-
cedures are stopped when no further minimization of the
stochastic complexity can be obtained. There is thus no
nced of ad hoc paramcter for stopping these optimization
algorithms. Of course, during the node moving optimiza-
tion, it is not possible to explore all the possible moves
exhaustively in a reasonnable time: the user has thus to fix
the number of iterations of the process.

IV. EXPERIMENTAL RESULTS

In this section, we illustrate the results of the proposed
segmentation technique obtained with some synthetic and
real SAR images.

As mentioned above the MDL threshold S = F — F'
used in the merging algorithm depends on the nodes’ num-
ber and favors merging if this nodes’ number is large which
may result in an irreversible under-segmentation. To over-
come this problem, we first propose to alternate the three
above optimization procedures without directly applying
the MDL threshold for region merging in the first step of
the optimization. More precisely, a GLRT merging scheme
with a fixed threshold (chosen equal to 3 for all the follow-
ing experimental results) is applied in order to reduce the
region’s number. After this merging procedure, a moving
optimization and a node’s removing optimization are per-
formed. Since node’s removing have slightly modified the
shape of the grid, another moving optimization is applied.
Then, with this reduced number of nodes, another sequence
of region merging, but now with the MDL threshold, fol-
lowed by a moving and a node’s removing optimization is
applied. It is worth noting that, although the optimization
procedure may contain ad hoc parameters (as most numer-
ical optimization methods), the segmentation is obtained
by minimizing the parameter free MDL criterion A. A sim-
pler approach will be proposed in section IV-C when the
speckle order L is also estimated.

A. Synthetic image

According to this optimization process, we first present
our results on synthetic images with speckle noise. The
first image (cfF1G.2) is a 256 x 256 pixel synthetic image
with speckle noise of order 1. This image is analogous to
the agricultural SAR image of FiG.5. The second one (cf.
FiG.3 - upper line) is composed of 9 homogeneous regions
with different contrasis? varying from 2 to 18. Tis size
is 595 x 765 pixel and it also presents a speckle noise of
order 1. The third one (¢f Fig.3 - lower line) is a target’s
synthetic image of 256 x 256 pixels presenting a first order
speckle phenomernon with a contrast equal to 4 and notably
permits to demonstrate the ability of the algorithm to deal
with non simply connected regions (¢f appendix A).

2We remind that in speckle images, the contrast between two re-
gions is defined by the ratio of their means.
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(8) (h)

Fig. 2. Segmentation of a 256 X 256 pizels synthetic image with
a first order speckle noise and analogous to the real SAR image of
Fic.5. (a)-(b) Synthetic image without and with noise - (¢) Initial
grid delimiling regions of size 8 X8 pizels - (d) Afler a region merging
with GLRT criterion (threshold 3) - (e) After a move of the grid -
(f) After a nodes’ removal and a move of the grid - (g) After a
region’s merging with the MDL criterion - (h) Final segmentation
after a last move of the grid and a last nodes’ remowval. Although
the results are superposed to the non noisy image for visualization
purpose, the processed image at each step is Fic.(b).

Fig. 3. Segmentation of synthetic images. Upper line: synthetic
image (595 x 765 pizels) composed of 9 regions with speckle noise
of first order. Bottom line: target (256 X 256 pizvels) with speckle
noise of first order and a contrast equal to 4. From left to right: (a)
synthetic images (the written numbers represent the mean in each
region). The initial grid delimits regions of size 8 X8 pizels. (b) Grid
after a merging (threshold 3) and a moving. (¢) Final segmentation
after a nodes’ removing, a moving, a merging with MDL threshold,
a moving and a last nodes’ removing. Let us note that the images’
gray levels have been modified to be better visualized.

The segmentation time for the 256 x 256 pixel images
of FiGg.2 and Fig.3 (lower line) is less than 6 seconds on a
standard PC (Pentium II1,800 MHz), but one must point
out that the algorithm has not yet been optimized to reduce
this computation time.

B. SAR images

Let us now present results on real SAR images (see
Fic.4, F1c.5 and FiG.6). For all these examples, the seg-
mentation process is the same and one can see that this
MDL segmentation algorithm provides very interesting re-
sults, although it is automatic. However, this technique
may probably be unappropriated for more complex images
as urban areas.

Fig. 4. Extract (150 x 350 pizels) of a single look SAR image of
an agricultural area near Bourges (France) obtained by the ERS-1
satellite (distributed by the ESA and provided by the CNFES). (a)
Original image. The initial grid delimits regions of 8 x 8 pizels.
(b) After a merge with GLRT criterion (threshold is equal to 3)
and a move. (¢c) After a nodes’ removing and a move. (d) Final
segmentation after a merging with MDL threshold, a moving and a
last nodes’ removing.

Fig. 5. Extract (250 x 250 pizels) of a single look SAR image of agri-
cultural area in Ukraine obtained by the ERS-1 satellite (distributed
by the ESA and provided by the CNES). (a) SAR image. The initial
grid delimits regions of 5 X 5 pizels. (b) Final segmentation.

As a conclusion, one has to emphasize that, in order to
minimize the MDL criterion A, three kinds of optimization
procedures have to be implemented (merging, moving and
nodes’ removing). However, a MDL merging optimization
implemented before a nodes’ removing procedure will lead
to too many regions’ merging. Thus, the results of these
three optimization schemes are not independent and alter-
native optimizations have to be performed so that the seg-
mentation result does not correspond to an unsatisfactory
local minimum of the MDL criterion.

C. Robustness

C.1 Influence of the choice of the pdf of the pixels’ gray
levels

Let us first analyze the influence of the choice of the pdf
in the image model on the segmentation result. For that
purpose, the test image of FiG.3 (upper line) presenting a
gamma noise of first order is segmented first by minimizing
the MDL criterion designed for gamma pdf of order 1 (see
FiG.7-a) or by minimizing the MDL criterion designed for
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Fig. 6. Extract (171x190 pizels) of a SAR image in Ukraine obtained
by the ERS-1 satellite (distributed by the ESA and provided by the
CNES) and composed of agricuktural areas, lokes and rivers. Line 1:
SAR image (on the left) and the same image after having modified
the pizel gray levels in order to better visualized the image (on the
right). Line 2: segmentation result displayed on the first line images.
In order to be able to detect thin rivers, the initial grid has regions
of 3 x 3 pizels.

a Poisson pdf (scc F1G.7-b) whosc likclihood is (¢f. [33]):

R
. ; N, 8, log (9) T K (20)

where §, = - Y (z.y)ea, 5 (#,y) and K' a constant which
has no influence on the segmentation result. The results
presented on FiG.7 clearly show that the choice of the pdf
is fundamental in that case, in particular to estimate cor-
rectly the number of regions.

C.2 Influence of wrong speckle order choice

In the previous examples, the order L of the gamma pdf
was assumed to be a priori exactly known. We propose
to analyze here the influence on the segmentation results,
of an erroneous choice of the speckle order L for the like-
lihood term in the MDL criterion A. For that purpose a
synthetic speckled image (128 x 128 pixels) of order 3 has
been generated. Then, considering always the same opti-
mization process, different MDL segmentations have been
obtained with respectively MDL criterion determined for
gamma law of order 1, 3 and 10. Results are shown on
Fic.8.

One can see on F1G.8-d that the segmentation result ob-
tained with a speckle order equal to 10 (i.e. higher than
the speckle order of the image) for the likelihood term in
the MDL criterion, leads to an over estimation of the num-

I \ Ut ;5"»
NS

Fig. 7. Influence of the gray level pdf used in the model: segmentation

of a synthetic image, whose gray level statistics is a first order speckle

noise. Segmentation results with the following model: gamma of
order 1 (a) and Poisson (b).

(a) (b) () (d)

Fig. 8. Influence of the order of the gamma pdf: segmentation of
the test tmage (a) whose gray level are distributed with third order
speckle noise. Results with the gamma pdf order set to 1 (b), 3 (c)
and 10 (d). For visualization purpose, the segmentation results are
superposed to a noise-free image.

bers of nodes and regions in the final grid. On the other
hand, the segmentation result obtained with a speckle or-
der equal to 1 (i.e. lower than the speckle order of the
image) leads to a grid with too many removed nodes (see
F1G¢.8-b). Moreover, one can see that the best result is
obtained with the true speckle order, i.e. L = 3 (F1G.8-¢).

These results can be easily interpreted when one analyzes
EQ.(17). Indeed, the speckle order L is a multiplicative
term on the likelihood part of the MDL criteria A. Thus,
when L is high the coding part of the grid Ag has less
influence than with low L values.

C.3 Segmentation without knowledge of the speckle order

When the order of the gamma law of the speckle fluctu-
ations is not known, it is still possible to use the stochastic
complexity in order to segment the image. In this case,
the order L is considered as a nuisance parameter since
the segmentation result is the parameter of interest. One
approach would have been to estimate the order L in the
Maximum Likelihood meaning. Although no explicit equa-
tion of this estimate of L can be rigorously obtained, one
can either consider some approximations or use an iterative
approach. Another solution is to determine the stochastic
complexity for different values of L and then to choose the
one which minimizes the MDL criterion (which is equiva-
lent to maximize the Maximum Likelihood criterion). Since
this method is more specific to our approach, this is the one
we propose to discuss. Because the dynamic of the grid is
essentially a simplification procedure, we first apply a MDL
segmentation with a large order (typically 10 in the follow-
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Fig. 9. Estimation of the speckle order: evolution of the MDL cri-
terion. The segmentation is performed on the synthetic image of

F1G.2 corrupted with o 5-order speckle noise. The initial grid delim-
its regions of size 8 X8 pizels. Several segmentations are performed by
minimizing the MDL criterion designed for a gamma law of order 10,
9, 8, etc, and finally of order 1. At each step, the previous segmen-
tation result is used as the new initial grid. This curve presents the
evolution of the MDL criterion when the order in the MDL criterion
A wvary from 10 to 1: the smallest stochastic complezity corresponds
to the real order, i.e. L = 5. The dashed curve is obtained for one
realization whereas the solid curve represents the average of 100 re-
alizations of this experiment. One must point out that the true value
(i.e. L =5) always correspond to the minimum.

ing experiments). When the segmentation is obtained with
the current order L, the obtained polygonal grid is consid-
ered as the initial grid for a new MDL segmentation with
a Stochastic complexity criterion determined with order
L — 1. These iterations are stopped when L = 1. The es-
timated order is then chosen as the one which has lead to
the smallest stochastic complexity® and the corresponding
segmentation is considered as the proper one (¢f. Fi1G.9
and 10).

Since the imposed order L in the stochastic complexity
A now slowly decreases, the segmentation is more robust
with respect to the optimization scheme. Indeed the influ-
ence of the stochastic complexity of the grid relatively to
the one of the gray levels is introduced gradually and there
is now no need to perform alternative optimizations such
as the ones described in section IV-A and IV-B. Thus, at
each step of this new segmentation procedure, i.e. at each
order, one only performs a merging optimization with the
MDL threshold (no GLRT optimization is thus anymore
implemented), a moving optimization and a nodes remov-
ing optimization. This procedure thus permits to find ef-
ficiently the speckle order (¢f. F1G.9), it provides good
segmentation results (¢f. F1G.10) and it is more robust to
the optimization strategy with only a small increase of the
computational time (typically the computational time has
only been multiplied by a factor less than 2).

30ne must note that in order to compare the stochastic complexity
A for different order, one must use EQ.(16) instead of EQ.(17), since
K depends on the order L.

*(C)L—

d)L=3 (€) L =2

Fig. 10. Estimation of the speckle order: segmentation results. The
segmentation is performed on the synthetic image of F1G.2 corrupted
with a 2-order speckle noise (a). The initial grid delimits regions of
size 8 X 8 pizels and the segmentation is first performed when the
gamma low order I. is set equal to 10 in the computation of the
MDL criterion A. The segmentation result for the current order L
is then used as initial grid to segment the image with an order set to
L—1. So, the set order decreased by 1 at each step and it varies from
10 to 1. The F1a.(b)-(c)-(d)-(e)-(f) present the obtained results
with orders respectively set to 10, 5, 3, 2, 1. For this numerical
experiment, the stochastic complezity is minimal when L = 2, which
also corresponds to the best segmentation result as it can be observed
in this figure (one must note that the 2 small regions on the left
bottom corner present a very few contrast (1.2) and are merged when
L is set to 1).

() L=1

Fig. 11. Segmentation of a K-law speckled synthetic image. The
synthetic image corrupted with o K-law single look is presented on
Fic.(a). In each region, (m,oc) gives the mean m and the texture
parameter o (small values of o correspond to high textured regions;
for unteztured regions, 0 = ). The segmentation procedure is anal-
ogous to the one presented in F1G.10: the initial grid delimits regions
of size 8 X 8 pizels and several segmentations are performed with an
order set to 10, 9, 8, ..., 1. At each step, the previous segmenta-
tion result is used as the new initial grid. The proper segmentation
is considered to be the onc with the smallest stochastic complexity:
FiG.(b) presents the segmentation obtained in that case.

C.4 Segmentation of K-law speckled images

Some SAR images may have speckle fluctuations which
are better described with K-law [42], [43], [44] than with
Gamma laws. K-laws are generally the consequence of
strong inhomogeneity of the underlying reflectivity of the
scattering regions. We report in FiG.11 an example of seg-
mentation result which can be obtained when the proce-
dure of the previous section is applied to such a speckle
image. One can observe that the segmentation quality is
still correct.
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Fig. 12. Influence of the choice of the grid code length: segmentation
result on the SAR image of F1G.5 with Ag = klog N (on the left)
and with the Ag found in EQ(6) (on the right).

C.5 Influence of the choice of the grid code length estima-
tion method

Let us now illustrate the influence of the stochastic com-
plexity (i.e. the code length) Ag of the grid. On F1G.12,
we compare the segmentation result when two different ex-
pression of the grid code length are used: the expression
Ag defined by EQ.(6) and another one, analogous to the
ones presented in [29], [38] and equal to klog N where k is
the number of nodes. One can see that this term has a great
influence on the final segmentation: when Ag = klog N,
the number of nodes and regions are most of the time over-
estimated.

V. CONCLUSION

We have proposed a new Minimum Description Length
(MDL) approach based on a polygonal grid partition of the
image for automatic segmentation of speckled image com-
posed of several homogeneous regions. The segmentation is
obtained from an initial polygonal grid and by minimizing
the MDL criterion considering three kinds of evolution of
the grid: merging of regions of the grid, removing of nodes
of the grid and deformation of the grid by moving its nodes.
The proposed MDL criterion takes into account the proba-
bilistic properties of speckle fluctuations and a measure of
the stochastic complexity of the polygonal grid. This ap-
proach then leads to a criterion without undetermined pa-
ramcter: noisc parameters can be estimated with maximum
likelihood like approaches and regularization of the segmen-
tation does not require additional regularization terms in-
volving undetermined parameters. The results showed that
this segmentation technique is efficient for Synthetic Aper-
ture Radar images (SAR) of agricultural regions. Although
SAR images are strongly noisy, it has been demonstrated
that the proposed approach can be considered as automatic
and robust provided that correct models have been consid-
ered for the speckle fluctuations and the measure of the
polygonal grid stochastic complexity. Furthermore, a fast
implementation which generalized the technique proposed
in [33] has also been proposed.

Of course many questions are still open and the proposed
technique offers many new perspectives of research. First
of all, it would be interesting to study the generalization of
this approach to other kind of noise, such as additive Gaus-
sian noise for video images or Poisson noise for medical or

astronomical images. In the proposed model, the regions
are assumed homogeneous (this is also a classical assump-
tion with Markov random field approaches). It would be
interesting to study if this constraint can be easily relaxed
and, in particular, if one can preserve a fast implementation
which allows one to substitute surface summations by con-
tour summations. More generally, the proposed technique
opens new questions on the optimization procedures needed
for the minimization of the stochastic complexity. Indeed,
the optimization has to be performed on different hetero-
geneous variables (region labels, number on nodes, location
of nodes) and there is presently no proof of the convexity of
the criterion. On the other hand, the experimental results
of this paper show that a simple optimization technique
can lead to very good results without requiring simulated
annealing or other slow optimization techniques useful for
very highly non convex criteria.
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APPENDIX

I. CONTOURS’ SUMMATION ADAPTED TO NON
CONNECTED REGIONS

In this appendix, we present a generalization of the fast
algorithm presented in [33], [32] to non simply connected
regions.

In order to estimate the number of pixels and the pa-
rameter vector ¢, of the pdf in each region §1,, one has to

determine
> fay)
(z,y)€Q-

5 (©,) = (21)

with £ = 0 or 1. One can substitute the 2D summation
over a region 2, by a 1D summation over its contour by
implementing a fast algorithm approach analogous to the
one developed in [33] and adapted to an active grid in [32].
Since the computation of é\r is very fast with this procedure,
it is possible to always use the exact value of 6, in the
optimized criterion, i.e. 8, is updated at each modification
of the grid. However, since up to now this algorithm was
only presented for simply connected regions, we propose in
the following to describe its generalization to non simply
connected regions.

Let us first consider a simply connected region Q. In
that case [33], the 2-D summation over  in EQ.(21) can
be replaced by a 1-D summation over the contour of €):

Z C(Z’,y) Fk (:I:?y>

(z,y)eC

I () = (22)

where C'is the contour of € covered counter clockwise and
F}, is a preprocessed image obtained with the lines summa-
tion of the image s: Fj, (z,y) =57_, s* (t,y). The coeffi-
cient ¢ (x, y) only depends on the positions of its two neigh-
bor pixels on the contour. With the notations of F1G.13,



GALLAND, BERTAUX AND REFREGIER: MDL SYNTHETIC APERTURE RADAR IMAGE SEGMENTATION 11

Pixel k-1
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Fig. 13. Notations used to describe the configuration of 3 consecutive
pixels on the contour. If we go along the contour counter-clockwise,
In; and Out are the vectors defined with pizel k and its 2 neigh-
boring pizels: the previous one (k—1) and the following one (k+1).
The directions of these vectors are encoded with Freeman’s code (cf.
figure on the right).

[Tng\Outy [O[1]2]3[4]5]6]7]
0 0101000 |-1]-1|-1
1 1{1j1|1(1]0]0]0
2 1{1j1|1(1]01]0]0
3 1{1j1|1(1]0]0]0
4 0101000 |-1]-1]-1
) 001000 |-1]-1]-1
6 0j]0j]0j0f0O|-1]-1]|-1
7 0101000 |-1]-1]|-1

TABLE 1

Value c¢(x,y) of the pizel (z,y), when one goes along the discreet
contour counter-clockwise, knowing the position of its 2 neighbor

pixels.

¢(z,y) is given in TAB.I. See [32] for more details on the
way to obtain this values. In particular, we must point out
that the partition w is deduced from the polygonal grid
after a translation of the grid by the quantity (1/2,1/4).

Let us now generalize this technique to non simply con-
nected regions. As shown on FI1G.14, a non simply con-
nected region € can be broken up in two simply connected
regions’ families: the full regions (€2f'), and the hole re-
gions (Q2f7) . One can thus write:

Yast @y = ¥ (Tar s @)

5 (St )

Since the regions (Qf )Z and (Qfl )Z are simply connected,

e—qf

Qff

ff

Fig. 14. Decomposition of the gray region Q0 (a) in 2 simply con-
nected region families: the full regions Qf (b) and the hole regions
of (e).

one can use the contours summation of EQ.(22):

Sast @y = T (Tereloy) Filay)
-5, (Zen e @) Fe(@y)

where Cf and Cf are the contours of Qf and Q. One
can note with this equation that the contribution of a full
region has to be considered as positive and the contribution
of a hole has to be considered as negative. However, due to
the encoding table TAB.I, one can remark that, if a contour
of a simply connected region {2 is covered clockwise, the
obtained result of the contour summation is the opposite
of the result obtained if it is covered counter clockwise as

in £Q.(22):
Z C(Z’,y) Fy (:I:?y> = - Z C(Z’,y) Fy (:I:?y>

Cc{+} c{-1}
where C{+} (resp. C{-1}) is the contour of Q@ covered
clockwise (resp. counterclockwise). EQ.(24) can thus be
written:

oot @y = Ti(Torye@y) F@y)
+2; (ZC]H{-l—}C(xay) £y (96,3/))
(26)
Furthermore, when a contour is covered with a region Q on
its left, the full regions of 2 are covered counter clockwise

and its hole regions are covered clockwise. As a conclusion,
one can write:

I (Q) =

(24)

(25)

> cl@,y) Fr(z,y)
C{left}
with C {left} the whole contour of Q (including full and
hole regions) covered with € on the left.

So, in order to determine the parameter vector of all the
different regions of the image, one can proceed as follow.
Let [A — B] denote the segment [AB] when going from A
to B. Then, let go all over each segment [AB] and compute
the contribution of this segment Z[A_)B] clx,y) Fy(z,y),
k € {0,1}. Then, let add this contribution to Ij, () and
let subtract it to Iy, (Qyignt) where Q¢4 is the region on the
left when one goes from A to B and ;4 the region on
the right. Thus, it is possible to determine Iy (€,) - and so

(27)

the parameter vector é\r - for all the regions €2, with exam-
ining one and only one time each segment. Moreover, once
the parameter vectors of each region has been determined
for one grid configuration, they can also be updated very
quickly during the optimization process. Indeed, when a
node is moved or removed, one only needs to modify the
contribution of the segments linked to this node to upload
the parameter vector of each neighbor region of the seg-
ment.

This approach provides the ability to determine and to
update very quickly the parameters of the pdf for each re-
gions’ gray levels, even in the presence of non simply con-
nected regions. Using this contour summation thus permits
to segment the images of F1¢.8 and F1¢.2 in respectively
1.3 seconds and 5.8 seconds on a standard PC (Pentium
ITI, 800 MHz).
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