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Phenomenological theory of filtering by resonant
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Using a phenomenological theory of diffraction gratings made by perturbing a planar waveguide allows us to
deduce important properties of the sharp filtering phenomena generated by this kind of structure when the
incident light excites a guided wave. It is shown that the resonance phenomenon occurring in these condi-
tions acts on one of the two eigenvalues of the Hermitian reflection matrix only. As a consequence, we deduce
a mathematical expression of the reflectivity and demonstrate that high-efficiency filtering of unpolarized light
requires the simultaneous excitation of two uncoupled guided waves. Numerical examples are given.
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1. INTRODUCTION
The purpose of this paper is to present a phenomenologi-
cal theory of filtering properties of one-dimensional or
two-dimensional gratings deposited on planar
waveguides. It is well known that the efficiencies of such
structures as a function of the wavelength may present
peaks or anomalies generated by the excitation of guided
waves propagating inside the layers. These anomalies
have been widely studied in the case of classical one-
dimensional gratings illuminated with in-plane mount-
ings, in particular when only one order is reflected or
transmitted by the grating.1,2 For shallow gratings, the
reflectivity is in general close to that of the planar struc-
ture except for a sharp peak culminating at 100% that
corresponds to the excitation of a guided mode. The
width and location of the peak depend on the grating pa-
rameters. The resonant behavior of the reflectivity of the
grating may be valuable for the purpose of light filtering;
but, unfortunately, in that case it is limited to polarized
light.3,4 This limitation prevents the use of this property
in many technological applications of filtering, for ex-
ample for the purpose of dense wavelength-division mul-
tiplexing for optical communications. Thus the use of off-
plane (conical) mounting or two-dimensional gratings has
been suggested to design filters for unpolarized light.5–7

However, the behavior of the reflectivity as a function of
the wavelength, angle of incidence, and incident polariza-
tion in the general vectorial case is still little understood.

The aim of the paper is to describe and predict, using as
few parameters as possible, the reflectivity and transmit-
tivity of resonant gratings when the spatial frequencies
and temporal frequencies imposed by the incident beam
are close to those of an eigenmode of the structure. As in
Refs. 1 and 2, the study makes use of the notion of ana-
lytic continuation of complex functions of a real variable
in the complex plane. In addition, the use of a general
scattering matrix of size 4 3 4 and reflection or transmis-
sion scattering submatrices is needed. The definition of
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poles and zeros of the eigenvalues of Hermitian matrices
derived from scattering matrices allows us to predict the
performances of the structures for filtering of unpolarized
light. The result that emerges is that high-efficiency fil-
tering properties for unpolarized light are quite impos-
sible to obtain if the incident light cannot excite several
modes at the same wavelength. Rigorous numerical re-
sults will confirm these theoretical predictions.

2. PRESENTATION OF THE STRUCTURE
AND NOTATION
In Fig. 1 we consider a Cartesian coordinate system of
axes xyz. The periodic guiding structure limited on top
(z 5 0) by air and at the bottom by a substrate of real
relative permittivity «s has a relative permittivity
«(x, y, z) that is real and periodic along two different,
possibly nonorthogonal directions (however, hereafter, we
assume for simplicity that «(x, y, z) is periodic in x and
y). The permittivity «(x, y, z) is obtained by perturbing
slightly a permittivity «8(z) in a periodic manner. The
nonperturbed structure is assumed to be a waveguide [for
example, «8(z) constant and greater than «s]. Figure 2
shows examples of such structures.

The incident plane wave with wave vector ki1 (with
uki1u 5 k 5 2p/l, l wavelength in vacuum) illuminates
the grating with an incidence characterized by angles f
(angle between the x axis and the projection of ki1 on the
xy plane) and u (angle between the z axis and ki1). To
define the polarization of the incident wave, the ampli-
tude of the incident electric field is projected on two unit
vectors ŝ i1 and p̂ i1 orthogonal to ki1 and orthogonal to
each other, ŝ i1 being perpendicular to the z axis and p̂ i1

parallel to the plane of incidence,

ŝ i1 5
ki1 3 ẑ

uki1 3 ẑu
, p̂ i1 5

ŝ i1 3 ki1

u ŝ i1 3 ki1u
(1)

where the components (a, b, 2g1) of ki1 are given by
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a 5 k sin~u!cos~f !, b 5 k sin~u!sin~f !,

g1 5 ~k2 2 a2 2 b2!1/2. (2)

Using a time dependence in exp(2ivt), the electric field of
the incident wave can be written

Ei1 5 Pi1 exp~iax 1 iby 2 ig1z !, (3)

with

Pi1 5 Pi1,sŝ i1 1 Pi1, pp̂i1. (4)

The grating formula shows that the scattered field Es can
be expressed in the form of Rayleigh expansions outside
the periodic guiding structure:

Es 5 (
n52`

1`

(
m52`

1`

Pn,m
1 exp~ianx 1 ibmy 1 ign,m

1 z !

if z . 0, (5)

Es 5 (
n52`

1`

(
m52`

1`

Pn,m
2 exp~ianx 1 ibmy 2 ign,m

2 z !

if z , 2e, (6)

with

an 5 a 1 nKx , Kx 5 2p/dx , (7)

bm 5 b 1 mKy , Ky 5 2p/dy , (8)

Fig. 1. Periodic guiding structure.

Fig. 2. Examples of periodic guiding structures. (a) Classical
lamellar grating that can be used in conical mounting, (b) crossed
grating with circular bumps and hexagonal symmetry.
gn,m
1 5 ~k2 2 an

2 2 bm
2 !1/2,

Re~gn,m
1 ! 1 Im~gn,m

1 ! . 0, (9)

gn,m
2 5 ~k2«s 2 an

2 2 bm
2 !1/2,

Re~gn,m
2 ! 1 Im~gn,m

2 ! . 0, (10)

dx and dy being the periods of the grating along the x and
y axes.

We assume that the only reflected and transmitted
waves are the (0, 0) orders, the other orders being evanes-
cent. In these conditions, the asymptotic value of the
field at infinity reduces to the sum of the incident field
and the (0, 0) orders

E ' Pi1 exp~iax 1 iby 2 ig1z !

1 P0,0
1 exp~iax 1 iby 1 ig1z ! if z → `, (11)

E ' P0,0
2 exp~iax 1 iby 2 ig2z ! if z → 2`, (12)

with g2 5 g0,0
2 5 (k2«s2a22b2)1/2.

The polarization of the reflected and transmitted (0, 0)
orders can be projected on two unit vectors

ŝd1 5 2
kd1 3 ẑ

ukd1 3 ẑu
, p̂d1 5 2

ŝd1 3 kd1

u ŝd1 3 kd1u
, (13)

P0,0
1 5 Pd1,sŝd1 1 Pd1, pp̂d1, (14)

ŝd2 5
kd2 3 ẑ

ukd2 3 ẑu
, p̂d2 5

ŝd2 3 kd2

u ŝd2 3 kd2u
, (15)

P0,0
2 5 pd2,sŝd2 1 Pd2, pp̂d2, (16)

(a, b, g1) and (a, b, 2g2) being the components of kd1

and kd2, respectively.
To define a scattering matrix for this structure, let us

notice that a plane wave illuminating the structure from
the substrate with a wave vector ki2 of components
(a, b, g2) generates transmitted and reflected waves
having wave vectors kd1 and kd2. If we define defining
unit vectors orthogonal to ki2,

ŝ i2 5 2
ki2 3 ẑ

uki2 3 ẑu
, p̂ i2 5 2

ŝ i2 3 ki2

u ŝ i2 3 ki2u
, (17)

this second incident wave can be written

Ei2 5 Pi2 exp~iax 1 iby 1 ig2z !, (18)

with

Pi2 5 Pi2,sŝ i2 1 Pi2, pp̂i2, (19)

and thus the asymptotic expression of the field in the sub-
strate becomes

E ' P2
i exp~iax 1 iby 1 ig2z !

1 P0,0
2 exp~iax 1 iby 2 ig2z !

if z → 2`. (20)

3. SCATTERING MATRICES: DEFINITION
AND PROPERTIES
First, we define four incident and diffracted column ma-
trices of two elements by
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I6 5 ~Pi6,sAg6, Pi6,pAg6!,

D6 5 ~Pd6,sAg6, Pd6,pAg6!, (21)

and from the linearity of Maxwell equations, the dif-
fracted column matrices can be expressed linearly from
the incident ones through the definition of square reflec-
tion matrices R1 and R2 and transmission matrices T1
and T2 of size 2 3 2:

D1 5 R1I1 1 T2I2, (22)

D2 5 T1I1 1 R2I2. (23)

By defining the incident and the diffracted column matri-
ces I and D with four components (Pi1,sAg1, Pi1, pAg1,
Pi2,sAg2, Pi2, pAg2) and (Pd1,sAg1, Pd1, pAg1,
Pd2,sAg2, Pd2, pAg2), respectively, we can condense Eqs.
(22) and (23) into a single one,

D 5 SI, (24)

the square scattering matrix S of dimension 4 3 4 being
obtained from the reflection and transmission matrices by

S 5 FR1 T2

T1 R2
G . (25)

Now let us demonstrate two important properties of the
S matrix. First, since the materials are lossless, the en-
ergy balance can be written uDu 5 uIu. This property
shows that the S matrix is unitary, which entails

S* S 5 1, (26)

1 denoting here the unit diagonal matrix of size 4 and S*
denoting the adjoint of S.

Second, to show a symmetry property of the S matrix,
we use the reciprocity theorem.8 With this aim, we asso-
ciate to the mounting depicted previously a second one,
where the incident-wave parameters a and b take oppo-
site values. Let us call I8, D8, and S8 the corresponding
incident, diffracted, and scattering matrices. The reci-
procity theorem can be written as follows:

in reflection,

^I1, D81& 5 ^I81, D1& if I2 5 I82 5 0, (27)

^I2, D82& 5 ^I82, D2& if I1 5 I81 5 0, (28)

and in transmission,

^I1, D81& 5 ^I82, D2& if I2 5 I81 5 0, (29)

^I2, D82& 5 ^I81, D1&, if I1 5 I82 5 0, (30)

with ^V, U& 5 V1U1 1 V2U2 , where V 5 (V1 , V2) and
U 5 (U1 , U2).

Thus, from Eqs. (22) and (27),

^I1, R1I81& 5 ^I81, R1I1&, (31)

and since ^I81, R1I1& 5 ^t(R1)I81, I1& 5 ^I1, t(R1)I81&,
where t(R1) is the transpose of R1 ,

^I1, R1I81& 5 ^I1, t~R1!I81&, (32)

and we deduce that

t~R1! 5 R18 . (33)
In the same way, with use of Eqs. (22), (23), and (27)–(30),
it turns out that

t~R2! 5 R28 , (34)

t~T2! 5 T18 , (35)

t~T1! 5 T28 . (36)

Finally, from equations (33)–(36), we find that

S8 5 t~S !. (37)

Now let us consider the case in which the diffracting
structure is symmetrical with respect to the z axis. If we
notice that the case in which the constants of propagation
are (2a, 2b) can be deduced from the original case by
making the same symmetry of the incident and diffracted
waves with respect to the z axis, we deduce that
S8 5 S, and thus from Eq. (37), S is symmetrical. Other
properties of the S matrix can be derived from other sym-
metries of the structure, especially if the xy plane is a
plane of symmetry. Since this symmetry is difficult to re-
alize in practice, this case is not developed in the paper.

4. POLES AND ZEROS OF THE
SCATTERING MATRICES
We have assumed that the nonperturbed structure was a
waveguide. A guided wave propagating in an arbitrary
direction of the xy plane can be written, for z . 0,

E 5 P g1 exp~ia gx 1 ibgy 1 ig g1z !, (38)

with

g g1 5 i@~a g!2 1 ~bg!2 2 ~kg, plan!2#1/2.

kg, plan is the wave number, and in the substrate,

E 5 P g2 exp~iagx 1 ibgy 2 igg2z !, (39)

with

g g2 5 i@~a g!2 1 ~bg!2 2 ~kg, plan!2«s#
1/2,

in such a way that its amplitude exponentially decreases
as uzu → `. This mode is TE or TM polarized.

Now we suppose that a perturbation is introduced into
the structure. For the same propagation constants
(a g, bg), the wave number becomes equal to kg, perturb,
and the Floquet–Bloch theorem allows us to state that
the guided wave takes the form of a series,

E 5 (
n52`

1`

(
m52`

1`

P n,m
g1 exp~ia n

gx 1 ib m
g y 1 ig n,m

g1 z !

if z . 0, (40)

E 5 (
n52`

1`

(
m52`

1`

P n,m
g2 exp~ia n

gx 1 ibm
g y 2 ig n,m

g2 z !

if z , 2e, (41)

with

a n
g 5 a g 1 nKx (42)

bm
g 5 bg 1 mKy (43)
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g n,m
g1 5 A~kg, perturb!2 2 ~a n

g !2 2 ~bm
g !2,

Re~g n,m
g1 ! 1 Im~g n,m

g1 ! . 0, (44)

g n,m
g2 5 A~kg, perturb!2«s 2 ~a n

g !2 2 ~bm
g !2,

Re~g n,m
g2 ! 1 Im~g n,m

g2 ! . 0. (45)

It is worth noticing that in Eqs. (38) and (39), g g6 is a
pure imaginary number, whereas in Eqs. (40) and (41),
g n,m

g6 are complex numbers with real and imaginary parts
different from 0. Indeed, in the series contained in the
right-hand terms of Eqs. (40) and (41), some values of the
couple (a n

g , bm
g ) can be such that

~a n
g !2 1 ~bm

g !2 , ~ ukg,perturbu!2, (46)

and if we assume by continuity that kg,perturb is close to
kg,plan, the corresponding term in the series on the right-
hand side of Eq. (40) is close to a plane wave going from
the grating surface to z 5 1`. The same remark can be
made for the field in the substrate, and thus we are led to
the conclusion that, in contrast to the guided wave propa-
gating in the nonperturbed structure, the wave propagat-
ing in the perturbed structure presents losses. This
seems to be in contradiction to the fact that the propaga-
tion constants a g and bg are assumed to be real. In fact,
there is no contradiction if the wave number kg,perturb is
allowed to be complex, since in that case, the correspond-
ing frequency v g,perturb 5 ckg,perturb (c is the speed of
light) is complex too, and if the imaginary parts of
v g,perturb and kg,perturb are negative, the field, which be-
haves in exp(2iv g,perturbt), decreases exponentially with
time, a direct consequence of losses. In the following, we
will assume that there is only one term in Eq. (40) and
only one term in Eq. (41) that represent lossy terms, in
other words, such that relation (46) or the equivalent re-
lation in the substrate is satisfied. By convention, we
will affix to this lossy term the subscripts ( p, q). When
uzu → `, the field tends to this term asymptotically:

E ' P p,q
g1 exp~ia p

gx 1 ibq
gy 1 ig p,q

g1 z ! if z → 1`,
(47)

E ' P p,q
g2 exp~ia p

gx 1 ibq
gy 2 ig p,q

g2 z ! if z → 2`.
(48)

It is to be noticed that relation (46) is a necessary but
not sufficient condition for the existence of the lossy terms
expressed in approximations (47) and (48). In some spe-
cial cases the amplitudes P p,q

g2 , P p,q
g1 can vanish for rea-

sons of symmetry. If the field components of the modes
are odd along the x or the y axis, for example, they cannot
be scattered along the normal to the structure. In other
terms, in this case the period is chosen such that
a p

g 5 bp
g 5 0 but P p,q

g1 5 P p,q
g2 5 0, owing to the symme-

try properties of the mode.
We now compare the asymptotic expressions of the

mode given by approximations (47) and (48) with the
asymptotic expansion of the total field generated by the
same structure illuminated by plane waves whose wave
vector is given by a 5 a p

g and b 5 bp
g [approximations

(11) and (20)]: It turns out that the mode is identical to
the total field, provided that the amplitudes pi1 and pi2

of the incident waves are taken equal to zero. In other
words, the mode has the same expression as a scattered
field that would exist without any incident field for spatial
frequencies (a p

g , bp
g). This property is not surprising,

since like a guided wave, a scattered field satisfies the
outgoing wave condition at infinity. The important con-
sequence of this observation is that in the conditions
where the guided wave exists, the diffracted column ma-
trix D of Eq. (24) is different from 0 while the incident col-
umn matrix I vanishes. In other words, the scattering
matrix S has a pole. In general, this property means not
only that the determinant of S has a pole but also that all
the coefficients of the S matrix have the same pole, as
shown in the study of grating anomalies.1,2 From a
mathematical point of view, if the propagation constants
a and b of the incident waves are fixed, the S matrix is a
function of the real wave number k. This function has a
unique analytic continuation in the complex plane of k, at
least in the vicinity of the real axis. The complex wave
number kg,perturb is the pole of this analytic continuation.
As a consequence, l1

S , one of the four eigenvalues li
S of the

S matrix, has the same pole, the corresponding eigenvec-
tor V1

S being associated with the projections of the ampli-
tudes P p,q

g1 and P p,q
g2 on the polarization vectors for the

scattered fields defined by Eqs. (13) and (15):

V1
S 5 ~Pg1,s, Pg1, p, Pg2,s, Pg2, p!. (49)

In the general case, for k 5 kg,perturb, any incident wave
with propagation constants a 0

g and b 0
g generates an infi-

nite scattered field proportional to V1
S , whatever its po-

larization or propagation medium (air or substrate). It
can be deduced from this remark that for k 5 kg,perturb,
one eigenvalue of each of the submatrices R1 , R2 , T1 , T2
has a pole, and the corresponding eigenvector of R1 and
T1 is equal to V1

S1 5 (Pg1,s, Pg1, p) while the correspond-
ing eigenvector of R2 and T2 is equal to V1

S2

5 (Pg2,s, Pg2, p).
Finally, the continuity between the fields in the planar

and the perturbed waveguide allows us to establish the
existence of roots of the determinant of the submatrices
R1 , R2 , T1 , T2 . With this aim, let us define a perturba-
tion parameter p such that p 5 0 for the planar wave-
guide, increasing values of p corresponding to greater per-
turbations. Obviously, when the propagation constants
(a g, bg) are fixed,

kg,perturb~ p ! → kg,plan if p → 0. (50)

Furthermore, let us express mathematically that each of
the submatrices R1 , R2 , T1 , T2 has a pole for k
5 kg,perturb( p). For instance, for T1 , let us call l1

T1 the
singular eigenvalue associated with the eigenvector V1

T1

5 V1
S1 :

l1
T1~k, p ! 5

l1
;T1~k, p !

k 2 kg,perturb~ p !
, (51)

with l1
;T1(kg,perturb( p), p) Þ 0. When p tends to 0 (pla-

nar waveguide), T1(k) tends to a diagonal matrix that
can be expressed in closed form and that is bounded, even
when k 5 kg,perturb(0) 5 kg,plan, where the eigenvectors
(1, 0) and (0, 1) represent the s and p polarizations, re-
spectively. From relations (51) and (50), the expression
of the eigenvalue for p 5 0 is given by
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l1
T1~k, 0! 5

l1
;T1~k, 0!

k 2 kg,plan , (52)

and thus

l1
;T1~k, 0! 5 ~k 2 kg,plan!l1

T1~k, 0! (53)

It emerges from Eq. (53) that l1
;T1(k, 0) has a root for

k 5 kg,plan. By reason of continuity, it can be conjectured
that l1

T1(k, p) has a root for k 5 k1
T1 ,root( p) such that

k1
T1 ,root

~0 ! 5 kg,plan 5 kg,rperturb~0 !. (54)

Thus the expression of the eigenvalue becomes

l1
T1~k, p ! 5 u~k, p !

k 2 k1
T1 ,root

~ p !

k 2 kg,perturb~ p !
. (55)

Since the pole of the T1 matrix is unique, at least at the
vicinity of kg,plan, the root of l1

T1(k, p) is unique, too. In-
deed, when p tends to 0, the existence of a second root
would entail the existence of a root of the eigenvalue
u(k, 0) of the transmission matrix of the planar wave-
guide. For the same reason, the second eigenvalue
l2

T1(k, p) has no pole and zero at the vicinity of kg,plan. In
conclusion, u(k, p) and l2

T1(k, p) are analytic functions
with no pole and no root in the vicinity of kg,plan.

The same reasoning can be used for the other subma-
trices that have the same pole kg,perturb( p) for the first ei-
genvalue as T1 but other roots k1

R1 ,root , k1
R2 ,root , k1

T2 ,root .
When p tends to 0, the pole and the roots of the eigenval-
ues tend to the same point kg,plan of the complex plane,
and thus the eigenvalues take a bounded value.

5. PROPERTY OF SELECTIVE FILTERING
OF SYMMETRICAL STRUCTURES
Now we will show that adequate symmetries of the struc-
ture entail very important properties of the roots of the
eigenvalues, which become real. First, we will examine
some consequences of the existence of a root of T1 . With
this aim, we recall two mathematical properties of ana-
lytic functions of the complex variable:

•The analyticity of the complex function of the complex
variable f(z) entail the analyticity of f̄ ( z̄).

•An analytic function that vanishes on a segment of
the real axis vanishes in a domain of analyticity contain-
ing this segment.

By using these two properties, the unitarity of the S
matrix expressed by Eq. (26) for real values of k can be
extended to the complex plane,

S* ~ k̄ !S~k ! 5 1, (56)

and, by using the reflection and transmission submatri-
ces,

R1* ~ k̄ !R1~k ! 1 T1* ~ k̄ !T1~k ! 5 1, (57)

T2* ~ k̄ !T2~k ! 1 R2* ~ k̄ !R2~k ! 5 1, (58)

R1* ~ k̄ !T2~k ! 1 T1* ~ k̄ !R2~k ! 5 0, (59)
T2* ~ k̄ !R1~k ! 1 R2* ~ k̄ !T1~k ! 5 0. (60)

Since

T1~k1
T1 ,root

!V1
T1 ,root

5 0, (61)

it emerges from Eq. (60) that

T2* ~ k̄1
T1 ,root

!R1~k1
T1 ,root

!V1
T1 ,root

5 0, (62)

and since Eq. (57) shows that T1(k1
T1 ,root)V1

T1 ,root and
R1(k1

T1 ,root)V1
T1 ,root cannot vanish together, it turns out

that the conjugate of the root k1
T1 ,root of T1 is the root of

T2* , the associated eigenvector being equal to
R1(k1

T1 ,root)V1
T1 ,root . In the case in which the diffractive

structure is symmetrical with respect to the z axis, it has
been established from Eq. (37) that S is symmetrical and
thus that

T2 5 t~T1!. (63)

Using Eqs. (62) and (63), it comes out that k̄1
T1 ,root is a

zero of T1 , with an associated eigenvector
R̄1(k1

T1 ,root)V̄1
T1 ,root . Since we have shown that the root

of T1 is unique in the vicinity of kg,plan, we are led to the
conclusion that k1

T1 ,root is real and that

R1~k1
T1 ,root

!V1
T1 ,root

5 V̄1
T1 ,root . (64)

This interesting result can be expressed in the follow-
ing way: When the diffractive structure is symmetrical
with respect to the z axis, there exists a real wavelength
l 5 2p/k1

T1 ,root and a polarization of the incident wave
propagating in the air such that the reflected energy is
equal to the incident one, the transmitted energy being
rigorously equal to zero. The polarization of this incident
wave is obtained by identifying the incident column ma-
trix given by Eqs. (21) with the eigenvector V1

T1 ,root of the
T1 matrix associated with the eigenvalue that is equal to
zero. In these conditions, the diffracted column matrix
D1 is equal to V̄1

T1 ,root . In the following, these conditions
will be called total-reflection configuration.

Now, let us study what happens when, starting from
the total-reflection configuration, the polarization or the
wavelength of the incident wave is changed. We assume
that the polarization is linear and that the incident en-
ergy ^I1uI1& is equal to unity (in this paper, ^VuU&
5 V̄1U1 1 V̄1U1 is the Hermitian scalar product and
should not be confused with the Euclidian product
^V,U& 5 V1U1 1 V2U2 defined in Section 3). Then the
reflected energy r is given by

r 5 ^D1uD1& 5 ^R1I1uR1I1& 5 ^R1* R1I1uI1&. (65)

Thus we are led to the study of the Hermitian reflection
matrix R1* R1 , which has two real and positive eigenval-

ues l1
R1* R1(k, p) and l2

R1* R1(k, p) associated with two or-

thogonal eigenvectors V1
R1* R1(k, p) and V2

R1* R1(k, p).
First, we show that when k 5 k1

T1 ,root( p), one of the

eigenvectors [V1
R1* R1(k, p) by convention] is identical to

V1
T1 ,root , the associated eigenvalue l1

R1* R1(k, p) being
equal to 1. It suffices to remember that when the diffrac-
tive structure is symmetrical with respect to the z axis,
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the S matrix (and thus the R1 matrix) is symmetrical,
which entails that R1* 5 R̄1 . Using Eq. (64) and then
the conjugate equation, we get, for k 5 k1

T1 ,root( p),

R1* R1V1
T1 ,root

5 V1
T1 ,root . (66)

The R1* R1 matrix has two poles [k 5 kg,perturb( p) due to
R1 and k 5 k̄g,perturb( p) due to R1* ] and two conjugate
and complex roots. These poles and roots are present in

the first eigenvalue l1
R1* R1(k, p), while the second one,

l2
R1* R1(k, p), which has no pole and no root, is not sensitive

to the excitation of the guided mode when k is close to
kg,perturb( p).

Mathematically, the reflected energy can be written in
the form

r 5 l1
R1* R1~k, p !u^I1uV1

R1* R1~k, p !&u2

1 l2
R1* R1~k, p !u^I1uV2

R1* R1~k, p !&u2. (67)

Using the following notation

V1
R1* R1~k, p ! 5 @cos q,sin q exp~if!#, (68)

taking into account the orthogonality of V1
R1* R1(k, p) and

V2
R1* R1(k, p), and bearing in mind that the incident wave

is unitary and linearly polarized,

I1 5 @cos~d!, sin~d!#, (69)

we can make a straightforward calculation showing from
Eq. (67) that

r 5
l1

R1* R1~k, p ! 1 l2
R1* R1~k, p !

2

1
l1

R1* R1~k, p ! 2 l2
R1* R1~k, p !

2

3 t cos~2d 2 c!, (70)

t 5 @cos~2q !2 1 sin~2q !2 cos~ f!2#1/2, (71)

tan~ c! 5 tan~2q !cos~ f!. (72)

When k 5 k1
T1 ,root( p), the reflected energy oscillates si-

nusoidally as the polarization angle d is varied, and its
maximum value

1 2
1 2 l2

R1* R1~k, p !

2
~1 2 t!

and minimum value

1 2
1 2 l2

R1* R1~k, p !

2
~1 1 t!

are obtained when d 5 c/2 and d 5 ( c 1 p)/2, respec-
tively. We point out that Eq. (70) is a general and inter-
esting result that is not restricted to resonant gratings.

Now, if p is small, we can conjecture that the eigenval-
ues of R1* R1 (and therefore the reflectivity) are close to
that of the planar structure when k is taken far enough
from k1
T1 ,root( p). In the vicinity of k1

T1 ,root( p), the eigen-

value l1
R1* R1(k, p) has two poles and two roots. Hence its

value increases from that of the planar waveguide to
unity when k tends to k1

T1 ,root( p). It is important to un-
derstand that if the incident wave has the same polariza-
tion as the eigenvector of R1* R1, the reflectivity of the
structure is identical to the corresponding eigenvalue.
Thus it varies from the reflectivity of the planar wave-
guide to unity. And if the planar waveguide is a poor re-
flector, the perturbed waveguide will constitute a high-
efficiency filter for a given polarized light. On the other
hand, for the orthogonal polarization, the structure will
reflect the incident light as the planar waveguide.

It can be deduced from these considerations that it is
quite impossible to use the grating structure as a selec-
tive frequency filter with an efficiency close to unity for
unpolarized light if only one mode is excited.

6. NUMERICAL VERIFICATION AND
APPLICATIONS
To illustrate the conclusions of the phenomenological ap-
proach, we consider a two-dimensional resonant grating
that supports one pseudoperiodic eigenmode for the real
spatial frequencies (a, b) [and subsequent harmonics
(an , bm)] and complex wave number kg . In this ex-
ample, the grating is shallow and both one harmonic of
the spatial eigenfrequencies and the wave number of the
mode are close to those of the TE guided wave that would
exist in the unperturbed planar layer.

We study the reflectivity of the structure when the spa-
tial frequencies of the incident beam are fixed to (a, b)
and when the wave number is varied in the vicinity of the
real part of kg for various incident polarizations. The
grating is symmetrical with respect to the z axis with
square cell and bumps. We observe in Fig. 3(a) that the
reflectivity in both s and p polarization presents sharp
peaks with different maximum values. In Fig. 3(b) we
study the eigenvalues of the R1* R1 matrix as a function of

the wave number. As expected, one eigenvalue l1
R1* R1

peaks at unity for l 5 l0 while the other one, l2
R1* R1, is

not modified in the vicinity of l0 . The eigenvector corre-
sponding to the first eigenvalue is linearly polarized with
d 5 68° at l0 . As a result, the reflectivity of the system

at l0 oscillates between one and l2
R1* R1 when the incident

linear polarization vector is rotated in the ( ŝ i1, p̂ i1)
plane, as shown in Fig. 3(c). Note that the eigenvector of
the R1 matrix at a frequency close to the resonance con-
dition describes the polarization state of the electric field
scattered in free space by the periodic defects of the wave-
guide. These defects are, in first approximation, illumi-
nated by the eigenmode. When the eigenmode is close to
a TE or a TM guided wave, the electric field of the mode is
linearly polarized. It can be shown with a perturbation
method that the scattered field is then also linearly polar-
ized, a fact that is confirmed by our numerical results.
Hence the eigenvector of the R1 matrix is real, is equal to
that of the R1* R1 matrix, and corresponds to a linear po-
larization.
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The eigenmode of the periodic structure is not always
close to one propagating guided wave of the planar sys-
tem; it can also stem from a combination of guided waves.
We consider as an example a one-dimensional lamellar
grating illuminated under purely conical mounting (b, a
5 0). The period dx of the grating is chosen such that at
the given wave number kg

plan , two TE guided waves
propagating along different directions with wave vectors
(b, 22p/d) (b, 2p/d) can be excited in the planar wave-
guide [see Fig. 4(a)]. In other words, when the periodic
perturbation disappears, the homogeneous problem has
two solutions for the same spatial (b, a 5 0) and tempo-
ral frequencies. As soon as a perturbation is introduced,
these two guided waves are coupled to each other, and as
a result, one obtains two eigenmodes whose field compo-
nents are either odd or even with respect to Oy (due to the
symmetry of the structure) and whose complex wave
number kg

s and kg
p are in general different (since the field

repartition of the modes and their electromagnetic energy
are not the same in general9). In this example, the eigen-
modes of the resonant grating resemble standing waves

Fig. 3. Two-dimensional grating with square bumps, refractive
indices ns 5 1.5, nc 5 2.5, thickness ec 5 133 nm, bump height
h 5 7 nm, periods dx 5 dy 5 d 5 930 nm, and bump width
d –c 5 465 nm. The index of the bumps is equal to nc . The
incident parameters are u 5 15° and f 5 28°. (a) Reflection
factor versus wavelength for both s (solid curve) and p (dashed
curve) polarizations. (b) First (solid curve) and second (dashed
curve) eigenvalues of the Hermitian reflection matrix versus
wavelength. (c) Reflection factor versus angle of polarization d.
with different symmetry properties. When the x compo-
nent of the electric field of the mode is odd [upper display
in Fig. 4(a)], at the wave number kg

p its scattered field in
the (b, 0) direction is p polarized, whereas it is s polarized
when the y component of the field is odd [lower display in
Fig. 4(a) corresponding to kg

s ]. From the phenomenologi-
cal analysis, one expects to get a sharp peak of reflectivity
culminating at 100% for an s-polarized incident beam
when the wave number gets close to kg

s and another one
for a p-polarized incident beam when the wave number
nears kg

p . In Fig. 4(b) we plot the reflectivity as a func-
tion of the wave number in s and p polarization. In this
example, the eigenvectors of the R1* R1 matrix are (1, 0)
and (0, 1) whatever the wavelength; they represent the
linear s and p polarization states. Hence the eigenvalues
of the R1* R1 matrix are identical to the reflectivity for
these two polarizations. In other words, there is no de-
polarization. Because the peaks of reflectivity appear for
different wave numbers in s and p polarization, this struc-
ture cannot be used as a filter for unpolarized light, as
seen in Fig. 4(c). Moreover, the widths of the peaks, cor-

Fig. 4. One-dimensional lamellar grating periodic along the x
axis, with refractive indices ns 5 1.5, nc 5 2.07, thickness
ec 5 300 nm, groove depth h 5 87.5 nm, period dx 5 904 nm,
and groove width c 5 226 nm. The incident parameters are
u 5 7.85°, f 5 90°. (a) Solid arrows, scheme of the wave vec-
tors of the guided waves of the planar waveguide; dashed arrows,
direction of their associated electric field. (b) Reflection factor
versus wavelength for both s (solid curve) and p (dashed curve)
polarizations. (c) Reflection factor versus the angle of polariza-
tion d at l 5 1.52 mm.
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responding to the imaginary part of the wave number of
the modes, are generally very different. However, one
can modify the real and imaginary parts of the wave num-
bers by the parameters of the grating and bring together
these two resonances.6 Indeed, in this particular case
the modes can exist together for the same spatial and
temporal frequencies, since the coupling between them is
impossible for symmetry reasons. In other words, the re-
luctance of resonances to merge is avoided.

We have shown that as long as only one eigenmode ex-
ists for given spatial frequencies (a, b) in a certain do-
main of wavelength, one can always find an incident po-
larization state that will not be modified by the presence
of the mode. Hence, for creation of a filter for unpolar-
ized light, the structure should support two eigenmodes
at the same frequency. This degeneracy is possible only
if the modes cannot couple to each other (i.e., are orthogo-
nal). It is possible to obtain a degeneracy, for example,
with one-dimensional or two-dimensional gratings with
symmetry properties that present odd and even modes at
given spatial frequencies (a, b).6,7 Yet obtaining the
same complex wave number for these two orthogonal
modes is quite difficult and requires one to adjust the pa-
rameters of the grating precisely.

On the other hand, it is not hard to obtain an unpolar-
ized filter with a two-dimensional grating with square cell
and bump illuminated under normal incidence.5 Sym-
metry considerations can explain easily why this kind of
structure yields the same reflectivity whatever the polar-
ization under normal incidence. The two-dimensional
grating is invariant under a rotation of p/2. As a result,
the reflectivity of a linear polarized beam, at normal inci-
dence, is the same for an angle of polarization d and
d 1 p/2. To reconcile this property with Eq. (70), we see
that the reflectivity must be a constant whatever the po-
larization state. Moreover, since the grating is sym-
metrical with respect to the z axis, there exists a particu-
lar wavelength for which the reflectivity reaches 100%.
Similar reasoning can be done with any two-dimensional
grating whose cell is invariant under a rotation of p/n,
for example, a hexagonal cell. Among the properties
coming from symmetry considerations lies the fact that in
the frequency domain close to the maximum of reflectiv-
ity, the structure supports two orthogonal eigenmodes
with the same spatial frequencies (0, 0) and the same
complex wave number. When the grating is shallow, one
expects these two modes to stem from even standing
waves that are a symmetric combination of guided waves
that propagate in opposite directions (with wave vectors
directed either along Ox or Oy). Note that the antisym-
metric combination, which leads to odd modes, cannot ap-
pear as eigenvectors of the S matrix calculated for
(a 5 0, b 5 0) since the only propagating field compo-
nent in their plane-wave expansion is null. Yet odd
modes appear when one departs slightly from normal in-
cidence. In Fig. 5 we plot the eigenvalues of R1* R1 as a
function of the wavelength. As expected, the two eigen-
values are identical, and they present a peak that reaches
unity. The eigenvectors are (1, 0) and (0, 1) so that the
structure conserves the polarization.

Up to now, we have considered gratings that are sym-
metric with respect to the z axis. As a result, the peak of
reflectivity reaches 100% for a given polarization state.
If asymmetric gratings are used, this property is not al-
ways verified (note, however, that the symmetry condition
is sufficient but not necessary). In all previous examples,
the eigenvectors of the R1* R1 matrix correspond to a lin-
ear polarization (i.e., they are real). This is not always
the case. We have studied a shallow one-dimensional
grating that is asymmetric with respect to the z axis and
illuminated under purely conical mounting. We have
found that the eigenvectors of the R1* R1 matrix, which
are generally real and correspond to s or p polarization,
become complex in the vicinity of a resonance. This
means that the eigenmodes of the structure are ellipti-
cally polarized. By modifying the asymmetry of the grat-
ing, we can change the eigenvectors so that they corre-
spond to a circular polarization. In this case, the
reflectivity of the system is roughly a constant whatever
the incident linear polarization state. However, since
only one mode is excited, this reflectivity cannot be close
to unity.

7. CONCLUSION
We have presented a phenomenological study of resonant
gratings that permits one to describe the behavior of the
reflectivity as a function of the wavelength and the inci-
dent polarization state in the vicinity of a resonance. We
have considered the Hermitian reflection matrix of order
2 that links the s and p amplitudes of the reflected order
to the s and p amplitudes of the incident wave.

We have shown that when only one eigenmode exists in
the structure close to the spatial and temporal frequen-
cies of the incident beam, one (and only one) eigenvalue of
the reflection matrix presents a complex pole and a com-
plex root in the complex plane of the wave number. Thus
in this case there exists an incident polarization for which
the reflectivity is not modified by the mode and presents
no anomaly. Furthermore, we have found that if the
grating is symmetrical with respect to the z axis, there ex-
ists one incident polarization for which the reflectivity
presents a peak that reaches 100% as a function of the
wavelength, while the reflectivity for the orthogonal po-
larization remains a gently varying function (that is close
to that of the planar structure if the periodic modulation
is small). Hence, in order to design a high-efficiency fil-

Fig. 5. First (solid curve) and second (dashed curve) eigenvalues
versus wavelength for a two-dimensional grating with square
bumps, illuminated in normal incidence, with refractive indices
ns 5 1.448, nc 5 2.07, thickness ec 5 300 nm, bump height h
5 87.5 nm, period d 5 900 nm, and bump width d –c
5 600 nm. The two curves are identical.
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ter for unpolarized light, one must consider gratings that
support two eigenmodes for the same spatial and tempo-
ral frequencies.

Our approach was supported by various numerical ex-
periments with one-dimensional and two-dimensional
gratings. The approach permits one to retrieve the be-
havior of the reflectivity of the resonant grating as a func-
tion of the wavelength and the incident polarization state
from the knowledge of very few parameters such as the
complex pole, the transmission root, the eigenvectors, and
the Fresnel factors of the planar structure. A perturba-
tive approach could be used to derive analytical expres-
sions for these various parameters. Our work is in
progress in that direction.

A. L. Fehrembach can be reached by e-mail at anne-
laure.fehrembach@fresnel.fr.
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