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Patrick CHAUMET. Les mots me manquent pour exprimer ma gratitude. Il s’est toujours soucié
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est mesuré vectoriellement pour des illuminations incidentes en TE et TM. (b) Seul
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Le mot du directeur de thèse

Une règle a été établie par le conseil scientifique (CS) de l’université Aix-Marseille. Le CS exige
pour les thèses écrites en anglais, qu’au moins 10% de la thèse soit rédigée en Français. Mme
Zhang est chinoise et malgré tout a décidé de rédiger elle même ce résumé. Je n’ai fait que peu
de corrections sur ce résumé et je tiens donc à souligner la qualité de son Français dont beaucoup
d’étudiants pourraient s’inspirer.

1) Introduction

Ce travail de thèse porte sur la détection et la caractérisation d’objets tridimensionnels localisés en
espace homogène, ou en présence d’une interface. Mais avant de rentrer dans le vif du sujet, nous
allons définir la terminologie utilisée dans ce tapuscrit. Nous définissons deux classes de problèmes:
le problème direct et le problème inverse. La diffusion d’une onde électromagnétique par un objet
de permittivité relative et de forme arbitraire est ce que nous définissons comme étant le problème
direct, i.e. l’objet étant supposé connu, le champ diffracté est calculé en un ou plusieurs points
d’observation donnés. Le problème inverse consiste à “déterminer l’objet”, à partir de la seule
mesure du champ diffracté en différents points d’observation. Le terme “déterminer l’objet” est
mis entre guillemets, car il peut avoir différentes significations suivant la problématique posée:

• détection et localisation: repérer le nombre de diffuseurs et connâıtre la position de ceux-ci.

1
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• reconnaissance de forme: déterminer la forme d’objets inconnus.

• caractérisation: accéder à la forme et à la permittivité relative des diffuseurs.

Dans ce travail de thèse, nous nous sommes intéressés au problème de la détection, localisation
et caractérisation des objets. Nous nous sommes également intéressés au problème de la caractérisa-
tion d’objets présents dans des milieux désordonnés, i.e. le voisinage des cibles présentes des fluctu-
ations de la permittivité. Une des nombreuses applications de ce domaine recherche est le sondage
du sous-sol, où les cibles sont enfouies dans un milieu comportant des hétérogénéités et les antennes
émettrices et réceptrices sont au dessus de l’interface. Dans ce cas les méthodes d’inversion classique
(linéaires et non linéaires) distinguent difficilement les cibles à détecter des inhomogénéités du mi-
lieu. De nombreuses études ont été consacrées à la compréhension de l’influence des hétérogénéités
autour de l’objet d’intérêt sur la réponse du signal de l’objet, et différentes techniques ont vu le jour
pour améliorer le rapport signal sur bruit. En régime harmonique, nous nous proposons d’utiliser
la méthode de Décomposition de l’Opérateur de Retournement Temporel (DORT), développée
d’abord dans le domaine acoustique1,2, puis appliquée à l’electromagnétisme3–5. Cela consiste
à analyser les valeurs propres et les vecteurs propres de l’opérateur de retournement temporel
(TRO), qui nous permet de dénombrer et de localiser les cibles les plus échogènes. Cette méth-
ode est efficace quand le ou les objets sont en présences d’hétérogénéités faiblement contrastées et
où la diffusion simple domine, mais trouve sa limite dans le régime de la diffusion multiple. En
particulier, lorsque seulement des données monochromatiques sont utilisées6,7. Cette technique a
l’inconvénient de localiser les cibles sans les caractériser. Pour ces raisons nous nous proposons de
combiner les avantages des méthodes d’inversion non-linéaire et DORT. Cette approche d’imagerie
combinée sera étudiée sur des données synthétiques. Deux configurations d’intérêt seront prises en
compte. Première, les diffuseurs sont présents dans un milieu infini et entourés d’hétérogénéités,
alors que dans la seconde, les diffuseurs sont enfouis sous une interface plane. La méthode DORT
sera développée pour des champs tridimensionnels vectoriels, où les antennes peuvent dont prendre
trois orientations différentes.

Ensuite, nous allons exploité les capacités focalisantes de DORT dans le domaine de l’imagerie
optique à haute résolution. Cette partie nous permettra de tester et valider les nouveaux algo-
rithmes sur des données expérimentales. Nous allons montrer que la méthode DORT permet de
bien focaliser et caractériser chaque diffuseur présent sur une interface et ce sélectivement.

Enfin, nous présenterons les résultats obtenus à partir de données transitoires, en considérant
une approche mono-source et multiples fréquences. Nous présenterons trois façons de traiter les
données transitoires:

• Marche-récurrente-en-fréquence: nous résolvons séquentiellement plusieurs problèmes in-
verses. Plus précisément, nous résolvons le problème inverse à une fréquence et utilisons le
résultat final pour l’inversion aux fréquences plus élevées.

• Multiples fréquences: nous considérons les champs diffractés à toutes les fréquences en même
temps.

• Inversion en régime transitoire: les champs diffractés mesurés sont recueillis dans le temps.

Dans cette partie, nous allons d’abord tester les algorithmes d’inversion avec des données synthé-
tiques. Ensuite, nous comparerons les différentes méthodes développées avec des mesures expéri-
mentales effectuées dans une chambre anéchöıque dans le domaine des hyper-fréquences.

2) Problème direct et problème inverse

2.1) En régime harmonique

La géométrie générale du problème de diffraction que nous nous proposons d’étudier est illustrée
par Fig. 1. Un diffuseur tridimensionnel de forme arbitraire avec la permittivité ε(r) = ε(r)ε0
et supposé non-magnétique (µ = µ0) est contenu dans un domaine W , linéaire, isotrope et non
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magnétique (ε0 et µ0 sont la permittivité et perméabilité du vide, respectivement). Les ondes
électromagnétiques qui sondent le milieu, où sont localisés les diffuseurs, sont générées par des
antennes, considérées comme des dipôles électriques ponctuels. Les champs diffractés sont évalués
aux points de réception régulièrement distribués sur la surface de mesure Γ.

Z

Y

X

W

ReceiverSource

Target

Figure 1 : Géométrie du problème de diffraction. Les diffuseurs sont confinés
dans le domaine W . Γ est la surface de mesure.

2.1.1) Problème direct

Nous utilisons la méthode des dipôles couplés (CDM) pour calculer le champ diffracté par l’objet
considéré. Le domaine W contenant l’objet est éclairé par une onde électromagnétique incidente de
longueur d’onde λ (k0 = 2π/λ). Le principe de la CDM consiste à représenter l’objet en un ensemble
de N petits cubes d’arête a (par petits, nous entendons plus petits que la longueur d’onde dans
l’objet : a � λ√

‖ε‖
). Chacun de ces petits cubes, sous l’action de l’onde incidente, se polarise, et

donc acquiert un moment dipolaire, dont la valeur dépend du champ incident et de son interaction
avec les dipôles voisins. Ces dipôles induits rayonnent donc un champ électromagnétique. Le champ
électromagnétique à la position r, E(r), est donc la somme de l’onde incidente et du champ rayonné
par les N − 1 autres dipôles,

Eloc(ri) = Einc(ri) +
N∑

j=1,j 6=i

G(ri, rj)α0(rj)Eloc(rj), (1)

où Einc est le champ incident, G la fonction Green du champ en espace homogène, et α0 la
polarisabilité de chaque élément de discrétisation obtenue à partir de la relation de Claussius-
Mossotti. Une fois le système d’équations linéaires résolu, le champ diffracté par l’objet à une
position r arbitraire, est obtenu en faisant la somme de tous les champs rayonnés par chacun des
dipôles,

Esca(r) =
N∑

j=1

G(r, rj)α0(rj)Eloc(rj). (2)

Le tenseur de Green (aussi appelé fonction de Green) en espace homogène est donné par

G(r, rj) =
eik0R

4πk2
0

[
(3R̂⊗ R̂− I)

(
1
R3

− ik0

R2

)
+ (I − R̂⊗ R̂)

k2
0

R

]
, (3)
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où R̂ = R/R, R = r − rj , I la matrice unité. Quand l’objet est en présence d’un substrat plan,
ou dans un multicouche, la même approche peut être adoptée. Il suffit de remplacer la fonction
Green de l’Eq. 3 par celle du système de référence.

2.1.2) Problème inverse

Le problème inverse est de déterminer les positions, les formes et les matériaux constitutifs des
objets à partir de leurs réponses (champs diffractés) à une excitation électromagnétique connue.
Nous limitons notre étude à une méthode itérative non-linéaire. Nous utilisons une approche
itérative, où le paramètre d’intérêt, à savoir la distribution de la permittivité relative ε = χ+1, est
mise à jour progressivement en minimisant une fonction coût F décrivant l’écart entre les données
mesurées fmes

l et celles qui seraient obtenues par le calcul direct ayant la meilleure estimation
disponible de la permittivité relative

Fn(χn,E1,n, · · · ,EN,n) = Fn(χn,E�,n) (4)

= WΓ

N∑
l=1

‖fmes
l −

=

BχnEl,n‖2
Γ +WΩ

N∑
l=1

‖Einc
l + χn

=

AEl,n −El,n‖2
Ω,

où, n est le nombre d’itération, les coefficients de normalisation étant définis par

WΓ =
1

N∑
l=1

‖fmes
l ‖2

Γ

, WΩ =
1

N∑
l=1

‖Einc
l ‖2

Ω

, (5)

avec El est le champ total dans le domaine d’investigation.
=

A est la matrice contenant toutes les

fonctions Green du champ permettant d’accéder au champ dans l’objet, et
=

B la matrice permettant
de calculer le champ diffracté par l’objet. Einc

l est le champ incident correspondant à chaque
illumination l = 1, · · · , N .

Afin d’améliorer la procédure d’inversion, nous injectons une information a priori stipulant que
la partie réelle de ε est supérieure à εb que sa partie imaginaire est positive8. La fonction complexe
χn est alors transformée en deux fonctions auxiliaires ξn et ηn réelles telles que

χn = 1 + ξ2n + iη2
n − εb, (6)

où εb est la permittivité relative du milieu. L’estimation initiale de χ est obtenue par une procédure
de rétro-propagation.

2.2) En régime temporel

Le régime temporel est obtenu via un passage dans le domaine fréquentiel. Le ou les antennes
émettrices rayonnent un champ ayant une enveloppe gaussienne modulée à la fréquence f0 de la
forme

F(t) = A exp

[
−16

(
t− ttrans

τ

)2
]

cos(2πf0t), (7)

où τ est lié à la durée de l’impulsion. Plus τ est petit, plus large est le spectre. Le décalage
temporel ttrans est choisi suffisamment grand pour avoir F(t) = 0 pour t ≤ 0 et ainsi assurer la
causalité.

Un exemple de F(t) est présenté en Fig. 2 avec f0 = 5.5 GHz (λ0 ≈ 54.5 nm), τ = 2 ns et
ttrans = 4 ns. Le nombre de fréquences utilisées pour décrire l’impulsion dans le domaine fréquentiel
est P = 21, et nous avons vérifié que le nombre de fréquences est suffisant pour décrire correctement
l’impulsion.
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Figure 2 : (a) Évolution du champ incident en fonction de temps. (b) Spectre
du champ incident.

Donc, pour le problème direct, nous devons résoudre successivement P harmoniques problèmes
et après passage en temporel. Cette méthode a quelques avantages par rapport à des méthodes
numériques qui travaillent directement dans le domaine temporel comme par exemple la méthode
des différences finies. En effet, le domaine de calcul se limitant au support du diffuseur, et donc
la précision du calcul est déterminée principalement par la taille de la maille de la discrétisation.
Ensuite, la condition d’onde sortante est intrinsèquement satisfaite à travers la fonction de Green,
et enfin, il est plus facile de prendre en compte la dispersion des milieux.

Pour le problème inverse, nous travaillons aussi dans le domaine fréquentiel. Deux possibilités
s’offrent à nous. Premièrement, nous pouvons résoudre successivement le problème inverse à une
fréquence donnée ou l’estimation initiale est donnée par le résultat obtenu à la fréquence précédente.
Cette méthode est appelée “marche-récurrente-en-fréquence”. La fonction coût reste la même que
celle donnée par l’Eq. 5, mais nous devons la minimiser successivement à toutes les fréquences.
Deuxièmement, nous pouvons choisir d’inverser toutes les fréquences en même temps. Dans ce cas
la fonction coût à minimiser est définie comme

Fn(χ1,n, · · · , χP,n,E1,1,n, · · · ,E1,P,n, · · · ,EN,1,n, · · · ,EN,P,n) = Fn(χ�,n,E�,�,n) (8)

= WΓ

N∑
l=1

P∑
p=1

‖h(2)
l,p,n‖

2
Γ +WΩ

N∑
l=1

P∑
p=1

‖h(1)
l,p,n‖

2
Ω,

avec

WΓ =
1

N∑
l=1

P∑
p=1

‖fmes
l,p ‖2

Γ

, WΩ =
1

N∑
l=1

P∑
p=1

|Einc
l,p ‖2

Ω

. (9)

3) Détection et caractérisation de diffuseurs en trois

dimensions dans un milieu désordonné

3.1) La méthode DORT

La méthode DORT est une méthode en régime harmonique de retournement temporel qui permet
de détecter et de localiser des diffuseurs présents dans un milieu désordonné, c’est-à-dire un milieu
comportant des hétérogénéités. Dans notre simulation, εf , la permittivité relative du milieu au
voisinage les diffuseurs, peut être suivant la relation ci-dessous

εf (r) = εb + C(r), (10)

C(r) = σ2
f exp

(
−‖r‖2

l2c

)
, (11)
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avec εb la permittivité moyenne du milieu et C(r) une fonction de corrélation gaussienne de
moyenne nulle et d’écart-type σf . Plus σf est grand, plus la fluctuation est forte. Les hétérogénéités
varient suivant les trois dimensions de l’espace. lc est la longueur de corrélation de C(r).

Dans la configuration tridimensionnelle vectorielle étudiée, les antennes peuvent prendre trois
orientations possibles. Pour un couple émetteur-récepteur (i, j), une sous-matrice 3 × 3 peut être
construite,

Kij =

Kxx
ij Kxy

ij Kxz
ij

Kyx
ij Kyy

ij Kyz
ij

Kzx
ij Kzy

ij Kzz
ij

 . (12)

Les éléments diagonaux de la matrice décrivent la relation entre les récepteurs et émetteurs avec la
même orientation. Les éléments hors diagonale décrivent les polarisations croisées. Une fois toutes
les mesures effectuées, nous obtenons une matrice K

K =


K11 K12 . . . K1N

K21 K22 . . . K2N

...
...

. . .
...

KN1 KN2 . . . KNN

 . (13)

Chaque élémentK de la matrice correspond au champ diffracté mesuré sur un récepteur, quand un
autre émet. En vertu du théorème de la réciprocité, K est symétrique. Dans un cadre monochro-
matique, l’opération de retournement temporel consiste à conjuguer la phase et à permuter le rôle
des sources et des récepteurs. Matriciellement cela correspond à conjuguer et à transposer la ma-
trice K. L’opérateur de Retournement Temporel est donc représenté par la matrice L = K†K.
Les invariants de cet opérateur nous fournissent deux renseignements principaux:

1. D’abord, le nombre de valeurs propres émergentes est lié au nombre de diffuseurs dans le
milieu sondé. A noter qu’en présence d’un seul diffuseur le nombre de valeurs et vecteurs
propres associés varient suivant la configuration, voir Tab. 1 pour le nombre de valeurs
propres suivant la configuration.

Complète Limite-homogène Limite-demi-espace

Illumination scalaire 1 1 1
Illumination vectorielle 3 3 2

Table 1 : Nombre de valeurs propres pour un diffuseur suivant la configuration
choisie. Configuration complète signifie que les antennes sont disposées tout au-
tour du diffuseur. Configuration limite-homogène signifie que la mesure se fait sur
un plan au dessus du diffuseur sans présence d’interface. Configuration limite-
demi-espace signifie que la mesure se fait sur un plan au-dessus d’une interface
plane quand le diffuseur est placé en dessous de cette même interface. Illumina-
tion scalaire signifie que les antennes ne prennent qu’une seule orientation tandis
que vectorielle signifie que chaque antenne prend les trois orientations possibles
de l’espace.

2. Ensuite, si nous analysons les vecteurs propres associés, ils nous donnent des informations
sur la location des diffuseurs: Si on alimente les antennes par un courant ayant l’amplitude
et la phase donnés par le vecteur propre, alors le champ présentera un maximum là où se
trouve le diffuseur. La méthode DORT est une technique très efficace pour localiser les
objets situés dans un environnement hétérogène.



RÉSUMÉ EN FRANÇAIS 7

3.2) Résultats numériques en espace homogène

Nous reportons sur la Fig. 3 la configuration du problème étudié. Un réseau bidimensionnel plan
d’antennes (N = 9× 9, de la longueur 8λ) situé à z = 2λ est utilisé pour illuminer successivement
le domaine et mesurer le champ diffracté. L’interdistance entre deux antennes voisines est de λ.
Les diffuseurs étudiés sont deux sphères diélectriques de rayon r1 = λ/6 et r2 = λ/4, avec comme
permittivité relative ε = 3εb, où εb est la moyenne de la permittivité relative du milieu dans lequel
les diffuseurs sont immergés. La distance entre les diffuseurs est de 0.5λ et 0.7λ, suivant les axes
x et z, respectivement. λ est la longueur d’onde d’illumination. Le plus grand diffuseur est le plus
éloigné des sources. Le domaine W représenté dans Fig. 3 est une bôıte de taille 5λ × 5λ × 4λ,
centrée à z = −λ. Le milieu dans lequel les diffuseurs sont immergés à une variation de permittivité

Figure 3 : Géométrie du problème. Les sources et récepteurs sont distribués
régulièrement sur un plan, au dessus des diffuseurs. Les diffuseurs sont confinés
dans un domaine W .

relative avec les caractéristiques suivantes : une faible longueur de corrélation (lc = λ/10), un écart
type σ(εf )=0.068εb et un régime de diffusion simple entre les diffuseurs et les hétérogénéités. Si
nous observons les différentes valeurs propres, Fig. 4, nous pouvons voir que pour chaque diffuseur,
il y a bien trois valeurs propres dominantes associées. Les autres valeurs propres appartiennent à
l’espace du bruit.
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Figure 4 : Évolution des valeurs propres pour la configuration détaillée dans
Fig. 3. Illuminations vectorielles en présence d’un bruit de structure ayant les
caractéristiques statistiques suivantes: lc = λ/10 et σ(εf )=0.068εb.

Dans la Fig. 5 nous observons respectivement les cartes d’intensité du champ focalisant dans
le plan (x, y) et le plan (x, z), champ focalisant formé par les vecteurs propres de l’opérateur du
retournement temporel. Les trois premières valeurs propres forment un champ focalisant sur le
diffuseur dont la signature sur les antennes est dominante. Les trois valeurs propres suivantes (4,
5 et 6) correspondent à la signature du deuxième diffuseur le plus échogène. Celui-ci est situé
loin des antennes. Grâce à la méthode DORT, le domaine d’investigation utilisé pour le problème
d’inversion peut être limité à la région donnée par les champs focalisants, qui est environ 10 fois
plus petite que le domaine où les champs retournés ont été calculés. Sans cette information nous
devrions utiliser une bôıte d’investigation nettement plus grande demandant alors un temps calcul
prohibitif.
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Figure 5 : Intensité des champs retournés pour les trois premières valeurs pro-
pres, avec lc = λ/10 et σ(εf )=0.068εb. Ces trois vecteurs propres focalisent sur le
diffuseur qui est le plus proche des antennes. (a), (b) et (c) plan (x, y) à z = 0.
(d), (e) et (f) plan (x, z) à y = 0. Chaque colonne correspond à la première, la
deuxième et la troisième valeur propre. La bôıte en pointillée indique le domaine
d’investigation Ω utilisé dans l’inversion.

Ici, nous nous proposons d’introduire les champs focalisants (champs dortiens) comme champ
incident dans la procédure d’inversion pour améliorer le rapport signal sur bruit. Le nombre total
des incidences est alors réduit au nombre des valeurs propres dominantes correspondant aux dif-
fuseurs, et donc la taille du problème est grandement diminué. Notons que nous n’avons pas besoin
de mesurer le nouveau champ diffracté correspondant aux nouvelles incidences dortiennes. En effet,
il peut être déduit en utilisant une combinaison linéaire des mesures avec comme coefficients de la
combinaison les composantes du vecteur propre. Figure 6 présente les résultats de la reconstruc-
tion en trois dimensions avec HM-DORT et HM. La reconstruction utilisant les champs dortiens
(HM-DORT) est meilleure que celle obtenue sans DORT (HM) et évite les fausses alarmes autour
des objets d’intérêts. La fonction coût, Fig. 6(c), converge plus rapidement avec HM-DORT, et la
valeur finale de celle-ci est environ un ordre de grandeur plus petite qu’avec HM seul, ce qui donne
une meilleure caractérisation des diffuseurs. Les intérêts principaux de la méthode DORT dans ce
cas réside dans le temps de calcul, qui est environ 36 fois plus long sans DORT qu’avec DORT, en
raison de la diminution du nombre des incidences et d’une meilleur reconstruction des diffuseurs.
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with DORT without DORT

Figure 6 : Même configuration que Fig. 5. (a) Carte de permittivité reconstruite
en utilisant HM-DORT, vue en Iso-surface à ε = 2. (b) même que (a) avec HM.
(c) Évolution des fonctions coûts: HM-DORT (- -) et HM (-).
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Nous avons vérifié que HM-DORT présente des images satisfaisantes des cibles, avec des écarts-
types élevés jusqu’à 0, 125εb, la présence de diffusion multiple et de grandes longueurs de corrélation
où les champs dortiens sont détériorés. Les diffuseurs sont mieux localisés avec HM-DORT qu’avec
DORT seul, surtout suivant la direction z. Notons l’importance de l’utilisation d’une inversion non-
linéaire et de données vectorielles complètes pour obtenir des reconstructions de bonne qualité.

3.3) Résultats numériques en demi-espace

En demi-espace, les sources et les objets à détecter sont situés dans deux milieux différents, séparés
par une interface plane. Les objets sont dans un milieu de permittivité εf et les antennes sont
dans l’air. Cette configuration réaliste a pour première conséquence d’avoir un système d’imagerie
ayant une ouverture numérique faible à cause de la réflexion du champ rayonné par les antennes
sur la surface qui augmente avec l’éloignement de l’antenne par rapport au diffuseur. Dans ce cas
avec une seule longueur d’onde λref , deux structures différentes peuvent donner le même champ
diffracté, avec une interdistance d = λref/2, comme montré dans la Ref.5. Il n’y a donc pas unicité
de la solution. En utilisant des données synthétiques, sans bruit, nous avons vérifié qu’une marche-
récurrente-en-fréquence est indispensable pour obtenir des reconstructions précises. L’estimation
initiale pour résoudre le problème inverse à une fréquence est donnée par la solution obtenue à basse
fréquence. Pour la fréquence la plus basse, l’estimation initiale est obtenue par la rétro-propagation.

La configuration choisie est de deux diffuseurs sphériques tels que r1 = λref/8, situé à (0.5λref ,
0.4λref , 0.5λref), et r2 = λref/6, centré à (−0.5λref , 0.4λref ,−0.5λref). Leurs permittivités relatives
sont toutes égales à 5. La taille du domaine W est de (3λref × 3λref × 3λref) m3. Le milieu
dans lequel les deux diffuseurs sont immergés est de permittivité relative 3. La distribution des
antennes est la même que la configuration sans interface vue précédemment. Le plan qui sépare
les antennes et les diffuseurs est situé en z = λref . Les données sont simulées pour trois longueurs
d’onde différentes λ1 = 3λref , λ2 = 1, 5λref et λref . Notons que ces illuminations supplémentaires
à des longueurs d’onde plus grandes n’augmentent pas l’ouverture numérique et ne donnent pas
plus d’informations en terme de hautes fréquences spatiales. Nous considérons un désordre de
l’écart type σ(εf ) = 0.058 et de longueur de corrélation lc = λref/18. A la fréquence la plus haute
λref , pour chaque diffuseur, il existe donc deux valeurs propres associées à chaque diffuseur. Les
résultats des reconstructions sont reportés dans Fig. 7.

(a) (b) (c)

Figure 7 : Cartes de permittivités reconstruites en présence d’une interface entre
les antennes et les diffuseurs. (a) Iso-surface à ε = 3.5 avec HM-DORT. (b)
même que (a) mais obtenue avec HM. (c) même que (a) dans le cas où le bruit
de structure est généré dans un domaine W plus grand avec la taille de (6λref ×
6λref × 3λref) m3.

Les résultats des reconstructions montrées sur la Fig. 7 sont tous obtenus en utilisant la marche-
récurrente-en-fréquence. HM-DORT donne des résultats similaires à ceux obtenus en espace-
homogène. Les améliorations apportées par HM-DORT sont particulièrement évidentes en vue
de l’iso-surface, où avec HM seule beaucoup de fausses alarmes apparaissent dans le domaine
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d’investigation dissimulant ainsi les objets à reconstruire, Fig. 7 (b). Grâce à HM-DORT, les ef-
fets liés à la présence des hétérogénéités sont remarquablement diminués et seuls les deux objets
échogènes sont extraits. La valeur de la fonction coût est un ordre de grandeur inférieur avec la
méthode HM-DORT que celle obtenue avec HM. En outre, le temps de calcul avec HM-DORT (qui
utilise, dans ce cas, seulement 4 champs incidents à chaque inversion) à la longueur d’onde λref est
de 287 s, soit environ 80 fois inférieur à la méthode HM (22201 s).

Notons que les hétérogénéités données par C(r) sont seulement dans le domaine W , et qu’au
delà c’est le substrat de permittivité uniforme εb. Mais la méthode présentée peut être utilisée pour
déduire le comportement du système d’imagerie dans une situation réaliste où les hétérogénéités
sont présentes dans un milieu plus étendu. En effet, les résultats présentés ne changent pas lorsque
la taille de W est grandie par un facteur quatre, i.e. W = (6λref × 6λref × 3λref) m3 en gardant
la même distribution de bruit de structure et les mêmes statistiques. Les deux diffuseurs sont
toujours bien localisés par DORT et les reconstructions obtenues sont similaires à celles avec un W
plus petit, voir Fig. 7 (c). La propriété focalisante de DORT permet de diminuer considérablement
l’influence des hétérogénéités loin des cibles d’intérêts et la taille de W n’a pas d’influence sur les
reconstructions.

Nous avons aussi varié les caractéristiques du bruit de structure pour tester la robustesse de
HM-DORT. Un nouveau paramètre SC est introduit pour quantifier le pouvoir diffractant des
hétérogénéités:

SC =
N∑

l=1

x,y,z∑
α

‖f clutter
l,α ‖2

Γ. (14)

où f clutter
l,α est le champ diffracté par les hétérogénéités seules. Le comportement de SC est présenté

sur la Fig. 8. Quand lc � λ, le bruit de structure peut être homogénéisé ce qui conduit à un champ
diffracté faible, et lorsque lc � λ, la variation spatiale à grande échelle de celui-ci ne perturbe pas
le signal rayonné par les diffuseurs car il est localement homogène. L’effet des hétérogénéités est
donc important quand la longueur de corrélation est de l’ordre de grandeur de la longueur d’onde
d’illumination, comme le confirme la Fig. 8. Notons que le comportement de SC par rapport à la
longueur de corrélation diffère fortement en fonction de la configuration étudiée. En demi-espace,
SC présente un pic “pointu” centré à lc = λ/10, alors qu’en l’absence d’interface la courbe SC
présente un pic “très large” avec un maximum à lc ≈ λ/3.
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Figure 8 : SC en fonction de lc/λ, en l’absence d’interface (trait pointillé) et
avec une interface (trait plein).

Avec une longueur de corrélation fixée, en utilisant la méthode marche-récurrente-en-fréquence,
il est possible que SC soit très élevé à la longueur d’onde de départ. La reconstruction obtenue
est alors fortement perturbée et cette mauvaise estimation initiale compromet les inversions suiv-
antes. Cette possibilité souligne la limitation de la marche-récurrente-en-fréquence. Selon les
caractéristiques du bruit de structure, les choix des longueurs d’onde, des champs incidents utilisés
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dans l’inversion doivent être adaptés. Il est probable qu’une procédure globale d’inversion avec
plusieurs fréquences conduirait à de meilleurs résultats.

4) Application de DORT à la Microscopie tomo-

graphique par diffraction (TDM)

Nous avons précédemment étudié la méthode DORT en utilisant des données synthétiques. Dans
cette partie, nous nous proposons d’étudier la possibilité de caractérisation avec HM-DORT en
utilisant des données expérimentales. Dans notre équipe (SEMOX, Institut Fresnel), une tech-
nique d’imagerie optique assez récente, la Microscopie tomographique par diffraction (TDM), a
été développée pour reconstruire des objets tridimensionnels déposés sur un substrat plan. Les
travaux précédents étaient conduits dans la configuration scalaire, ce qui signifie que les illumina-
tions étaient polarisées suivant une seule direction et les champs diffractés étaient détectés suivant
la même direction. Dans ce travail de thèse, nous nous proposons d’appliquer HM-DORT en
TDM. Grâce à DORT, nous pouvons focaliser sélectivement sur chaque diffuseur dans un milieu
présentant des multiples diffuseurs. En particulier, si les diffuseurs sont présents dans un milieu
désordonné, le rapport signal à bruit peut être amélioré en utilisant DORT.

4.1) Mesure des données vectorielles en microscopie tomo-
graphique de diffraction

Pour que la focalisation dortienne soit isotrope sur le substrat, nous avons vu précédemment que
travailler en vectoriel était essentiel. Nous avons donc décidé de mesurer toutes les composantes du
champ électrique diffracté. En plus, les hautes fréquences spatiales, déterminantes pour caractériser
un objet de petite taille, étant sur les bords de l’ouverture numérique, seront parfaitement mesurées,
ce qui on le verra, apportera une meilleure résolution par rapport à l’hypothèse scalaire, i.e., seul
le champ électrique diffracté parallèlement au champ incident est mesuré.

Cette mesure vectorielle du champ électrique a nécessité des modifications du montage expéri-
mental sur l’orientation des polariseurs un peu plus compliqué qu’il n’y parâıt. Les illuminations
sont polarisées dans la base (ŷ, x̂) et les champs diffractés sont détectés suivant les directions de
polarisation perpendiculaires (d̂1, d̂2) tel que x̂.d̂1 =

√
2/2. La procédure de renormalisation est

fortement complexifiée par cette mesure sur deux bases différentes. En effet il est nécessaire de
normaliser les champs mesurés avant d’effectuer l’inversion non-linéaire. Les champs diffractés sont
normalisés de sorte que, le champ spéculaire réfléchi corresponde au champ théorique calculé par
le problème direct pour chaque illumination (en amplitude et en phase). Cette procédure est bien
détaillée au sein de cette thèse. Ce nouveau montage permet d’accéder au champ diffracté vectoriel
pour un éclairement incident en polarisation TE ou TM.
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Figure 9 : Carte de permittivité obtenue avec HM pour un échantillon diélectrique
constitué de 12 rectangles en résine formant une structure dodécagonale. (a) Le
champ diffracté est mesuré vectoriellement pour des illuminations incidentes en
TE et TM. (b) Seul le champ diffracté parallèle au champ électrique incident est
mesuré en x̂x̂ et ŷŷ. (c) Coupe de la permittivité suivant le cercle bleu sur (a)
(trait bleu solide) et (b) (trait rouge pointillé).

Nous considérons huit incidences, définies par un angle polaire θinc = 60◦ et un angle azimutal
φinc régulièrement espacé sur [0 2π]. Nous prenons un échantillon complexe composés de douze
rectangles de résine de permittivité relative ε = 2, de largeur 100 nm, longueur 300 nm et hauteur
140 nm. Ils sont placés radialement au sommet d’un dodécagone, sur un substrat de silicium de
permittivité relative 15 + i0.15. Figure 9 (a) montre la reconstruction quand le champ incident
est orienté successivement suivant TE et TM et que le champ diffracté est mesuré vectoriellement.
Dans ce cas nous sommes capable de distinguer les rectangles quelle que soit leurs orientations et
même quand leurs interdistances sont inférieures à un quart de la longueur d’onde. Au contraire,
l’utilisation des données scalaires combinées x̂x̂ et ŷŷ, donne une permittivité reconstruite trop
faible comparée avec celle obtenue avec des données complètes, et la structure dodécagonale est
perdue, Fig. 9 (b). A noter que cette amélioration est plus évidente sur la Fig. 9 (c), où la
permittivité présentée est obtenue pour une coupe suivant la cercle bleu sur les Figs. 9 (a) et (b).
En effet, entouré en pointillés bleu, sur la mesure vectorielle complète nous apercevons bien les deux
rectangles en diagonal alors qu’en donnée scalaires combinées ces deux rectangles n’en forment plus
que un. La résolution anisotrope observée dans Fig. 9 (b) est due à l’absence de la polarisation
croisée. Nous avons aussi utilisé des données scalaires x̂x̂ ou ŷŷ pour reconstruire cette structure
complexe. Le résultat est très détérioré et la résolution suivant la direction perpendiculaire à
la polarisation est complètement perdue. Cette réalisation expérimentale souligne l’importance
d’utiliser des mesures complètes pour atteindre une super-résolution dans l’imagerie optique en
champ lointain.

4.2) Application de DORT en TDM

Dans cette partie, nous nous proposons d’appliquer la méthode DORT en TDM. L’échantillon est
constitué de 4 plots cylindriques de permittivité relative ε = 2 et de hauteur h = 150 nm déposés
sur un substrat de silicium. Les diamètres des plots sont respectivement de 200 nm, 300 nm,
400 nm et 500 nm. Les champs incidents sont en TE et TM orientés suivant les axes x̂ et ŷ et les
champs diffractés sont mesurés vectoriellement. Nous utilisons 88 incidences, avec θmax

inc = 61◦ et
φinc distribuées régulièrement entre [0 2π].
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Figure 10 : (a) Valeurs propres en présence de 4 plots différents, avec des illumi-
nations polarisées en TM et TE. (b) Reconstruction de la permittivité en utilisant
HM dans un domaine d’investigation très grand contenant ces 4 plots.

Notons que sans utiliser DORT, nous devons chercher la distribution de permittivité dans une
bôıte très grande (5 µm × 5 µm × 200 nm). Malheureusement, le diffuseur le moins diffractant
est perdu car noyé par les trois autres diffuseurs plus échogènes, Fig. 10 (b).

Avec DORT nous commençons par regarder la distribution des valeurs propres sur la Fig. 10 (a).
Les sept premières valeurs propres sont nettement émergentes par rapport aux autres, puis à partir
de la 15-ème valeur propre on rentre clairement dans le bruit. Pour déterminer les vecteurs propres
associés à chaque diffuseur, il faut regarder les cartes d’intensités des champs retournés générés par
ces vecteurs propres. Pour chaque diffuseur, il y a deux valeurs propres associées.
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Figure 11 : Reconstruction sélective en utilisant HM-DORT sur ces 4 plots. Le
domaine d’investigation a été limité à une bôıte autour de chaque diffuseur, de la
taille de 1 µm × 1 µm × 300 nm.

Comme il est possible grâce à DORT de focaliser sur des diffuseurs de manière sélective,
nous nous proposons de caractériser les diffuseurs séquentiellement. Le domaine d’investigation a
donc été limité à une bôıte autour de chaque diffuseur et seuls les champs incidents qui focalisent
sur ce diffuseur ont été utilisés dans l’inversion, c’est-à- dire ont été utilisés les deux vecteurs
propres associés au diffuseur considéré. Les quatre cibles sont parfaitement reconstruites avec HM-
DORT. La permittivité de la cible la moins brillante est reconstruite avec une sous-estimation de
sa permittivité relative.
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5) Inversion dans le régime transitoire

Dans cette partie, nous allons présenter les résultats obtenus à partir de données transitoires,
c’est-à-dire que l’objet d’intérêt est éclairé par une seule source qui émet un champ électrique
variant dans le temps. L’approche considérée est donc mono-source et multi-fréquence en utilisant
la transformée de Laplace. Nous montrons des résultats à partir de champs mesurés dans une
chambre anéchöıque (14 × 6.5 × 6.5 m3). Les champs diffractés sont mesurés pour 21 fréquences
différentes, de 3 GHz à 8 GHz, avec un pas ∆f = 0.25 GHz. Les cibles sont placées dans le vide.
Nous travaillons dans le régime de la transmission, c’est-à-dire que les récepteurs sont situés à
l’opposé de l’émetteur, par rapport au diffuseur.

Le premier diffuseur considéré est constitué de deux cubes disposés suivant l’axe z, de per-
mittivité relative ε = 2.4 et de côté a = 2.5 cm, dont les centres sont séparés par 5 cm suivant
z. Nous comparons deux façons de traiter les données multi-fréquences. Nous pouvons soit les in-
verser fréquence après fréquence (marche-récurrente-en-fréquence), soit considérer tous les champs
en même temps dans la procédure de minimisation (multi-fréquence).
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Figure 12 : Carte de permittivité reconstruite pour les deux cubes disposés suiv-
ant l’axe z. (a)-(c) pour la marche-récurrente-en-fréquence. (d)-(f) en multi-
fréquence. (a) et (d) dans le plan (x, y) à z = 1.25 cm. (b) et (e) dans le plan
(x, z) à y = 1.25 cm. (c) et (f) dans le plan (x, y) à x = 1.25 cm.

Si nous comparons les résultats montrés sur la Fig. 12, nous pouvons voir que la méthode
multiple-fréquence donne de bien meilleures reconstructions que la marche-récurrente-en-fréquence.
En effet avec la marche-récurrente-en-fréquence, des objets fantômes apparaissent en dehors des
cibles. Alors qu’avec le multi-fréquence, la permittivité reconstruite du milieu entourant les objets
est parfaitement égale à l’unité et la permittivité obtenue pour chaque diffuseur est proche de sa
valeur réelle. Nous pouvons alors conclure que l’inversion multi-fréquence est robuste vis-à-vis du
bruit contrairement à la marche-récurrente-en-fréquence.

Maintenant, nous considérons un deuxième objet, deux cubes en contact par un bord de per-
mittivité relative ε = 2.4 et de côté a = 2.5 cm). Cette fois ci, la reconstruction obtenue en
multi-fréquence [Figs. 13 (a), (b) et (c)] est clairement très loin de l’objet réel. Nous avons vérifié
que les mesures des champs diffractés étaient peu bruités. Nous avons donc toute l’information
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nécessaire pour reconstruire l’objet. En fait, la contribution des hautes fréquences domine tellement
dans la fonction coût que l’inversion se fait essentiellement avec les hautes fréquences, et les basses
fréquences qui stabilisent l’algorithme d’inversion n’ont plus assez de poids. Nous nous proposons
alors de pondérer les contributions pour chaque fréquence fp (p = 1, · · · , 21) par un coefficient
1/(fp)3 pour que les contributions des hautes fréquences soient fortement atténuées. Dans ce cas,
la fonction coût est modifiée à partir de l’Eq. 5, comme

F̃n(χn,E�,�,n) =

N∑
l=1

P∑
p=1

(1/fp)α‖h(2)
l,p,n‖2

Γ

N∑
l=1

P∑
p=1

(1/fp)α‖fmes
l,p ‖2

Γ

+

N∑
l=1

P∑
p=1

(1/fp)α‖h(1)
l,p,n‖2

Ω

N∑
l=1

P∑
p=1

(1/fp)α‖Einc
l,p ‖2

Ω

. (15)

Nous pouvons voir que cette pondération permet d’améliorer la reconstruction, Figs. 13 (d), (e)
et (f). C’est-à-dire que si nous travaillons avec des hautes fréquences non pondérées, l’algorithme
d’inversion a de forte chance de ne pas converger vers la solution.
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Figure 13 : Carte de permittivité reconstruite pour les deux cubes en contact
par un bord. (a)-(c) en utilisant le multi-fréquence. (d)-(f) en utilisant le multi-
fréquence avec une fonction coût pondérée par (1/fp)3. (a) et (d) dans le plan
(x, y) à z = 1.25 cm. (b) et (e) dans le plan (x, z) plane à y = −1.25 cm. (c) et
(f) dans le plan (y, z) à x = 1.25 cm.

A noter que pour certaines objets, la pondération sur la fonction coût n’est pas indispensable,
une version non pondérée de l’inversion suffit pour reconstruire correctement les cibles.

6) Conclusion

Dans ce mémoire de thèse nous avons étudié comment détecter et caractériser des objets en présence
de bruit dans le régime harmonique et transitoire. Ces développements théoriques ont été confrontés
avec succès aux données expérimentales dans le domaine de l’optique et des hyperfréquences. Les
travaux futurs consistent à étendre l’inversion multi-fréquences quand les objets sont en présence
d’interfaces pour pouvoir inverser des données expérimentales obtenues en TDM.



Introduction

The electromagnetic inverse scattering problem is an important issue and of great interest in many
areas, such as non-invasive testing, medical imaging or subsoil probing. It consists to determine
properties of unknown targets from the knowledge of their response to an exterior electromagnetic
excitation. The inverse problem is opposite to the forward scattering problem, which aims to
model the interaction between electromagnetic waves and known material structures. In the for-
ward problem, shapes, positions and constitutive materials of scatterers are assumed to be known
and the scattered field is computed by solving Maxwell’s equations. This problem is generally
well-posed (existence, unicity and stability of the solutions are simultaneously satisfied) while the
inverse scattering problem, which aims to detect and characterize these unknown objects is ill-
posed and non-linear9–13. Under restrictive conditions, such as the Born or Rytov approximations,
inverse scattering problems may be formulated as linearized problems. In these particular cases the
parameter of interest is linked to the scattered fields through a simple Fourier transformation14.
This linearized procedure includes the Newton-Kantorovich method15,16 and the distorted-wave
Born approach17–19. They have been shown analytically to be equivalent in Ref. 20. In case of
rigorous computation, we use the non-linearized method, namely the modified gradient method9,21

and the contrast source inversion method22–24. These inversion techniques which reconstruct the
permittivity map of a given investigation domain and which, in their nonlinear versions, can han-
dle configurations supporting multiple scattering25–27 seem to be an interesting alternative, for
which the Born approximation is not valid. A hybrid method combining ideas from linearized and
non-linearized method is given in Ref. 28.

In practical applications, such as subsoil probing, where the targets are buried in an inhomoge-
neous medium, these classical inversion techniques can not distinguish the possible inhomogeneities
of the host medium from the targets themselves. This strategy yields to a poor estimation of the
target5 because the inhomogeneities of the natural medium blur the signature of the targets.
Many studies were devoted to understanding the clutter influence in the deterioration of the signal
response of targets29 and proposed to reduce the clutter-signal ratio. Additional possible data pre-
processing such as frequency averaging30, angular correlation31 or Wigner-Ville transform32 can
enhance further the target signature and reduce the influence of the clutter or that of the roughness
of the surface separating the embedding medium and the measurement medium33,34. Other tech-
niques for diminishing the clutter influence take advantage of the properties of the Time Reversal
(TR) operator. The time reversal concept was firstly studied in the acoustic domain by Mathias
Fink and Claire Prada in Institut Langevin, Paris1,2,35,36 and then extended to electromagnetic
domains3,4,37,38. They usually perform the Singular Value Decomposition (SVD) of the response
matrix and either work on the noise subspace [as in the Multiple Signal Classification (MUSIC)
method39,40] or on the signal subspace as in the DORT (Décomposition de l’Opérateur de Re-
tournement Temporel) method to detect and locate targets in noisy medium41. The sensitivities
of the MUSIC and the DORT algorithms have been compared in Ref. 42.
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2 INTRODUCTION

In the time-harmonic regime, we propose to use the DORT method43. It consists in analysing
the eigenvalues and eigenvectors of the time reversal operator (TRO), in order to synthesize incident
fields that focus selectively on the targets of interest, thus improving the signal-to-noise ratio. The
methods developed for detecting and localizing the targets buried in an inhomogeneous random
medium are often based on the manipulation of the TRO. The simplest approach consists in
simulating, in a homogeneous average medium, the intensity maps of the dominant eigenvector
fields of the TRO and using these maps for pinpointing the targets. This technique has been shown
to be efficient for weakly contrasted clutter where single scattering dominates but have shown their
limits in configurations supporting multiple scattering, especially when using only monochromatic
data6,7,44. Moreover, the provided images are meaningless in terms of intrinsic properties of targets
such as the refractive index. In this thesis work, we propose to combine the advantages of the hybrid
inversion methods with that of the DORT analysis. This imaging approach will be firstly checked
on synthetic data. Similar work has been done in the two-dimensional configuration5,45. In the
present thesis, the study is carried out in the full vectorial configuration, with the targets possibly
buried in a random inhomogeneous medium. The dipole antenna array taking three different
orientations is either simply plunged into the probing medium (homogeneous space background
configuration)46 or located at a medium different from that of the targets, separated by a flat
interface (half-space configuration)47, which is more realistic (this is encountered for example in
medical imaging, mineral exploration or through-wall imaging).

Another exploitation of this thesis work is the application of the combination of the DORT
method with the inversion algorithms in the high-resolution optical imaging domain. In the elec-
tromagnetic domain, the DORT method is always applied with microwave data for many previous
work3–5, and firstly being demonstrated in the optical domain and proved its selective focalization
ability on nano-particles in Ref. 48. Another optical imaging technique, Tomographic Diffractive
Microscopy (TDM) has been recently experimentally implemented in our SEMOX team (Sondage
ElectroMagnétique, Optique et Rayons X) of the Institut Fresnel, Marseille13,49. The basic prin-
ciple of TDM is to illuminate a sample with plane wave under different successive angles, both
the phase and amplitude of scattered fields are recorded through a microscope setup. Then, a
three-dimensional map of permittivity is reconstructed thanks to a non-linear inversion algorithm.
As most analogical microscopes, TDM neglects the vectorial nature of light in the image forma-
tion process. In all present implementations, the incident and diffracted fields are projected onto
one single polarization state, defined by the orientation of the incident electrical field. The in-
version procedures are based on scalar approximate models which are sufficient for qualitative
imaging50,51 but fail when quantitative imaging with high resolution is sought13. To get the most
of TDM and to achieve super-resolution, exploiting the light polarization seems a necessary and
promising lead52,53. In the present thesis work, the full-polarization TDM setup is developed such
that applying the DORT method in TDM microscopes becomes feasible, because we need the full
vectorial scattered data in order to reconstruct properly the time reversal operator. This led to
consider the problem of imaging 3D samples in complex medium which seems to be interesting and
to exemplify the advantage of DORT, i.e., we can insert an aberrating layer before the samples for
imaging to simulate an heterogeneous environment48.

The applied non-linear inverse scattering problem mentioned above is an optimization prob-
lem, where the interest parameter is sought iteratively by minimizing a cost functional involving
the measured scattered fields. In order to avoid being trapped into a local minima of the non-
linear cost functional, i.e., which leads to a false solution of this inversion problem, the targets
need to be illuminated by different incident angles and the scattered fields are collected by enough
receivers54. Therefore, the reconstruction resolution always degrades in case of reduced effective
Numerical Aperture (NA), which measures the solid angle under which the targets are illuminated
and observed. Concerned with this limit, one way to improve the reconstruction resolution and
simultaneously guarantee the convergence has been studied in Ref. 19, with the well-known lin-
earized distorted-wave Born approach. The same conclusion also holds for non-linearized inversion
algorithms21. Better convergence of the minimization procedure can be obtained at lower fre-
quencies, while to ameliorate the reconstruction resolution, higher frequencies are needed. The
two opposing criterion can be satisfied by using multiple-frequency data. The final reconstruc-
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tion result obtained at lower frequency is used as the initial estimate for the inversion at higher
frequencies. This approach is known as the frequency-hopping approach19,55, which has been val-
idated against experimental data in the two-dimensional case56 and also in the three-dimensional
case12,57. When disordered medium is involved, the frequency-hopping approach has to be revis-
ited depending strongly on the clutter characteristics, and have to adjust the working wavelength
to get a better initial estimate47. This persuade us to perform a global multi-frequency recon-
struction approach. This procedure has been validated in two-dimension58 and is extended to
three-dimension in this thesis work. Another strategy is to consider an electromagnetic source
radiating a transient field. The shape, the time duration and the central frequency of this source
can be properly designed according to the application at hand. A short time pulse in the time
domain can be transformed into a wide band frequency spectrum owing to the Parseval theorem
and the inverse scattering problem is then formulated in the frequency domain as long as the
Nyquist sampling theorem can be met. The inversion algorithm is of the same principle as the
multiple-frequency approach, except that the incident field is shaped by a time pulse with given
spectrum59.

This thesis work will be carried out according to the research significance and purposes dis-
cussed above. It will be divided into four parts:

• In the first part, we will present some basic principles for forward and inverse scattering
problems. The forward scattering problem is served to generate synthetic scattered fields in
presence of scatterers with arbitrary shapes. We choose one based on the integral equation
method, the Coupled Dipole Method (CDM) for solving the forward scattering problem.
In order to reconstruct three-dimensional targets (shape, constitutive material), with only
known measured scattered fields and incident excitations, we propose to use one of the
iterative non-linear algorithm, Hybrid Method (HM). The forward and the inverse scattering
problem will be discussed both in the time-harmonic regime and in the transient regime.
The transient scattering problem will also be formulated in the frequency domain, through
the Fourier transform.

• In the second part, we will present one of the time reversal technique, the DORT method,
for detecting and focalizing three-dimensional targets using synthetic data generated by
CDM. The principle of the DORT method will be illustrated with one single scatterer in
the homogeneous background space configuration and in the half-space configuration. The
behavior of eigenvalues and eigenvectors of the time reversal operator will be analyzed
for illuminations polarized along one single direction or three vectorial directions. The
DORT method will be combined with the non-linear inversion algorithm for restricting the
investigating domain to a small region and thus improving the reconstruction resolution with
the clutter of different characteristics. We will show that in presence of multiple scattering
effects, it is mandatory to use a nonlinear inversion procedure, otherwise the reconstruction
quality would be greatly deteriorated.

• In the third part, we will firstly explain how to realize a full-polarization tomographic
diffractive microscopy. The aim is to retrieve the vectorial scattered field for illuminations
with any polarization state. The reconstruction result will be compared to that obtained
by scalar data, with only one projection. We will show that the reconstruction resolution
can be ultimately improved with these full-polarized data. In the following chapter, we
will apply the DORT focusing method in the framework of the full-polarization TDM in
order to realize selective characterization, especially for far-separated samples. The time
computation would be drastically reduced owing to the focalization ability of DORT.

• In the last part, we will briefly present the time reversal focusing procedure in the time
domain using synthetic data. The transient inversion algorithm will be compared with the
frequency-hopping approach in existence. Applications to experimental data are reported.
Several different three-dimensional targets will be reconstructed in the frequency domain,
by the multiple-frequency method and the frequency-hopping approach. Finally, a transient
inversion algorithm will also be applied to reconstruct them, since the Nyquist theorem can
be satisfied, with a limit number of sampling frequencies.
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Introduction of PART I

Forward and inverse electromagnetic scattering problem

This part will present two basic research problems in electromagnetic domain: the forward
problem and the inverse problem. These two problems will be discussed in the time-
harmonic regime and in the time domain. As for in the time domain, the forward and
the inverse problem will be formulated in the frequency domain due to the Parseval
Plancherel’s theorem, so that a large number of time-harmonic problems should be solved.
In the first chapter, we will choose one of the numerical calculation methods for solving
the forward scattering problem: the Coupled Dipole Method (CDM). Beginning from
the integral equations, the dyadic Green function will be deduced in homogeneous space
configuration and in half-space configuration.
In the second chapter, we will discuss different iterative inversion methods for character-
izing scatterers in three-dimension. One linearized method (Conjugate Gradient Method)
and one non-linearized method (Contrast Source Inversion) will be presented. Then we
will choose a hybrid method that combining the advantages of these two methods as the
inversion algorithm that we use in this thesis work.



8



Chapter 1

Forward scattering problem:
Electromagnetic scattering by an

arbitrary three-dimensional
scatterers

Contents
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 Geometry of the problem . . . . . . . . . . . . . . . . . . . 10

1.3 Basic electromagnetic equation in time regime . . . . . . 11

1.4 Forward electromagnetic scattering problem in the time-
harmonic regime . . . . . . . . . . . . . . . . . . . . . . . . 12

1.4.1 Harmonic Maxwell equations . . . . . . . . . . . . . . . . 12

1.4.2 Integral equations . . . . . . . . . . . . . . . . . . . . . . 12

1.4.3 The dyadic Green’s equation . . . . . . . . . . . . . . . . 13

1.4.4 Forward scattering problem in harmonic regime: Coupled
dipole method . . . . . . . . . . . . . . . . . . . . . . . . 14

1.5 Forward scattering problem in the transient regime . . . 18

1.5.1 Statement of the problem . . . . . . . . . . . . . . . . . . 19

1.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.1 Introduction

The forward scattering problem concerns with modeling the interaction of electromagnetic fields
with an arbitrary, inhomogeneous, dispersive objects. It is an important research problem in many
domains such as optical forces60, near field optics61 and rough surface scattering problems62.
The forward solver can also be served for the inverse scattering procedure that we choose. This
problem may be formulated either in the time domain or in the time-harmonic regime. The forward
scattering problem is generally solved numerically. An analytic solution exists only for cylindrical

9



10 1.2 Geometry of the problem

scatterers with a circular or an elliptical cross section63, for homogeneous spheres or for ellipsoids.
Otherwise, we have to solve it numerically for scatterers of any given shape.

In the time-harmonic regime, several numerical techniques for solving the forward scattering
problem were reported in Ref. 64, including the Finite Element Method (FEM), the Multiple
Multipole Method (MMP), the Method Of Moments (MOM) and the Coupled Dipole Method
(CDM)65,66, also called discrete dipole approximation67. Both of MOM and CDM are based
on the volume-surface integral representation of electromagnetic fields and their equivalence is
provided in Ref. 68. The CDM is widely applied in many domains, i.e., for computing optical
forces60, study of radiation dynamics69, near field light scattering70.

In the time domain, for solving the forward scattering problem directly in the time domain,
the most popular numerical method is the Finite Difference Time Domain Method (FDTD)71,72.
The FDTD method is based on the time iterative process, avoiding to solve large linear equations.
Meanwhile it can be applied to particles with flexible shapes and electric properties. While the
main drawback is that the entire computational time window must be finely discretized, leading
to a large memory requirement. Moreover, in the FDTD, the boundary conditions at the edges of
the computational window must be carefully handled.

To tackle the transient solution of the forward problem, another method consists in solving it
via a passage into the frequency domain, through a temporal Laplace or Fourier transform. Then we
resolve several time-harmonic problems for a collection of frequencies, to study the time evolution
of these electromagnetic quantities. During the time-harmonic procedure, we propose to use the
CDM65,66. The CDM has the advantage of restricting the computational domain to the support
of scatterers and the computation precision is determined mainly by the mesh size over which the
integral equation is discretized. Meanwhile, the boundary condition is inherently satisfied through
an appropriate dyadic Green’s function, and it is more easy to take into account the dispersion of
the background media as well as the target under test than FDTD approach. However, a potential
hurdle is the storage of the Green’s function for a large number of frequencies, when the scatterers
are finely discretized.

In conclusion, according to advantages and drawbacks of these different methods, in this thesis
work, we propose to use the CDM, both in the time-harmonic regime and in the time domain,
which permits to solve the forward scattering problem for scatterers present in dispersive medium.

1.2 Geometry of the problem

The general geometry of the scattering problem that we propose to study is shown in Fig. 1.1.
A three-dimensional scatterer of arbitrary shape is assumed to be non-magnetic (µ = µ0) and
contained in the scattering domain W . The bounded domain W is assumed to be linear, isotropic
and non-magnetic with the permittivity ε(r) = ε(r)ε0 and permeability µ = µ0 (ε0 and µ0 being
the permittivity and permeability of vacuum, respectively), ε(r) is the relative permittivity at each
position r. The incident excitation sources are either generated by the antennas, considered as
electric point dipoles, or consist of several plane waves. The scattered fields are evaluated at receiver
points regularly distributed on the measurement surface Γ. Depending on the distance between
the scatterers and the measurement surface, both the near-field and the far field components can
be considered in our work.

A right-handed Cartesian coordinate frame (O, ex, ey, ez) is defined. The position vector r is
defined as:

r = xex + yey + zez. (1.1)

The forward scattering problem consists in calculating the scattered field measured at receiver
points, and the calculation of the total field inside the scattering domain, assuming that the incident
excitation and the optical and geometrical properties of the scatterers are known.
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Figure 1.1 : Geometry of the scattering problem. The scatterers are confined in
the scattering domain W . Γ: measurement surface.

1.3 Basic electromagnetic equation in time regi-

me

The property of waves and fields in electromagnetic domain was formalized into four equations,
and published by James Clerk Maxwell (1831-1879) in 187373,74. Since then, the electromagnetic
behavior had been governed fundamentally by the distribution of the charge and current that
generate the electromagnetic field. In three-dimensional vector space, at the position r, the Maxwell
equations are

∇×HHH (r, t) =
∂DDD(r, t)

∂t
+ JJJ (r, t), (1.2)

∇× EEE (r, t) = −∂B
BB(r, t)
∂t

, (1.3)

∇ ·DDD(r, t) = ρρρ(r, t), (1.4)
∇ ·BBB(r, t) = 0. (1.5)

Where
EEE (r, t) is the electric field in V/m,
BBB(r, t) is the magnetic flux in T,
HHH (r, t) is the magnetic field in A/m,
DDD(r, t) is the electric displacement field in C/m2,
JJJ (r, t) is the electric current density in A/m2 and
ρρρ(r, t) is the electric charge density in C/m3.

In a linear non-dispersive and non-magnetic medium, the field intensities are related to the
flux intensities by the following constitutive relations

DDD(r, t) = ε(r)ε0EEE (r, t), (1.6)
BBB(r, t) = µ0HHH (r, t). (1.7)

Where ε(r)ε0 is the permittivity of the medium in F/m, in which µ0 = 4π × 10−7 H/m, and
ε0 = 1/(µ0c

2) are respectively the permittivity and the permeability in the vacuum. The medium
can be homogeneous with ε(r) being constants or inhomogeneous with ε(r) depending on the
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position within the medium. In the case of non-linear or dispersive medium, this constitutive
relation is not suitable.

1.4 Forward electromagnetic scattering problem

in the time-harmonic regime

This section presents the Maxwell equations and the derivation of dyadic Green’s function in the
time-harmonic regime. In order to solve the forward scattering problem, we propose to choose one
of the numerical integral methods, the CDM.

1.4.1 Harmonic Maxwell equations

For electromagnetic waves at a pulsation angular frequency ω, the fields UUU (r, t) are time-harmonic
and with sinusoidal time dependence, written as

UUU (r, t) = Re[U(r)exp(−iωt)]. (1.8)

Where U(r) is the complex amplitude associated to UUU (r, t). The time-dependence is assumed
everywhere in this manuscript to be exp(−iωt). The harmonic Maxwell equations read as

∇×H(r) = −iωD(r) + J(r), (1.9)
∇×E(r) = iωB(r), (1.10)
∇ ·D(r) = ρ(r), (1.11)
∇ ·B(r) = 0. (1.12)

The electric displacement field D(r) can be described by a free-space part and a part of induced
electric polarization in the material, such that

D(r) = ε0E(r) + P (r), (1.13)

where P is the electric linear polarization vector, represented as P (r) = ε0 [ε(r) − 1]E(r).

1.4.2 Integral equations

The electric field is evaluated outside the support of the current J(r′) and the charges ρ(r′).
Combining Eqs. (1.9) and (1.10), we arrive at the following equation

∇ × ∇ ×E(r) − ε(r)k2
0E(r) = iωµ0J(r′)δ(r, r′), (1.14)

where k2
0 = ω2µ0ε0, k0 being the wave number in vacuum. Thus we can transform Eq. (1.14) as

∇ × ∇ ×E(r) − k2
0E(r) = iωµ0J(r)δ(r, r′) + k2

0 [ε(r) − 1]E(r). (1.15)

A standard solution technique to solve Eq. (1.15) is to find the Green’s function, which will be
precised in the next section, the solution to the corresponding differential equation with a Dira-
delta-inhomogeneity,

∇ × ∇ ×G(r, r′) − k2
0G(r, r′) = Iδ(r − r′), (1.16)

where I is a unit diagonal matrix.
The incident field Einc(r) is the field measured without the scatterers, with ε(r) = 1 elsewhere.

Eq. (1.15) is written as

∇ × ∇ ×Einc(r) − k2
0E

inc(r) = iωµ0J(r′)δ(r, r′). (1.17)
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With the dyadic Green’s function G(r, r′) that enables one to determine the electric field Einc(r)
from a given source J(r′), the incident field in vacuum is evaluated as

Einc(r) = iωµ0

∫
G(r, r′)J(r′)dr′, (1.18)

where the integration extends over the volume occupied by J(r′).
The total field E(r) in presence of scatterers is the solution of Eq. (1.15),

E(r) = Einc(r) + k2
0

∫
G(r, r′)χ(r′)E(r′)dr′, (1.19)

where the integration is calculated in the support of the scatterers. χ(r′) denotes the contrast at
the position r′ as

χ(r′) = ε(r′) − 1. (1.20)

Eq. (1.19) is noted as the coupling near-field equation, which permits to calculate the total field
at every point r. The scattered field is defined as Esca(r) = E(r) −Einc(r), so we have

Esca(r) = k2
0

∫
G(r, r′)χ(r′)E(r′)dr′. (1.21)

Eq. (1.21) is named as the observation field equation. The two equations above Eqs. (1.19) and
(1.21) constitute the electromagnetic model of the forward scattering problem in the time-harmonic
regime.

1.4.3 The dyadic Green’s equation

For solving the integral equations above Eqs. (1.19) and (1.21), we have to find the dyadic Green’s
functionG(r, r′)75, that characterizes the response due to a point source δ(r−r′), as in Eq. (1.16).
Two different configurations are considered in this thesis work, homogeneous background space
configuration and half-space configuration.

1.4.3.1 Homogeneous space configuration

Firstly, we try to find the solution of Green’s function in the homogeneous background space
configuration, meaning that the scatterers, the sources and the receivers are located in the same
medium, for example in the vacuum. The scalar Green’s function g(r, r′) is the response to point
sources δ(r − r′), and we can determine it in the spherical coordinate system,

g(r, r′) =
eik|r−r′|

4π|r − r′|
. (1.22)

The dyadic Green’s function is written as

G(r, r′) =
eik0R

4πk2
0

[
(3R̂⊗ R̂− I)

(
1
R3

− ik0

R2

)
+ (I − R̂⊗ R̂)

k2
0

R

]
. (1.23)

Where R = r − r′, R = |R| and R̂ = R/R. The deviation of Green’s function is described in
detail in Appendix. A.

1.4.3.2 Half-space configuration

We want to present the principle to compute the dyadic Green’s function brought by a more
complicated configuration, namely as the half-space configuration, which can be widely applied
for detecting buried objects, where the objects and the transceiver array are located at different
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Figure 1.2 : Different configurations for the dyadic Green’s function of a multi-
layer system.

media. Also, in the optical diffractive tomography application, the objects for imaging are generally
deposited on a substrate. In this case, the dyadic Green’s function response in presence of an
interface has to be considered into the coupling equation and the observation equation. As shown
in Fig. 1.2, the dyadic Green’s function can be described in three different configurations, depending
on the distribution of the source point r′ and the field point r.

Firstly, when the source point r′ and the field point r belong to two different layers, the
reflection and the transmission effects at the planar interfaces of the layers will be taken into
account for calculating the Green’s function [Fig. 1.2 (1)].

Secondly, for r and r′ lie in the same layer, the Green function can be divided into two parts
as

G(r, r′) = Ghomo(r, r′) +Ginter(r, r′). (1.24)

The first part Ghomo(r, r′) corresponding to the Green’s function in the homogeneous space that
has been given precisely in Eq. (1.23). The second part is the Green’s function by taking into
account the multiple reflection effects [Fig. 1.2 (2)].

In both configurations the Green’s function is computed by using an angular spectrum repre-
sentation thanks to the Weyl development76.

Notice that for a source inside the multilayer and for a scattered field computed in the far field
zone, for example along a line Γ, we can calculate the dyadic Green’s function through the theorem
of the stationary phase76.

1.4.4 Forward scattering problem in harmonic regime: Cou-
pled dipole method

In this section, we study the electromagnetic forward scattering problem, that consists in build-
ing a scattering model and calculating the scattered field measured by the receivers, assuming
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that the incident field and the electromagnetic properties of scattering domain are known. As we
discussed in the introduction part of this chapter, several numerical methods are used in electro-
magnetic scattering theory. Considering that we work in the harmonic regime, and the scatterers
are isotropic and with arbitrary shapes, we propose here to use methods based on the volume
integral representation of fields, rather than the differential methods.

1.4.4.1 Coupled dipole method

In Ref. 68, the strong and weak forms of two volume integral methods MOM and CDM are derived
for bi-anisotropic scatterers. These two techniques are shown to be completely equivalent to each
other. The MOM manipulates the macroscopic field inside the scattering domain, while the CDM
handles with the local one. We give the derivation procedure used in the CDM for the forward
scattering problem.

Figure 1.3 : The CDM description, a three-dimensional scatterer with an arbi-
trary shape is discretized into N cubical units, for calculating the local field inside
the scatterer Eloc and the scattered field received by the receivers Esca.

The CDM was introduced by Purcell and Pennypacker in 1973 to study the scattering of light
by non-spherical dielectric grains in free space77. The incident field induces a polarization inside
the scattering domain. We recall the coupling integral equation,

E(r) (r ∈W ) = Einc(r) +
∫

W

G(r, r′)χ(r′)E(r′)dr′. (1.25)

Notice that Eq. (1.25) differs from Eq. (1.19) by the factor k2
0. This factor k2

0 is included herein in
G. For solving numerically Eq. (1.25), the scattering domain under study is modeled by an array
of N polarized subunits arranged on a cubic lattice of size d, as shown in Fig. 1.3, hence Eq. (1.25)
becomes

E(r) (r ∈W ) = Einc(r) +
N∑

j=1

∫
Wj

G(r, r′)χ(r′)E(r′)dr′. (1.26)

In order to solve Eq. (1.26), we need to perform some approximations. Firstly, if the volume units
are sufficiently small compared to the wavelength of illumination and the variation of the field
inside the object is not considerable, we can assume that the field E is uniform over one cell in
Eq. (1.26). Here, Eq. (1.26) can be written as

E(ri) = Einc(ri) +
N∑

j=1

(∫
Wj

G(ri, r
′)dr′

)
χ(rj)E(rj). (1.27)
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To compute the volume integration of the Green’s function numerically, Eq. (1.27) can be written
as

E(ri) = Einc(ri) +
N∑

j=1,j 6=i

(∫
Wj

G(ri, r
′)dr′

)
χ(rj)E(rj) +

(∫
Wi

G(ri, r
′)dr′

)
χ(ri)E(ri).(1.28)

Another approximation is made in the original form of the CDM, the Green’s function G(ri, r
′) is

taken to be constant over any cell when i 6= j. The integrated tensor is defined as
∫

Wj
G(ri, r

′)dr′ =
G(ri, rj)Wj , where Wj = d3 is the volume of each cubic lattice. Here, we isolated the diagonal
term (i = j) as it needs particular attention. For i = j, the dyadic Green’s function presents a
singularity as G(ri, r

′) goes to infinity, |ri − r′| → 0. If Wi shrinks down around the point ri, i.e.,
Wi approaches zero, we have

lim
Wi→0

∫
Wi

G(ri, r
′)dr′ = L, (1.29)

where L depends on the shape of Wi. In the case of a spherical or cubic shape we get78

L = −I
3
. (1.30)

Eq. (1.28) can be expressed as

E(ri) = Einc(ri) +
N∑

j=1,j 6=i

G(ri, rj)χ(rj)E(rj)Wj −
χ(ri)

3
E(ri). (1.31)

When the number of discretization cells is large, the linear system is solved iteratively79. We shall
use the well known conjugate gradient (CG) method which yields to the exact result beginning
with an initial estimate, described as Appendix B.

Similarly, the scattered field outside the scattering domain is represented as

Esca(r) =
N∑

j=1

G(r, rj)χ(rj)E(rj)Wj . (1.32)

Now, if we factorize the terms corresponding to the index i, we can get the local field at the
center of each cube expressed with the following self-consistence equation80

Eloc(ri) = Einc(ri) +
N∑

j=1,j 6=i

G(ri, rj)α0(rj)Eloc(rj), (1.33)

with

α0(rj) = 3d3 ε(rj) − 1
ε(rj) + 2

. (1.34)

Eq. (1.34) represents the polarizability distribution of the subunit j, according to the Clausius-
Mossotti expression68, where ε(rj) is the relative permittivity of the scattering domain at the
position rj . If d is small enough, the local field Eloc(ri) can be considered constant over the
lattice. Eloc(ri) = [(ε(ri) + 2)/3]E(ri) is the local field expressed in terms of the macroscopic
field, that is equivalent to the method of moments (MOM). Equations (1.33) and (1.34) are the
historical forms of the CDM which has been introduced by Purcell and Pennypacker77.

The scattered field Esca(r) at an arbitrary position r can be written as

Esca(r) =
N∑

j=1

G(r, rj)α0(rj)Eloc(rj). (1.35)

In our thesis work, we use the macroscopic field for calculating the scattered field in the inversion
procedure and the local field to compute the forward problem.
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1.4.4.2 The radiative reaction term

Notice that with the expression given in Eq. (1.30), as we do not take into account the finite
size of the subunit, the energy is not conserved, i.e., the optical theorem is not respected. The
integration on the mesh size can be performed analytically and rigorously if the shape of the subunit
is spherical68, with the radius a,∫

Wi(sphere)

G(ri, r
′)dr′ = −I

3
+ I

2
3
[
(1 − ik0a) exp(ik0a) − 1

]
(1.36)

≈ −I
3

+ I
[
2
9
i(k0a)3

]
. (1.37)

The approximation form of Eq. (1.37) is obtained by performing a Taylor expansion of exp(ik0a).
If the shape of integration is a cube, the result is the same assuming that the volumes of the

sphere and the cube are equivalent68. Hence,∫
Wi(cube)

G(ri, r
′)dr′ ≈ −I

3
+ I

[
1
6π
i(k0d)3

]
, (1.38)

where a = d(3/4π)1/3 is the radius of a sphere having the same volume as the cube of side d.
The expression for Eq. (1.31) is now:

E(ri) = Einc(ri) +
N∑

j=1,j 6=i

G(ri, rj)χ(rj)E(rj)Wj +
[
−1

3
+

1
6π
ik3

0d
3

]
χ(ri)E(ri). (1.39)

If we want to work with the local field, we have

Eloc(ri) =
[
ε(ri) + 2

3
− 1

6π
ik3

0χ(ri)Wi

]
E(ri), (1.40)

and the polarizability is now

α(rj) = α0(rj)/
[
1 − ik3

0α
0(rj)/6π

]
. (1.41)

Notice that the term added to the finite size of the subunit is in the magnitude of k3
0d

3, and
as the spacing of lattice discretization d is smaller than the wavelength of illumination, k3

0d
3 � 1.

Hence, the addition of the radiative reaction term does not change much the value of the polariz-
ability. However, in some different topics, such as optical forces domain60,69,81, it is mandatory to
take into account the radiative reaction term.

1.4.4.3 Condensed form of the near field and far field equations

For the sake of simplicity, for each illumination l, the near field and the far field can be rewritten
in a more condensed form as

Eloc
l = Einc

l +Apl, El = Einc
l +

=

AχEl, (1.42)

Esca
l =

=

Bpl︸ ︷︷ ︸
local field

, Esca
l =

=

BχEl︸ ︷︷ ︸
total field

, (1.43)

where A is a square matrix of size 3N×3N and contains all the tensors G(ri, rj) in Eq. (1.33), the
vectors pl = αEloc

l represents the induced dipoles inside the scattering domain for the illumination

l. The 3M×3N matrix
=

B contains all the tensorsG(rm, rj) in Eq. (1.35), while rm, m = 1, · · · ,M
is an observation point. The matrix

=

A is different from the matrix A, in which A has one as the
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main diagonal term. Note that the matrices A,
=

A and
=

B do not depend on the incident field nor
on the object under study.

In Ref. 77, the original form of the CDM is given as Eq. (1.33), the local field scattered by
an object of rather arbitrary shape is computed assuming that the polarizability is isotropic. In
the case of anisotropic material, i.e., a birefringent material, with a tensor polarizability, we would
require only a trivial modification of the calculation in Eq. (1.33). In this manuscript, for the
forward scattering problem, we use also the form of the local field, Eq. (1.33). While in the
inversion procedure, we propose to use the macroscopic field for calculating the scattered field.
The equivalence relationship is manifested by the Clausius-Mossotti expression. One reason is that
if we take the polarizability as the parameter sought, it is difficult to use the a priori information
stating that the positivity of this parameter, as performed in Ref. 25.

1.4.4.4 Numerical estimated technique in CDM

In the electromagnetic scattering problem, for characterizing the scattering behavior of the scat-
terer, we always use the integral equation method to solve the computational problem. In the
three-dimensional configuration, especially in the case of strong scatterers , solving the coupling
Eq. (1.19) will become time-consuming, which persuades us to use some approximation techniques
for simplifying the computation problem. The Born approximation and the renormalized Born
approximation are the most widely used methods among these approximation methods82.

The so-called Born approximation consists to assume that if the object is weakly scattering,
the amplitude of the total field E inside the scattering domain is closed to that of the incident field
Einc. Hence, the coupling Eq. (1.25) is reduced to E = Einc, the calculation time of the forward
scattering problem is greatly reduced under this assumption, since we do not resolve the coupling
equation.

The renormalized Born approximation amounts to assimilating the local field inside the object
to the incident field: hence Eq. (1.33) is reduced to Eloc = Einc. In this case, the relationship
between the total macroscopic field and the incident field reads as:

E =
3

ε+ 2
Einc. (1.44)

This approximation is thus different from the classical Born approximation.
In practice, the Born approximation can be used in case that the contrast χ(r′) between

the scattering point and the embedding medium is small, typically below 0.1, and the size of
the scatterers is much smaller than the wavelength of illumination, so that the polarization effects
induced by the scatterer can be neglected. To determine the validity of the Born approximation, an
universal criterion is proposed in Ref. 83. The Born approximation can also be used in the inverse
scattering problem for imaging the scatterers, in which the single scattering regime is assumed, for
example, in the imaging domain for biological microscope. While for scatterers small compared
to the wavelength and with moderate dielectric constant, accounting for multiple scattering in
the reconstruction procedure can improve the image significantly, this point has been illustrated
in Ref. 25, and one can obtain a better resolution working in the multiple scattering regime in
tomographic diffractive microscopy domain.

1.5 Forward scattering problem in the transient

regime

In the last section, we have discussed the numerical method (CDM) used for the forward scattering
problem in the time-harmonic regime. In this section, we will focus on solving the forward scattering
problem in the transient regime via a passage into the frequency domain.
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1.5.1 Statement of the problem

The geometry of the problem that we propose to solve is shown in Fig. 1.1, where the emitted
source is fed by a current F(t), thus generating a transient incident field Einc(r, t). The current
F(t) is an electromagnetic pulse with a Gaussian envelop F(t) and a spectrum centered at the
frequency f0,

F(t) = A exp

[
−16

(
t− ttrans

τ

)2
]

cos(2πf0t), (1.45)

where the time duration of the pulse τ is related to the width of the envelop of the Gaussian pulse,
smaller it is in the time domain, larger is the spectrum of the incident field. f0 is the central
frequency of the incident pulse. The shifting time ttrans is chosen large enough to assume that we
have F(t) = 0,∀t ≤ 0.

Eq. (1.45) may be formulated in the frequency domain, using the Laplace transform defined
as:

F (s) = L [F(t)] =
∫ +∞

0

F(t) exp(−st)dt. (1.46)

The inverse Laplace transform is defined along a Bromwich contour as

F(t) = L −1[F (s)] =
1

2iπ

∫ β+∞

β−i∞
F (s) exp(st)ds, (1.47)

=
exp(βt)

2π

∫ ∞

−∞
F (β + iω) exp(iωt)dω. (1.48)

Eq. (1.47) is the inverse Laplace transform which can be evaluated numerically with the help of the
form expressed in Eq. (1.48), using Fast Fourier Transform (FFT). The parameter s is a complex
number, s = β + iω, with real numbers β and ω.

To get E sca(r, t) the transient scattered field (or the local field inside the scattering domain),
we need to compute the inverse Laplace transform of Esca(r, s)F (s), where Esca(r, s) is obtained
through Eqs. (1.33) and (1.35) with the angular frequency ω is replaced by s, in the expressions
of the incident field, the Green’s function and the polarizability. As β ≥ 0, the eiωr/c dependence
of the Green’s function becomes e−βr/ceiωr/c, with t = r/c. The complex frequency imposes an
exponential decay on Green’s function. The introduction of complex frequencies (β > 0) into the
problem via the Laplace transform allows us to handle resonant scatterers, for instance a plasmon
resonance, something that the Fourier transform approach cannot do, which is provided in Ref. 84,
see Appendix. G. In this manuscript, β is assumed to be equal to 0 because we restrict our research
to dielectric scatterers, where the Laplace transform coincides to the Fourier transform.

For β = 0, to obtain the Fourier transform of F(t) , this signal is firstly sampled in the
time domain to be calculated numerically and efficiently via FFT, where the sampling number
P in the frequency domain is chosen in accordance with the Nyquist-Shannon sampling theorem.
It should be sufficiently large in the case of the spectrum of the incident field for the highest
and lowest concerned frequencies equal to zero and well represented. However, this may lead
to consider a large and redundant number P of time-harmonic problems. The sampling interval
in the frequency domain ∆f is fixed by the observation time span ∆t during which the fields are
calculated: ∆f∆t = 1. The discretized frequency fp is simply obtained as fp = fmin +(p−1)×∆f ,
with the angular frequency ωp = 2πfp and sp = βp + iωp (βp = 0).

Once the P time-harmonic forward scattering problems are resolved, we can obtain P scattered
fields Esca(r, ωp) associated with each frequency fp. The scattered field EEE sca(r, t) it then calculated
through Eq. (1.48).

Here, we give an example to illustrate the form of the incident field used in this thesis, defined
as Eq. (1.45). The parameters of the incident pulse are f0 = 5.5 GHz (λ0 ≈ 54.5 nm) and τ = 2 ns
as presented in Fig. 1.4. The shifting time ttrans is set to be equal to 4 ns. The number of
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frequencies used to describe the pulse in the frequency domain is P = 21, and we have verified
that the incident pulse can be well reformed.
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Figure 1.4 : Form of the incident field defined by Eq. (1.45), with f0 = 5.5 GHz.
(a) Normalized incident field in the time domain. (b) Normalized spectrum of the
incident field.

1.6 Conclusions

In this chapter, we mainly discussed about the electromagnetic scattering problem in three-
dimension. The background medium is assumed to be isotropic, linear and lossless. The forward
scattering problem is studied for the two different regimes: the time-harmonic regime and the time
domain. The transient forward scattering problem is not directly resolved in the time domain, but
transformed into the frequency domain via the Laplace transform or the Fourier transform.

The forward scattering problem concerns with the calculation of the scattered field in presence
of scatterers with arbitrary shapes. Starting from basic Maxwell equations, we reported the form
of dyadic Green’s function corresponding to two different configurations: in homogeneous space
and in presence of surface between antennas and scatterers. These two configurations are the ones
used in the present thesis.

The forward scattering problem is usually time-consuming for a larger scattering domain or
for a fine discretization. Under the Born approximation, the computational time can be reduced
drastically. In our work, we will compare the simulation results under the Born approximation
with those obtained for rigorous calculations.

In particular, for solving the forward scattering problem, there exist lots of popular numerical
equation methods. We have shown the advantages and the drawbacks of these methods. And be
aimed at the specific problem that we focus on, we propose to use the CDM in this thesis. The
principle of this method is given in detail in this chapter.

The forward scattering problem has been studied for different configurations. Now we are
interested in another research domain, the inverse scattering problem: the characterization of
scatterers.
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Inverse scattering problem:
characterization of scatterers
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2.1 Introduction

The inverse scattering problem is stated as finding the position, shape and constitutive materials
of objects, from their response (scattered field) to a known electromagnetic excitation. We restrict
our study to iterative method. Starting from an initial estimate of permittivity distribution, one
can adjust the parameters of interest by minimizing a cost function involving with the measured
scattered field and the incident field. The optimization procedure can be linearized around a given
estimate, or non-linearized. The literature mainly shows two approaches, depending on whether
the field in the scattering domain is fixed or not. The first one is the linearized method, including
the Newton-Kantorovich method15,16, the distorted-wave Born approach17–19 and the conjugate
gradient method82. The total field in the investigating domain is considered fixed at each iteration
step, and is the solution of the forward scattering problem for the best available estimation of
the relative permittivity. The second approach is the non-linearized method, namely the modified
gradient method9,21 and the contrast source inversion method22–24, which consist in updating
simultaneously the permittivity as well as the total field inside the investigating domain. The speed
of the linearized method is more advantageous, while the non-linearized method is more stable.
The hybrid method combines ideas from linearized and non-linearized method. The reconstruction
of several targets with different shapes and constitutive materials using experimental data was
presented in Ref. 28. It was shown that the best result was obtained with the hybrid method

21
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(HM). In Ref. 12, this method is extended to three-dimensional vectorial case. They have shown
that the HM was faster than the non-linearized algorithm. In the case of noisy data or for larger
objects, it is more efficient than the linearized method.

The HM works well in the time-harmonic regime when the scattered field is measured for a large
number of illumination points. While the amount of sources is reduced, or for the small numerical
aperture (NA), HM can not provide acceptable resolution. The quality of characterization of
the scatterers is deteriorated. To circumvent this poor resolution, it is suggested to characterize
scatterers using transient or multiple-frequency data59,85. It has been proved that when only one
or a few electromagnetic sources is used, we can succeed in retrieving the unknown permittivity
profile of scatterers from the measured transient field54.

2.2 Different inversion scattering algorithms in

the time-harmonic regime

Generally, in the time-harmonic regime, the iterative inverse techniques are mainly distinguished
into two different procedures, depending on whether the total field in the investigating domain
is considered as fixed (solution of the forward problem for the best available estimation of the
parameter χ) in each iteration step20,86 or as an unknown that is obtained together with the
parameter χ by the minimization procedure23,28. In this section, we will present three different
inversion methods, the conjugate gradient method (CGM), the contrast source inversion method
(CSI) and the hybrid method (HM), the latter one will be mainly used in our thesis work.

2.2.1 Description of the problem

The inverse scattering problem investigated in this thesis work is illustrated in Fig. 2.1. An un-
known three-dimensional object is entirely confined in a bounded box Ω, namely as the investigating
domain, or the test domain. The investigating domain is generally smaller and enclosed by the
scattering domain W that we mentioned in Chap. 1. The test domain is illuminated successively
by l = 1, 2, · · · , N electromagnetic excitation Einc

l . The scattered fields fmes
l are measured outside

the test domain Ω, on a surface Γ. The issue that we are interested in is to find the relative
permittivity of the unknown object using the scattered data fmes

l . We recall here the calculation
of the total field El inside the investigating domain Ω and the scattered field Esca

l measured on Γ,

El(r ∈ Ω) = Einc
l (r) +

∫
Ω

G(r, r′)χ(r′)El(r′)dr′, (2.1)

Esca
l (r ∈ Γ) =

∫
Ω

G(r, r′)χ(r′)El(r′)dr′. (2.2)

Using an iterative approach, the basic idea of the inverse scattering problem is starting with an
initial estimate χ0, we adjust the associated parameters of interest, the contrast χ and in some
cases together with the total field El, by minimizing a cost function until the calculated scattered
field Esca

l matches with the measured one fmes
l . This iterative procedure can be very different

depending on the algorithm that we chooses.
For the sake of simplicity, Eqs. (2.1) and (2.2) are rewritten in a more condensed form using

the notation of operators,

El = Einc
l +

=

AχEl, (2.3)

Esca
l =

=

BχEl. (2.4)

Note that
=

A and
=

B do not depend on the incidences.
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Figure 2.1 : Geometry of the problem. The investigating domain used in the
inversion procedure is defined as Ω, enclosed by W . Γ: measurement surface.

2.2.2 Conjugate gradient method (CGM)

The CGM is an iterative linearized approach, which has been presented in Ref. 57,82 for both
simulated and real data. In the CGM, the forward problem is solved at each iteration step for the
best available estimation of the parameter χ, meaning that the total field inside Ω is considered at
each iteration step as a fixed solution of Eq. (2.1), and sole the contrast permittivity χ is determined
by minimizing an adequate cost function. The sequence χn at iteration n is built up according to
the following recursive relation,

χn = χn−1 + βndn, (2.5)

where the updated contrast χn is deduced from the previous one, χn−1, by adding an updated term
βndn. This correction term is composed of two parts: a scalar weight βn and an updating direction
dn. Once the updating direction dn is found, the scalar weight βn is determined by minimizing
the cost functional Fn(χn) involving the residual error h(2)

l,n on the scattered field computed from
Eq. (1.43),

h
(2)
l,n = fmes

l −
=

BχnEl,n. (2.6)

The cost functional mentioned above Fn(χn) can be expressed as

Fn(χn) = WΓ

N∑
l=1

‖h(2)
l,n‖

2
Γ, (2.7)

the subscripts Γ are added in the norm ‖.‖ and later in the inner product 〈., .〉 to indicate the
domain of integration. The weighting coefficient WΓ is

WΓ =
1

N∑
l=1

‖fmes
l ‖2

Γ

. (2.8)
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In Eq. (2.6), the total field El,n is the solution of Eq. (1.43) with the contrast distribution χn−1.
The total field is written as

El,n ≈ El,n−1 = [
=

I −
=

Aχn−1]−1Einc
l , (2.9)

where
=

I is an unit matrix that has the same dimension as
=

A and
=

B. Substituting the expression of
the parameter of interest χn derived from Eq. (2.5) into the cost functional described in Eq. (2.7)
leads to a polynomial expression with respect to the scalar coefficient βn, represented as

Fn(χn) = WΓ

N∑
l=1

(
‖h(2)

l,n−1‖
2
Γ + β2

n‖
=

BdnEl,n‖2
Γ − 2βnRe

〈
h

(2)
l,n−1|

=

BdnEl,n

〉)
. (2.10)

In this case, the unique minimum of Fn(χn) is reached when ∂Fn(χn)
∂βn

= 0, such that

βn = WΓ

N∑
l=1

Re
〈
h

(2)
l,n−1|

=

BdnEl,n

〉
‖
=

BdnEl,n‖2
Γ

. (2.11)

As for the updating direction dn, we take the standard Polak-Ribière conjugate-gradient direc-
tions87.

2.2.3 Contrast source inversion method (CSI)

Different from the linearized method, the CSI was firstly introduced in Ref. 22 for solving nonlinear
tomographic microwave imaging problems, which is formulated as a minimization problem using
two equations: the coupling equation and the observing equation. The total field El,n is included
in the minimization procedure multiplied by the constitutive parameter χ, named as the contrast
source wl,n = χnEl,n.

A second residual error with respect to the contrast source h(1)
l,n is defined as

h
(1)
l,n = Einc

l + χn

=

AEl,n −El,n. (2.12)

This residual error is included into the cost functional with respect to the contrast source wl,n,
given as

Fn(χn,w1,n, · · · ,wN,n) = Fn(χn,w�,n) = WΓ

N∑
l=1

‖h(2)
l,n‖

2
Γ +WCSI

Ω

N∑
l=1

‖χnh
(1)
l,n‖

2
Ω, (2.13)

with the weighting coefficient given as

WCSI
Ω =

1
N∑

l=1

‖χn−1E
inc
l ‖2

Ω

. (2.14)

The unknown parameters in this inversion method are χ andwl, wherewl depends on the incidence
l. For more details on the CSI method, see Ref. 88.

2.2.4 Hybrid inversion Method in harmonic regime (HM)

The HM combines the advantages of the CGM and CSI. Different from the CSI, the contrast
source wl is replaced by the total field El in the cost functional21. This method was used in the
two-dimensional electromagnetic scattering case5 and extended to the three-dimensional case in
Ref. 12.
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Two sequences related to the contrast and the total field inside the investigating domain, χn

and El,n, respectively, are built up according to the following recursive relations,

El,n = El,n−1 + κl,n;ννl,n + κl,n;ωωl,n, (2.15)
χn = χn−1 + βndn, (2.16)

where νl,n, ωl,n and dn are updating directions with respect to the total field El,n and the contrast
χn, respectively, and κl,n, βn are scalar coefficients. The updating directions νl,n and dn are chosen
as the standard Polak-Ribière conjugate-gradient directions87, while ωl,n is given by

ωl,n = Ẽl,n−1 −El,n−1 with Ẽl,n−1 = [
=

I −
=

Aχn−1]−1Einc
l , (2.17)

where Ẽl,n−1 represents the total field inside the investigating domain Ω, calculated from the
coupling equation with contrast χn−1. Indeed, the scalar weight κl,n and βn are chosen at each
iteration step n so as to minimize the normalized cost functional F(χn,El,n) given by

Fn(χn,E1,n, · · · ,EN,n) = Fn(χn,E�,n) = WΓ

N∑
l=1

‖h(2)
l,n‖

2
Γ +WΩ

N∑
l=1

‖h(1)
l,n‖

2
Ω, (2.18)

where the normalizing coefficient WΩ is defined as

WΩ =
1

N∑
l=1

‖Einc
l ‖2

Ω

. (2.19)

WΓ is defined the same as Eq. (2.8). The subscripts Ω and Γ are included in the norm ‖.‖ and
later in the inner product 〈., .〉 to indicate the domain of integration. The residual errors h(2)

l,n and

h
(1)
l,n have been defined in Eqs. (2.6) and (2.12).

To ameliorate the inversion procedure, we propose to use the a priori information that the the
real and imaginary part of the sought relative complex permittivity are greater than unity and
non-negative8,89,90, respectively. Instead of retrieving a complex function χn, two real auxiliary
functions ξn and ηn are reconstructed such that

χn = 1 + ξ2n + iη2
n − εb. (2.20)

The recursive relation with respect to contrast χn [Eq.(2.16)] becomes

ξn = ξn−1 + βn;ξdn;ξ and ηn = ηn−1 + βn;ηdn;η. (2.21)

As updating directions dn;ξ and dn;η, we take

dn;ξ = gn;ξ + γn;ξdn−1;ξ, γn;ξ =
〈gn;ξ, gn;ξ − gn−1;ξ〉Ω

‖gn−1;ξ‖2
Ω

, (2.22)

dn;η = gn;η + γn;ηdn−1;η, γn;η =
〈gn;η, gn;η − gn−1;η〉Ω

‖gn−1;η‖2
Ω

, (2.23)

where gξ and gη are the gradients of the cost functional F(ξ, η,El,n) with respect to ξ and η
respectively, evaluated at the (n− 1)-th step, assuming that the total field inside the test domain
does not change. These gradients are given by

gn;ξ = 2ξn−1Re

[
WΩ

N∑
l=1

Ēl,n−1

=

A
†
h

(1)
l,n−1 −WΓ

N∑
l=1

Ēl,n−1

=

B
†
h

(2)
l,n−1

]
, (2.24)

gn;η = 2ηn−1Im

[
WΩ

N∑
l=1

Ēl,n−1

=

A
†
h

(1)
l,n−1 −WΓ

N∑
l=1

Ēl,n−1

=

B
†
h

(2)
l,n−1

]
, (2.25)
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where the overbar denotes the complex conjugation, and
=

A
†

and
=

B
†

are the adjoint operators of
=

A and
=

B, respectively. The search direction νl,n for the total field inside the test domain is similar
to those chosen for the contrast functions ξ and η,

νl,n = gl,n;El
+ γl,n;El

νl,n−1, (2.26)

γl,n;El
=

〈
gl,n;El

, gl,n;El
− gl,n−1;El

〉
Ω

‖gl,n−1;El
‖2
Ω

, (2.27)

where gl,n;El
is the gradient of the cost functional F(ξ, η,El,n) with respect to the field El,

evaluated at the (n− 1)-th step, assuming that ξ and η does not change,

gl,n;El
= WΩ

[
h

(1)
l,n−1 − χ̄n−1

=

A
†
h

(1)
l,n−1

]
−WΓχ̄n−1

=

B
†
h

(2)
l,n−1. (2.28)

As initial estimate for ξ0 and η0, we use the backpropagation method provided by56,82, that is
reported in the Appendix. E.

The HM has been shown in Ref. 12 being faster and more efficient than other linear and
nonlinear inversion methods, in particular, for reconstructing large objects or when dealing with
noisy data. Considering this advantage, we suggest to use the HM in the thesis work, in the three-
dimensional electromagnetic problem. This method will also be applied in the time domain and
combined with the time reversal method for reconstructing objects buried in cluttered media.

2.3 Hybrid inversion method in the time domain

The HM in the time domain aims to the characterization of three-dimensional objects from knowl-
edge of a transient scattered field. As we have described in Sec. 1.5, same as the forward scattering
problem, the inversion problem is addressed in the frequency domain rather than directly in the
time domain.

Assume the scatterers are illuminated by sources radiating a Gaussian incident pulse, with a
time duration τ and a central frequency of its spectrum f0. The definition of the incident pulse
has been given in Sec. 1.5, and by taking into account the Parseval Plancherel’s theorem, the
inverse scattering problem can be formulated in the frequency domain. The measured transient
scattered fields are transformed into the frequency domain by using the Laplace transform or the
Fourier transform, depending on the choice of the value β, with the Laplace parameter s = β+ iω.
The resulting harmonic fields are fmes

l,p (p = 1, 2, · · · , P ) and the involved frequency range (fp) is
accurately sampled according to the Nyquist theorem. The mathematical relationship between the
sampling frequency and the time duration of the pulse was discussed in Sec. 1.5.

We are now concerned with P harmonic inverse scattering problems. For each operating
frequency fp, we have to solve two equations deduced from Eqs. (1.42) and (1.43),

El,p = Einc
l,p +

=

ApχpEl,p, (2.29)

Esca
l,p =

=

BpχpEl,p. (2.30)

In Eqs. (2.29) and (2.30), El,p, Esca
l,p and Einc

l,p denotes the total field inside the investigating
domain Ω, the scattered field measured along the contour Γ and the incident field, respectively.

The tensors
=

Ap and
=

Bp are the susceptibility operators at the operating frequency fp for describing
the field relationship from L3(Ω) to L3(Ω) and from L3(Ω) to L3(Γ), respectively.

The inverse problem aims at finding the contrast function χ with the known transient scattered
field. We propose to use the HM in the frequency domain. The updating direction and the weighting
coefficients are similar to the time-harmonic problem in Sec. 2.2.4, except that the cost functional
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is defined for the fields and the contrast of all frequencies,

Fn(χ1,n, · · · , χP,n,E1,1,n, · · · ,E1,P,n, · · · ,EN,1,n, · · · ,EN,P,n) = Fn(χ�,n,E�,�,n) (2.31)

= WΓ

N∑
l=1

P∑
p=1

‖h(2)
l,p,n‖

2
Γ +WΩ

N∑
l=1

P∑
p=1

‖h(1)
l,p,n‖

2
Ω,

and the normalization coefficients are defined as

WΩ =
1

N∑
l=1

P∑
p=1

‖Einc
l,p ‖2

Ω

, and WΓ =
1

N∑
l=1

P∑
p=1

‖fmes
l,p ‖2

Γ

. (2.32)

The residual errors h(2)
l,p,n and h(1)

l,p,n can be deduced from Eqs. (2.6) and (2.12) at each sampling

frequency fp. The tensors
=

Ap and
=

Bp depend on the operating frequencies. The incident field El,p

and the total field El,p depend on not only the operating frequencies but also the incident source
l. Considering this inversion problem from the point of the time-harmonic regime, the scatterers
are illuminated successively by N × P total harmonic incident fields for P different frequencies.

In this thesis, the scatterers and the media are assumed to be non-dispersive, where the contrast
χp does not depend on the frequency fp. While our inversion method can also be supported in the
dispersive case, or for example, in the microwave regime, the contrast may be frequency dependent
with an Ohmic model, reads as

χp,n = ξ2n − iη2
n

ωpε0
. (2.33)

Same as the harmonic problem, we propose to use the a priori information that the the desired
real and imaginary part of the relative complex permittivity are greater than unity and non-
negative. These real parameters ξ and η do not depend on the frequency and represent the actual
unknowns of the inverse scattering problem. The associated gradient sought are defined in the
same way as the harmonic problem, but all of the frequencies fp (p = 1, 2, · · · , P ) have to be
considered:

gn;ξ = 2ξn−1Re

[
WΩ

N∑
l=1

P∑
p=1

Ēl,p,n−1

=

A
†

ph
(1)
l,p,n−1 −WΓ

N∑
l=1

P∑
p=1

Ēl,p,n−1

=

B
†

ph
(2)
l,p,n−1

]
, (2.34)

gn;η = 2ηn−1Im

[
WΩ

N∑
l=1

P∑
p=1

Ēl,p,n−1

=

A
†

ph
(1)
l,p,n−1 −WΓ

N∑
l=1

P∑
p=1

Ēl,p,n−1

=

B
†

ph
(2)
l,p,n−1

]
. (2.35)

The updating direction with respect to the total field El,p and the gradient coefficient is the same
as Eqs. (2.27), (2.17) and (2.28), we only need to calculate these parameters for each frequency.
Indeed, for the transient field, we have N × P descending directions ωl,p,n and νl,p,n. The cost
function Fn is a nonlinear expression with respect to 2×N×P complex unknown (κl,p,n;ν , κl,p,n;ω)
and two real unknown (βn;ξ, βn;η).

2.4 Conclusions

In this chapter, we have presented several algorithms for solving the inverse electromagnetic scat-
tering problem. The unknown constitutive electric parameters of scatterers can be restituted using
iterative methods with only known measured scattered field. Firstly, we have presented the con-
jugate gradient method as linearized-type method, where the total field is fixed as the solution
of the forward problem corresponding to the contrast χn−1 for each iteration. We introduced a
non-linearized inversion method, the contrast source inversion method, where the total field is also
included into the minimization procedure, multiplied by the contrast χ, named as the contrast
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source. Finally, we propose an hybrid inversion method that combines the advantages of non lin-
earized and linearized inversion techniques, and that will be exploited in our thesis work for solving
three-dimensional electromagnetic scattering problem.

For all of discussions above, the scatterers are illuminated successively by l = 1, 2, · · · , N
sources generating an harmonic field at one fixed operating frequency. This problem is thought as
working in the time-harmonic regime. The imaging resolution depends on the numerical aperture
(NA). In several cases, we have to use an abundant number of illuminations sources for obtaining
a well reconstructed permittivity map.

For a limited number of sources, we extended the HM to the time domain. The scatterer are
excited by a small number of sources fed by a transient current. If we transform this transient
field to the frequency domain according to the Nyquist sampling theorem, the scattering problem
is equivalent with that the scatterers being illuminated by a large quantity of time-harmonic fields.
We call it the inversion problem in the time domain.

In the following parts, the HM are reported in both the time-harmonic regime and the time
domain. It will also be combined with the time reversal imaging technique for further improving
the imaging resolution once the scatterers are present in cluttered medium and for reducing the
computational time.
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Introduction of PART II

Detection and characterization of three-dimensional scatterers
in cluttered environment

The inverse scattering problem permits to localize and characterize targets quantita-
tively, to reconstruct their shapes and permittivity distributions. Assume that targets
are located in a large domain, we need to obtain a small region before reconstructing
them. Moreover, in the presence of a disordered medium, the signature of targets will
be blurred by the strong clutter. To solve this problem, in this part, we suggest to use
one of the time reversal technique, the DORT method (Décomposition de l’Opérateur de
Retournement Temporel) to localize the targets and to improve signal-to-clutter ratio.
In the first chapter, we will analyze numerically the properties of the DORT method, with
transceivers distributing along only one side of targets (‘limited-aspect’ configuration).
The scalar illumination and the vectorial illumination will be compared, in which the
targets and the transceivers are located in the same medium or in two different mediums,
separated by an interface.
In the second chapter, we will test the focalization ability of the DORT method, using
synthetic data generated by the CDM forward model, in presence of Gaussian correlated
clutter with different characteristics. This reversal method will be combined with the non-
linear inversion algorithm for further improving the reconstruction. The influence of the
clutter standard deviation and the correlation length will be analyzed. The homogeneous
space background configuration and the half-space configuration will be studied.
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Chapter 3

Time reversal imaging in harmonic
regime
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3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Clutter model . . . . . . . . . . . . . . . . . . . . . . . . . 34
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3.3.2 Effect of polarization . . . . . . . . . . . . . . . . . . . . . 36

3.4 Focalization on one single scatterer . . . . . . . . . . . . . 37

3.4.1 Homogeneous space configuration . . . . . . . . . . . . . . 38

3.4.2 Half-space configuration . . . . . . . . . . . . . . . . . . 45

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.1 Introduction

In the last two chapters, we have discussed about the forward and the inverse scattering problem
in electromagnetic scattering domain. In this chapter, we study the detection and the localization
of objects from the measured scattered fields. This is an important issue for the characterization of
buried objects. Indeed it is suitable before reconstructing buried targets to limit the investigating
domain to a much smaller region. Moreover, when targets are buried in a natural medium, hetero-
geneities of the host medium blur the signature of objects of interest. The first task of this thesis
work is to extract the significant target information from the strong clutter. We propose to use
one of the time reversal approach in the frequency counterpart, i.e., the DORT (Décomposition de
l’Opérateur de Retournement Temporel) method for imaging the targets. It consists in analyzing
the eigenvalues and eigenvectors of the Time Reversal Operator (TRO), in order to synthesize
incident fields that focus selectively on targets of interest.

In this chapter, we describe a clutter model to simulate the cluttered environment. Then
follows in detail the principle of the DORT technique and the application of this method using the
‘limited-aspect’ configuration. Scatterers are assumed to be located at either the same or different
medium from the medium where the sources are located. Emitting and receiving antennas can
take one or three different polarization directions.
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3.2 Clutter model

In order to test the ability of the localization of targets using the DORT method, we assume that
targets are buried in a heterogeneous medium. We aim to understand the influence of the clutter in
the deterioration of the signal-response of targets. The measured scattered fields contain not only
the information of the targets, but also of the response of the cluttered medium. Thanks to the time
reversal technique, we can detect significant targets despite of the multiple scattering effects due
to the heterogeneities of the host medium. In Ref. 30, two types of clutter are considered: discrete
scatterers and continuous random inhomogeneous backgrounds. In this manuscript, we focus on
the latter case, an inhomogeneous medium with relative permittivity εc(r) = εb + εf (r) where
εf (r) is a random function which is null outside W (scattering domain) and whose average is null
over W , where εb is the average permittivity of the background medium. In the case of the half-
space configuration, we neglect the eventual effect of the roughness of the surface separating the
two media. Indeed, we assume, when dealing with the half-space configuration, that the interface
is flat. The problem of the roughness of this interface has been studied in Ref. 32, where other
tools than the time reversal technique have been employed.

The random permittivity of the clutter, εf (r), is defined as a Gaussian variable with zero mean
and standard deviation σf and Gaussian correlation function C(r) with correlation length lc. The
Gaussian correlation function C is defined as

C(r) = σ2
f exp

(
−‖r‖2

l2c

)
, (3.1)

εf (r) is implemented in the Fourier domain, as we can calculate the spectrum density function
of C(r). Then, we define an array of three-dimensional uniform distributed number, with the
convolution of this random number and the spectrum function, we can finally get the fluctuation
of the background medium εf (r)91,92.

−2 −1 0

−2

−1

0

1

2

Z/λ

X
/λ

 

 

0.8

0.9

1

1.1

1.2

−2 −1 0

−2

−1

0

1

2

Z/λ

X
/λ

 

 

0.9

0.95

1

1.05

1.1

1.15

−2 −1 0

−2

−1

0

1

2

Z/λ

X
/λ

 

 

0.9

0.95

1

1.05

1.1

1.15

(a) (b) (c)

Figure 3.1 : The relative permittivity distribution of inhomogeneous medium,
with spatial fluctuation of the Gaussian correlation function. (a)-(c) with the
same mean value εb = 1, and the same standard deviation σf = 0.067εb but
different correlation lengths. (a) lc = 0.1λ, (b) lc = 0.5λ, (c) lc = λ, where λ is
the central operating wavelength of illuminations.

We consider herein three different realizations of clutter using the spectrum method, with the
same mean value and standard deviation of fluctuation, but different correlation lengths, as shown
in Fig. 3.1. With a large correlation length, the peak values of permittivity are separated by a
large distance on average, Figs. 3.1 (b) and (c). On the contrary, with a small correlation length,
the permittivity of fluctuation varies more rapidly, Fig. 3.1 (a). The extreme case of a very small
correlation length would provide a clutter that would behave as a discrete clutter, i.e., composed
by an assembly of point-like scatterers. On the other hand, a large value of the correlation length
leads to an homogeneous background medium. Due to the finite size of the scattering domain, the
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generation of clutter has a statistical error. Larger the scattering domain is, the realized standard
deviation of fluctuation is more closed to the set value σf . The spatial average permittivity is
also not equal to the theoretical value εb. This error will be diminished as the correlation length
decreases or the standard deviation decreases.

To quantify more precisely the influence of the clutter with respect to parameters of the studied
problem, two errors are introduced

Errs =

N∑
l=1

‖f l − f
scatterers
l ‖2

Γ

N∑
l=1

‖f scatterers
l ‖2

Γ

, (3.2)

Errd =

N∑
l=1

‖f l − f
scatterers
l − f clutter

l ‖2
Γ

N∑
l=1

‖f scatterers
l ‖2

Γ

, (3.3)

where f l and f scatterers
l denote the field scattered by the targets with or without the clutter,

respectively, and f clutter
l the scattered field by the clutter alone, with the illumination l = 1, · · · , N .

Errs is used to quantify the noise level due to the clutter, and Errd indicates the amount of the
multiple scattering between the targets and the clutter. If Errd is small, the targets and the clutter
can be considered to radiate independently. Note that for the same statistical parameters, the
errors Errs, Errd may vary significantly as they depend on the specific realization of the random
process.

3.3 Decomposition of the time reversal operator

When buried scatterers in cluttered medium are modelled, as described in the last section, we
proposed to use the DORT method to detect and localize the scatterers. If one probes the cluttered
medium with the measured scattered field, the re-emitting field would focus onto the brightest
scatterers almost regardless to the strength of the clutter35,93. In this section, we discuss the
principle of the DORT method and analyze the effect of the polarization of the incident field.
Some simple examples on the selective focalization of scatterers are reported as well as other
examples to emphasize our analysis.

3.3.1 Principle of DORT

Time reversal concept is based on the invariance of the wave propagation in lossless non-magnetic
media,

∇2EEE (r, t) − µ0ε(r)
∂2

∂t2
EEE (r, t) = 0. (3.4)

Where the solution of this equation EEE (r, t) is the vector electric field in the three-dimension space
and time. µ0 and ε(r) are the permeability and permittivity of the medium, respectively. If we
observe this propagation equation, it contains only a second order time-derivative operator with
respect to the time variable t. This property, called time reversal invariance, tells us that EEE (r,−t)
is also a solution to the same equation, implying that for any scattered field EEE (r, t), there exists
a wave EEE (r,−t) which converges coherently to emitting sources. It is important to note that the
time reversal concept is only valid for lossless medium. In the case of lossy medium, through a
compensation method, it has been shown that we could generate a focusing wave following the
time reversal technique94.
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In the frequency counterpart, the time reversal signal technique is realized by the DORT
method. The three-dimensional scattering domain, made of several scatterers, is illuminated suc-
cessively by l = 1, · · · , Ns electromagnetic excitation. For each source l, the scattered field is
measured at m = 1, · · · , Nr receivers. Assuming that each antenna can play the role of source and
receiver, Ns = Nr = N . The scattering experiment is summarized into a N×N symmetric matrix,
denoted by K, such that Kij represents the complex amplitude of scattered field recorded by the
j-th receiver when the i-th antenna is emitting.

In the case of a lossless embedding medium, time reversal and complex conjugation are equiva-
lent operations. By virtue of the reciprocity theorem, the scattered field measured by m-th antenna
when the l-th antenna is illuminating is equal to that measured by the l-th antenna when the m-th
one is emitting, Klm = Kml (K is symmetric). The time reversal experiment is described by
the conjugate transpose matrix K†, and the time reversal operator (TRO) is represented by the
self-adjoint matrix L = K†K. The DORT method consists in determining the eigenvalues and
the eigenvectors of TRO. In particular according to the fact that L is an hermitian operator, its
eigenvalues are positive real valued and its eigenvectors are orthogonal. Two significant properties
can be deduced from the invariance parameters of this diagonalizable matrix.

1. The number of dominant eigenvalues determine the number of echogeneous scatterers em-
bedded in the medium.

2. The associated eigenvectors permit to localize these scatterers and to synthesize a wave
focusing selectively on each scatterer.

In the acoustic case, it has been shown that each significant eigenvalue of the TRO is associated
to a single point-like scatterer95. In the electromagnetism, the same rule only holds for the s-
polarization case and for the two dimensional problem3. For other configurations, with three
possible orientations of antennas, one may obtain more accurate information with respect to the
scatterer regarding its localization and its constitutive material. The actual number of eigenvalues
associated with scatterers depends on the measurements array, the polarization of the field and the
configuration at hand. The localization of the scatterer can be achieved by the backpropagation
of the corresponding eigenvector, which synthesizes a wave focusing on the scatterer3,4.

3.3.2 Effect of polarization

In the acoustical domain, sources do not carry the polarization information. In the electromagnetic
domain, there exists the possibility that we obtain full-polarized data. In Ref. 96, Chambers et al
have shown that for a non-conducting sphere, with three possible orientations of the dipole anten-
nas, the number of possible eigenvalues is three. For a conducting sphere, the induced magnetic
dipole also contributes to the scattered field, so that the number of possible eigenvalues is up to
six.

In our work, we propose to use the three-dimensional vectorial configuration, where one can
build the matrix K under the three orthogonal linear polarizations in order to gain more infor-
mation. More precisely, for each α-direction (α = x, y, z) of the polarization of the sources, three
scattered field components (β = x, y, z) are measured. A (3 × 3) matrix Kij can be built up as

Kij =

Kxx
ij Kxy

ij Kxz
ij

Kyx
ij Kyy

ij Kyz
ij

Kzx
ij Kzy

ij Kzz
ij

 . (3.5)

Diagonal elements of the matrix Kij describe the relation between receivers and emitters with the
same orientation. The off-diagonal elements describe the cross-polarizations. Kij = KT

ij due to
reciprocity. Thus, the 3N × 3N matrix K is assembled from all the matrix Kij and read as

K =


K11 K12 . . . K1N

K21 K22 . . . K2N

...
...

. . .
...

KN1 KN2 . . . KNN

 . (3.6)
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By virtue of the reciprocity theorem, the matrix K is symmetric and the TRO is defined as
L = K†K. Since L is a self-adjoint matrix, one can determine the eigenvalues ζ and eigenvectors
V

LV = ζV , (3.7)

where the eigenvalue ζ is positive real valued and the eigenvectors V are of the form

V = [V1,x, V1,y, V1,z, · · · , VN,x, VN,y, VN,z] . (3.8)

Each component of the eigenvector associated with the highest eigenvalue ζ provides the complex
amplitudes of the emitting dipoles (former receivers) such that they synthesize an incident field
Einc;DORT

ζ focusing on the brightest scatterer. This focusing wave can be written as

Einc;DORT
ζ (r) =

N∑
l=1

x,y,z∑
α

Vl,α(ζ)G(r, rl)êα, (3.9)

where Vl,α(ζ) corresponds to l-th, α direction component of the eigenvector associated to the
eigenvalue ζ. G(r, rl) is the Green’s function describing the field received at r radiated by a point
source at rl. êα is the unit vector co-directional with x, y and z-axis, as

êx =

1
0
0

 ,êy =

0
1
0

 , êz =

0
0
1

 . (3.10)

The incident field Einc
l,α when each former source is emitting alone, fed by a normalized current,

can be written as

Einc
l,α(r) = G(r, rl)êα, (3.11)

Eq. (3.9) can be represented as

Einc;DORT
ζ (r) =

N∑
l=1

x,y,z∑
α

Vl,α(ζ)Einc
l,α(r). (3.12)

With this relationship, we do not need to recalculate these new incident fields. They can be
obtained by a linear combination between the eigenvector and the former incident field.

Since Maxwell’s equations are linear, the corresponding scattered field is now obtained with
the same linear combination than the one of the incident field, [Eq. (3.12)]:

Esca;DORT
ζ (r) =

N∑
l=1

x,y,z∑
α

Vl,α(ζ)Esca
l,α(r). (3.13)

Hence, in this case, the DORT method provides a means for focusing selectively onto each target
with three different incident fields. In the case of the antennas taking three orthogonal orientations
in homogeneous space, for each non-conducting scatterer, there exist three possible eigenvalues.
When considering the configuration with the antennas above the interface and scatterers below the
interface, one can show that each point-like scatterer is associated with only two eigenvector.

3.4 Focalization on one single scatterer

In this section, we will present some focalization examples for both configurations: homogeneous
background configuration and half-space configuration. We will begin from the simplest case,
the scalar configuration, where the antennas oriented along one single direction, similar as in the
acoustic domain. Then, we will focus on the vectorial configuration, with the antennas oriented
along three orthogonal directions. The influence of the clutter on the behavior of the eigenvalues
will also be analyzed.
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3.4.1 Homogeneous space configuration

As we described above, the localization information of scatterers is contained in the eigenvectors
which correspond to dominant eigenvalues. We have firstly tested the DORT method in a complete
configuration, where a single three-dimensional target is located in a bounded medium surrounded
by N = 86 monochromatic point sources, regularly placed along all possible directions within 4π
steradians. For simplicity, we assume that there is no clutter around the target. In the case of
the emitting and receiving antenna take one single orientation, only one eigenvalue focuses on the
target. For the complicated vectorial case, for each target, the eigenvectors corresponding to the
first three eigenvalues can generate focusing waves.

The complete configuration is not the appropriate configuration for a couple of applications,
such as detecting targets under the ground or behind the wall. For these applications, emitters
and receivers are always located at one side of the target, this is typically the limited-aspect
configuration4. We will focus on this configuration.

The sketch for the limited-aspect configuration is shown in Fig. 3.2. The scattering domain is
illuminated by a two-dimensional array of antennas, distributed in a square. The interval space
between two antennas is P , the distance between antennas and the centre of scatterers is F , and the
length of the line of antennas isD. Firstly, for the homogeneous space, we assume that the scatterer

Emitter Receiver

X

Z

P

Z

Y

X

W

D

Ω

i j

O

F

Fs

Transceiver array

Figure 3.2 : Geometry of the scattering problem in homogeneous background
space. The scatterers are confined in the scattering domain W , in the same
medium as the sources. Γ: measurement surface.

and the antennas are located in the vacuum, with εb = 1. The transceiver array is described by
a lattice of N = 81 dipole antennas regularly distributed on a square of side of D = 8λ, which
is located at z = 2λ, where λ is the illumination wavelength in the homogeneous lossless medium
(λ = 0.6 m). The scattering domain W of the imaging configuration depicted in Fig. 3.2 is a
box with size (5λ × 5λ × 4λ) m3, centered at (0, 0,−λ). The scattered field is generated using
the CDM, with the mesh size a = λ/10. We consider a single dielectric sphere, centered at the
origin, of radius r = λ/6, with relative permittivity ε = 3εb. The distance between the center of
antennas and scatterer is F = 2λ, and the space between two antennas is P = λ. In this case,
the angle of the maximum cone of light Fs ≈ 126◦. The product of ka is about 1, where k is
the wavenumber of the background medium. The scattered field is measured by all receivers for
successive illuminations.
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3.4.1.1 Scalar illumination

For the scalar case, the antennas are oriented along one single direction, for example, x-axis.
The scattering domain is illuminated along one single direction, and the scattered field is collected
along the same orientation. Firstly, we assume that there is no clutter inside the scattering domain,
around the target. Then, we can construct a matrix K, of the dimension N × N , with only x-
components of these measured scattered fields and determine the eigenvalue of L = K†K. The
first four eigenvalues are 2940, 110, 62, 31, respectively, shown as the red-add line in Fig. 3.3.
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Figure 3.3 : Eigenvalue of the time reversal operator in homogeneous space
with scalar illumination, without clutter (red-add line) and with different levels of
clutter: σ = 0.07 (green-star line), σ = 0.2 (black-add line), σ = 0.3 (magenta-
cross line), σ = 0.4 (blue-solid dotted line).

The second eigenvalue is about 30 times smaller than the first one. One can conclude that for
this single scatterer, there exists one dominant eigenvalue.
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Figure 3.4 : Intensity map in W of the electric field deduced from four eigenvec-
tors related to the four largest eigenvalues using illuminations at the wavelength
λ = 0.6 m, when one single scatterer is located in the vacuum, Fs ≈ 126◦, and the
antennas are oriented along x-direction. (a)-(d): in the (x, y) plane for z = 0.
(e)-(h): in the (x, z) plane for y = 0. Each column corresponds to the first, the
second, the third and the fourth eigenvalue. The circle represents the actual profile
of the target.

We analyze the behavior of the corresponding eigenvectors. If we use the eigenvector Vl,x(1), l =
1, 2, · · · , N , as new complex currents for each emitter, corresponding to the first largest eigenvalue,
the backpropagated field is isotropic, focusing on the scatterer, as shown in Figs. 3.4 (a) and (e). On
the contrary, the eigenvectors Vl,x(2), Vl,x(3) and Vl,x(4) corresponding to the other three largest
eigenvalues generate antisymmetric fields, which present a minimum on the scatterer [Figs. 3.4 (b)-
(d)]. Up to now, we have verified numerically the analytical interpretation of the eigenvalues and of
the eigenvectors reported in Ref. 4. The TRO has two types of eigenvectors for each scatterer: one
generates a backpropagated field that presents maximum on the scatterer, named as the focusing
fields; another generates a backpropageted field that presents a minimum on the scatterer.

We keep unchanged the other parameters, only the distance between antennas and scatterers
F is augmented, from 2λ to 4λ. The maximum angle Fs is therefore reduced to 90◦.
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Figure 3.5 : Same configuration as Figs. 3.4, except that F is augmented to 4λ,
with Fs = 90◦. (a)-(c): intensity map and behavior of eigenvectors corresponding
to the first largest eigenvalue. (d)-(f): intensity map and behavior of eigenvectors
corresponding to the second largest eigenvalue. (a) and (d): intensity map in W
of the electric field deduced from eigenvectors, in the (x, z) plane for y = 0. (b)
and (e): modulus of the eigenvectors versus the antenna coordinate (xe, ye), with
ye = 0. (c) and (f): phase of the eigenvectors versus the antenna coordinate
(xe, ye), with ye = 0.

Comparing the intensity map of the backpropagated fields in Figs. 3.5 (a) and (d) with
Figs. 3.4 (e) and (f), the focal size is prolonged along z-axis due to the fact that Fs is reduced. The
phases of the eigenvectors associated with the first and the second eigenvalues versus the antenna
array are plotted in Figs. 3.5 (c) and (f). The one associated with the first eigenvalue has an axis
of symmetry. For the eigenvector associated to the second eigenvalue, the phase on the left and
right side present ‘jumps’ of value π with respect to the central antenna situated at xe = 0, ye = 0,
which is nearest to the scatterer. This is the signature of an antisymmetric eigenvector. This has
also been observed for the two-dimensional case in Ref. 97. At the same coordinate, the modulus of
the symmetric eigenvector is maximum [Fig. 3.5 (b)], while that of an antisymmetric eigenvector is
minimum [Fig. 3.5 (e)]. In this sense, we can also determine the horizontal coordinates of scatterers
by observing the modulus and the phase of the component of eigenvectors97.

The distance between antennas and scatterers F is kept at 2λ, the length of the line of antennas
D is reduced to 4λ, keeping the space between antennas P = λ. The number of antennas is reduced
to 5 × 5, distributed in a lattice. The maximum angle Fs = 90◦ is the same as the second case.
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Figure 3.6 : Same as Fig. 3.4 (a), (b), (e) and (f), while with a shorter measuring
line, only 25 antennas are used. Each column corresponds to the first and the
second eigenvalue.

From Fig. 3.6, we can see that if the length of the antenna array is too small, the numerical
aperture (NA) is not large enough to provide satisfactory focusing waves. The resolution of the
focalization is deteriorated. As the number of antennas is reduced, several spots appear along
x-axis. Notice that even if the NA is reduced, as it is for the second and the third case, the DORT
method provide satisfactory focusing waves.

Finally, we have also varied the distance between two antennas P from λ to λ/2 or 2λ, keeping
the length of the measured line D unchanged. The number of antennas is in this case varied.
Obviously, a better resolution can be reached with a finer discretization of antennas. On the
contrary, the focalization resolution would decay with a too large space between two antennas.

Now, we propose to test the robustness of focalization on different levels of noise using the
DORT method with scalar illumination. The evolution of the eigenvalues without clutter and with
different levels of noise is plotted in Fig. 3.3.

We present here only the highest twenty eigenvalues to illustrate the behavior of the time
reversal operator versus different levels of noise. The correlation length of the correlated noise is
fixed at lc = 0.1λ, only the standard deviation σf is gradually varied. The multiple scattering effect
between the target and the clutter can be neglected here. From Fig. 3.3, we can see that stronger
the noise is (the signal-to-noise ratio is quickly weakened), larger are the eigenvalues belonging to
the noise space. Even though the eigenvalue corresponding to the target is blurred by the noise, up
to σ = 0.3, the intensity map of the backpropagated field is close to what is achieved in the absence
of noise. For σ = 0.4, the difference of the eigenvalues between the target and the noise is not
apparent so that the target can not be recognized from the intensity map. Only the intensity map
with σ = 0.3 is reported in Fig. 3.7. The backpropagated wave generated by the first eigenvector
focuses yet on the target, [Figs. 3.7 (a) and (c)]. For the second eigenvector, comparing with
Figs. 3.4 (b) and (f), the antisymmetric property of the eigenvector is totally blurred by the noise,
[Figs. 3.7 (b) and (d)].
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Figure 3.7 : Intensity map in W of the electric field deduced from two eigenvec-
tors related to the two largest eigenvalues using the same configuration as Fig. 3.4,
with lc = 0.1λ and σ = 0.3. (a)-(b): in the (x, y) plane for z = 0. (c)-(d): in
the (x, z) plane for y = 0. Each column corresponds to the first and the second
eigenvalue. The circle represent the actual profile of the target.

3.4.1.2 Vectorial illumination

Now, we move on to the vectorial illumination to test the focalization ability of DORT, without the
presence of clutter. The eigenvalue of the time reversal operator is plotted in Fig. 3.8, in green-star
line. Compared with the distribution map in scalar case, (Fig. 3.8 red-add line), there exist now
three largest eigenvalues focusing on the target, instead of one for the scalar case.
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Figure 3.8 : Eigenvalue of the time reversal operator in homogeneous space.
Red-add line: scalar illumination, blue-circle line: vectorial illumination.

The intensity map generated by the eigenvectors corresponding to the first three eigenvalues is
shown in Fig. 3.9. As explained in the scalar configuration, the first three symmetric eigenvectors
generate backpropagated waves focusing on the scatter. The fourth antisymmetric eigenvector
generates a wave presenting a minimum on the scatterer. We can conclude that with the vectorial
configuration, we can obtain more abundant information of the target.
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Figure 3.9 : Same as Fig. 3.4, while with vectorial illumination, where the emit-
ting and receiving antennas are oriented along three different directions.

Up to now, with the limited-aspect data, the number of eigenvalues corresponding to each
target is the same as that of complete configuration, except that the focalization along z-direction
is better in the complete configuration than for the limited-aspect configuration. The illumination
is only from one side of the target, the NA of illumination and observation is limited. One option
to reduce the axial extension of the spot is to introduce the isotropic focusing concept, realized by
placing a mirror in the experimental setup98.
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3.4.2 Half-space configuration

We propose to test the DORT method in the half-space configuration, as shown in Fig. 3.10,
where the permittivities of medium 1 and 2 are different. The interface interaction has to be
considered in our simulations. The measurement surface is the same as that of the homogeneous
space, the data are obtained with the CDM forward solver for which the mesh size of the scattering
domain a = λ/18 where λ = 0.6 m is the wavelength in vacuum. The flat interface separating
the measurement medium (air) and the host medium (drive soil of relative permittivity εb = 3)
where targets are buried in is at z = λ. One single sphere located at origin with radius r = λref/8
and relative permittivity ε = 5 is confined entirely in a large box W beneath the interface and of
volume (3λ × 3λ × 3λ) m3. The scattering domain W is centered at (0, 0,−0.5λref). Similar as
for the homogeneous space configuration, we also divide our investigation into two parts, scalar
illumination and vectorial illumination. In this section, the targets are assumed to be buried in
noiseless medium. The focalization ability of DORT for the half-space configuration with the
presence of clutter will be investigated in the Chap. 4.
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Figure 3.10 : Geometry of the scattering problem in half-space. The scatter-
ers are confined in the scattering domain W , separated from the antennas by an
interface. Γ: measurement surface.

3.4.2.1 Scalar illumination

In this scalar case, the antennas are oriented along one single direction, for example, x-axis. The
intensity map of the backpropagated fields for the half-space configuration with a scalar illumination
is shown in Fig. 3.11. Compared with the homogeneous space case, Fig. 3.4, the spot is further
extended along z-direction due to the limited effective numerical aperture of the imager in the half-
space configuration. The focusing ability in the direction normal to the interface is significantly
deteriorated. The behavior of the eigenvalues and eigenvectors are unchanged.
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Figure 3.11 : Intensity map in W of the electric field deduced from four eigenvec-
tors related to the four largest eigenvalues using illuminations at the wavelength
λ = 0.6 m, when one single scatterer is embedded in the soil and the antennas
located in the air are oriented along x-direction. (a)-(d): in the (x, y) plane for
z = 0. (e)-(h): in the (x, z) plane for y = 0. Each column corresponds to the first,
the second, the third and the fourth eigenvalue. The circle represent the actual
profile of the target.

3.4.2.2 Vectorial illumination

In case of the antennas taking three different orthogonal orientations (x-axis, y-axis and z-axis),
the focalization map is given in Fig. 3.12. Note that due to the limited numerical aperture of the
half-space configuration, the number of eigenvalues associated to each scatterer is smaller than
that of the homogeneous background configuration (two instead of three).
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Figure 3.12 : Same as Fig. 3.11, while the antennas take three orthogonal direc-
tions.
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3.5 Conclusions

In this chapter, we present one of the time reversal technique in the time-harmonic regime, the
DORT method. It permits to localize and enumerate echogeneous scatterers in cluttered medium.
We have analyzed the effect of the polarization and reported some simple examples on the focaliza-
tion of one single scatterer in homogeneous space or in half-space configuration. The behavior of
the invariance parameters of the time reversal operator has been analyzed, with respect to different
levels of noise and with respect to the backgrounds (homogeneous and half-space). Owing to the
DORT method, the investigating domain can be restricted to the ‘brightest’ region provided by the
focusing wave which is much smaller than the scattering domain. We can summarize all the results
above concerning the behavior of the eigenvalues in Table. 3.1, with one single dielectric scatterer
present in noiseless medium. The limited-aspect data case will be further studied in Chap. 4, both
for homogeneous space and for half-space configuration.

Complete Limit-homogeneous Limit-half

Scalar illumination 1 1 1

Vectorial illumination 3 3 2

Table 3.1 : Number of dominant eigenvalues with respect to different configu-
rations. Complete configuration: sources and receivers are regularly placed along
all possible directions within 4π steradians. Limit-homogeneous: homogeneous
background configuration with the limited-aspect data. Limit-half: half-space con-
figuration with the limited-aspect data.

In addition to the focalization ability of the DORT method, we also propose to include these
focusing fields into the HM for reducing the computation time and augmenting the signal-to-clutter
ratio of characterization in case of cluttered medium. This is reported in detail in the next chapter.
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Chapter 4

Numerical synthetic results of
focalization and characterization
for scatterers in highly cluttered

environment

This chapter is related to two publications:
1. T. Zhang, P. C. Chaumet, E. Mudry, K. Belkebir and A. Sentenac,
Electromagnetic wave imaging of targets buried in a cluttered medium
using an hybrid Inversion-DORT method, Inverse Problems, 28, 125008
(2012);
2. T. Zhang, P. C. Chaumet, A. Sentenac and K. Belkebir, Three-
dimensional imaging of targets buried in a cluttered semi-infinite medium
, Journal of Applied Physics, 114, 143101 (2013).
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4.1 Introduction

We have reported the principle of the DORT method, which permits to localize scatterers in
cluttered environment, and we have given preliminary results of focalization using the DORT
method in the presence of one single scatterer. Moreover, we presented the clutter model where
the permittivity of the medium fluctuated is of the form of Gaussian function. Generally, we take
a large scattering domain for generating the synthetic data. Thanks to the DORT method, the
investigating domain used for reconstructing targets can be restricted to the ‘brightest’ region much
smaller than the scattering domain. The inversion techniques which reconstruct the permittivity
map of a given investigating domain have been explained in Chap. 2. The accuracy of the non-linear
reconstructions is strongly dependent on the signal to noise ratio and on the size of the investigating
domain13. When targets are buried in an inhomogeneous medium, the investigating domain should
be large enough to account properly for the perturbation induced by the clutter. In this case, the
inversion requires important computational resources, especially in the three-dimensional vectorial
configuration, and often fails because of the large number of unknowns compared to the number
of data.

In this chapter, we propose to combine the advantages of the non-linear inversion methods to
that of the DORT method. We show that this hybrid technique can be used to detect, localize
and characterize targets buried in highly contrasted clutter supporting multiple scattering in a
much better way than the classical inversion methods alone. Hereafter the combined DORT-
inversion method will be called HM-DORT, and the classical inversion method will be called HM.
Our analysis is supported by three-dimensional vectorial simulations of an imaging experiment
in which two spheres buried in a random inhomogeneous medium are illuminated and observed
by an array of monochromatic micro-wave antennas. We will study this problem in two different
configurations, for the homogeneous space configuration, and for the half-space configuration.

4.2 Derivation of the HM-DORT

It has been shown that the DORT method provides a means for generating incident fields focusing
onto a given scatterer. We propose here to introduce this information in the inversion procedure.
This idea was first presented in Ref. 5 in the simplified 2D scalar configuration and yielded a
marked improvement of the targets reconstruction, while the definition of the cost functional is
different, which will be explained at the end of this section. Another main difference between the
scalar and vectorial configuration, apart from the increased computational complexity, is that the
DORT analysis provides three eigenvectors focusing on each target in the 3D vectorial homogeneous
case (two eigenvector for the 3D vectorial half-space configuration) whereas it provides only one
eigenvector in the scalar case. Hence, we expect the HM-DORT to be even more interesting in the
3D vectorial configuration than in the scalar configuration.

To introduce the DORT fields in the inversion procedure, we note Einc;DORT
ζ , ζ = 1, · · · , Nev,

the DORT incident fields that focus onto the targets. Here, Nev is the number of the eigenvalues
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associated with the targets. The number of Nev can be determined from Tab. 3.1, while for several
cases in presence of strong noise, the eigenvalues belonging to the targets would be blurred by the
noise. The scattered field fDORT

ζ associated to the incident field Einc;DORT
ζ is easily calculated

through, Eq. (3.12), and reads

fDORT
ζ (r) =

N∑
l=1

x,y,z∑
α

Vl,α(ζ)fmes
l,α (r). (4.1)

As described in Sec. 2.2.4, we suggest here to use Nev incident field Einc;DORT
ζ and N scattered

field fDORT
ζ derived from DORT in the iterative scheme, instead of the incident field Einc

l,α and
the scattered field fmes

l,α . Therefore, the contrast and the total fields in the test domain Ω are
determined iteratively by minimizing a cost functional of the form at the iteration n

FDORT
n (χn,E

DORT
ζ,n ) = WDORT

Ω

Nev∑
ζ=1

‖h(1;DORT)
ζ,n ‖2 +WDORT

Γ

Nev∑
ζ=1

‖h(2;DORT)
ζ,n ‖2, (4.2)

where the residual error h(1;DORT)
ζ,n and h(2;DORT)

ζ,n are defined similar to h(1)
l,n and h(2)

l,n , respectively,

h
(1;DORT)
ζ,n = EDORT

ζ,n −Einc;DORT
ζ −

=

AχnE
DORT
ζ,n , (4.3)

h
(2;DORT)
ζ,n = fDORT

ζ −
=

BχnE
DORT
ζ,n . (4.4)

The normalizing coefficients WDORT
Ω and WDORT

Γ are given by

WDORT
Ω =

1
Nev∑
ζ=1

‖Einc;DORT
ζ ‖2

Ω

and WDORT
Γ =

1
Nev∑
ζ=1

‖fDORT
ζ ‖2

Γ

. (4.5)

The updating directions are taken to be of the same form as the ones described in subsection
2.2.4, where the gradients are involved with the cost functional FDORT

n . Notice that the definition
of the cost function is different from the two-dimensional case that was done by Dubois. In
Ref. 5, the DORT field was introduced into the cost function as FDORT

n × Fn or Fn + γ2FDORT
n .

Here, we use only the DORT incident fields FDORT
n in the cost functional, which permits to reduce

significantly the number of unknowns of the inverse problem. Indeed, for 3D vectorial configuration
in homogeneous space, the cost function Fn is a non-linear expression with respect to 6N complex
unknown (κl,α,n;ν , κl,α,n;ω) and two real unknown (βn;ξ, βn;η), while the cost function FDORT

n

depends only on 2Nev complex unknown (κζ,n;ν , κζ,n;ω) and two real unknown (βn;ξ, βn;η). On
the contrary, if we use FDORT

n ×Fn as the new cost functional, it is related to 6N + 2Nev complex
unknown (κl,α,n;ν , κl,α,n;ω) and two real unknown (βn;ξ, βn;η). Hence, in three-dimension, we
suggest to use FDORT

n as the cost functional as expecting to reduce drastically the computational
time with this procedure.

4.3 Homogeneous space configuration

Similar as the discussions in Chap. 3, we perform some simulation work in the homogeneous space
configuration with DORT and HM as a first step. The three-dimensional imaging configuration
simulated in this section is depicted in Fig. 4.1. We consider an infinite homogeneous lossless
medium of permittivity εb. Targets under study are defined by their relative permittivity ε and
are confined in a domain W . They are surrounded by an inhomogeneous medium with relative
permittivity εc(r) = εb+εf (r) where εf (r) is a random function which is null outside W and whose
average is null overW . A two-dimensional array ofN crossed-dipole monochromatic antennas lying
in a plane above W is used to illuminate and observe the scene. This configuration resembles that
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which is encountered in the detection of buried objects, except that the antennas lying in the same
homogeneous medium as the targets, and we do not consider the interface effect here. Note that,
in practice this configuration can be obtained with a proper impendance matching of the antennas
or an appropriate time windowing. The finite size of the clutter expansion, which is necessary for
computation purpose, is chosen wide enough for representing an ‘infinite’ clutter perturbation.

In this section, we first compare, on a given configuration, the performances of the HM-DORT
to that of the DORT or HM alone. Then, we study the robustness of the HM-DORT with respect to
the structural noise surrounding the scatterers. Last, we point out the interest of using a non-linear
inversion scheme and the full-polarized data for retrieving the targets.

4.3.1 Computational setup

In most cases, the scattering domain W of the imaging configuration depicted in Fig. 4.1 is a box
with size (5λ× 5λ× 4λ) box, centered at (0, 0,−λ) where λ is the illumination wavelength in the
homogeneous lossless medium. The antenna array is described by a lattice of N = 81 antennas
regularly distributed on a square of side of 8λ, which is located at z = 2λ, i. e. λ above the cluttered
environment. In most of our reported cases, the antennas take three different orientations, with
α = x, y, z.

The scattering domain includes two dielectric spheres embedded in a highly cluttered environ-
ment. The smallest sphere, centered at the origin, has a radius of λ/6, with relative permittivity
ε = 3εb. The largest sphere is located at (0.5λ, 0,−0.7λ) and has a radius of λ/4 with the same rel-
ative permittivity. The random permittivity of the clutter, εf (r), is defined as a Gaussian variable
with zero mean and standard deviation σf and Gaussian correlation function C(r) with correlation
length lc, modeled as Eq. (3.1).

Figure 4.1 : Geometry of the problem. The transmitters and receivers are reg-
ularly distributed on a plane, located on one side of the objects. The objects are
confined in a disordered medium W .
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To indicate the presence of multiple scattering within W , we introduce Errborn as

Errborn =

N∑
l=1

x,y,z∑
α

‖Esca
l,α −Esca;born

l,α ‖2
Γ

N∑
l=1

x,y,z∑
α

‖Esca
l,α‖2

Γ

, (4.6)

where Esca;born
l,α is the scattered field computed under the classical Born approximation76, stated

as in Sec. 1.4.4.4, i.e. the total field inside the clutter and targets El,α is assumed to be equal to
the incident field Einc

l,α. Eq. (2.2) can be rewritten as

Esca;born
l,α (r) =

∫
Ω

G(r, r′)χ(r′)Einc
l,α(r′)dr′. (4.7)

The Born approximation is usually valid if the target is weakly scattering (with small permittivity
contrast or small size).

4.3.2 Comparison of the HM-DORT with the DORT and
inversion techniques

In this first study, we consider an uncorrelated clutter (the correlation length lc = λ/10 being equal
to the mesh size) with a realization-dependent standard deviation of εf is σf=0.068εb yielding to
Errs = 174%, Errd = 2% and Errborn = 48% respectively. The values of Errborn and Errd indicate
that the configuration supports moderate multiple scattering (within the targets and within the
clutter) but that the interaction between targets and the clutter is weak. We first perform the
DORT analysis of the scattered field data. The evolution of the eigenvalue in presence of clutter
is given in Fig. 4.2. There exist six significant eigenvalues with respect to other tiny ones. To
determine the correspondence between the eigenvalues and the scatterers, we provide the intensity
map generated by the corresponding eigenvectors, shown in Figs. 4.3 and 4.4.
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Figure 4.2 : Eigenvalue of the time reversal operator in homogeneous space with
vectorial illumination, with the clutter lc = λ/10 and σf=0.068εb.
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Figure 4.3 : Intensity map in W of the electric field formed by the three eigenvec-
tors of the TRO related to the three largest eigenvalues. These three eigenvectors
focus on the sphere which is the closest to the antennas. The clutter is described
by lc = λ/10, σf = 0.068εb with Errs = 174% Errd = 2% and Errborn = 48% .
(a)-(c) maps in (x, y) plane at z = 0. (d)-(f) maps in (x, z) plane at y = 0. Each
column corresponds to the first, the second and the third eigenvalue. The dash box
indicates the investigating domain Ω used in the inversion procedure.
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Figure 4.4 : Same as Fig. 4.3, but the eigenvectors correspond to the fourth,
fifth and sixth eigenvalues. They focus on the sphere which is the furthest from
the antennas. (a)-(c) maps in (x, y) plane at z = −0.7λ. (d)-(f) maps in (x, z)
plane at y = 0. Each column corresponds to the fourth, the fifth and the sixth
eigenvalue.

Figures 4.3 and 4.4 show the intensity of the electric field radiated by the antennas in the
homogeneous medium with permittivity εb, with the currents given by the eigenvectors of the
TRO. As expected, the first three eigenvalues correspond to the scatterer whose signature on the
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antennas is dominant. In our configuration, it corresponds to the smallest sphere which is closer
to the antennas than the largest one. The fourth to the sixth eigenvalues correspond to the second
most important signature, which is that of the largest sphere. There are three eigenvalues focusing
on each scatterer, depending on the polarization of the antennas. In section 3.4, we have checked
that if only one component of polarization is used in the scattered field data, there is only one
eigenvalue related to the scatterer. This is in agreement with the conclusion of Ref. 3. In this
incomplete imaging configuration, it is seen that the DORT eigenvectors allows the localization of
the two scatterers with, however, an anisotropic spots, particularly elongated along the illumination
direction (z-axis).

In a second step, we apply the HM-DORT to the scattered field data in order to reconstruct
quantitatively the permittivity map of the investigating domain. The investigating domain Ω is
limited to the ‘brightest’ region given by the DORT field intensity map, i.e. a box placed at
[−0.75λ, 1.25λ]× [−λ, λ]× [−1.5λ, λ], which is indicated by the dashed squares plotted in Figs. 4.3
and 4.4. The inversion procedure is stopped when the cost functions reach a plateau.

To quantify the quality of the image we also define a contrast reconstruction error as

Errχ =
‖χactual − χrec‖2

Ω

‖χactual‖2
Ω

, (4.8)

where χactual is the permittivity contrast of the actual objects while χrec is the reconstructed
permittivity contrast.
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Figure 4.5 : HM-DORT reconstructed permittivity obtained for the same config-
uration as that described in Fig. 4.3 (a) and (d) maps in the (x, y) plane at z = 0
and z = −0.7λ respectively. (c) map in the (x, z) plane for y = 0.

In Fig. 4.6, we compare the HM-DORT reconstruction to that obtained with the HM scheme
without using focusing waves.
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Figure 4.6 : The configuration is the same as that described in Fig. 4.3. (a)
Iso-surface of the reconstructed permittivity profile at ε = 2 using the HM-DORT
procedure. (b) same as (a) using the HM inversion procedure. (c) Evolution
of the cost function (log-scale representation) versus the iteration step using the
HM-DORT (dashed curve) and HM (solid curve). All these plots correspond to
the reconstruction shown in Fig. 4.5.

We observe a better localization using the HM-DORT procedure than the DORT method,
especially in the z-direction. Moreover, a better characterization is obtained with the HM-DORT
than with the HM alone. The HM-DORT procedure permits to avoid the ghosts that are present
around the targets in the HM reconstruction. This is confirmed by the contrast error criterion Errχ

which is equal to 63% for the HM-DORT and to 153% for the HM. Moreover, the cost function
converges more quickly with the HM-DORT than with the HM, the converged value being one
order of magnitude, lower in the former case than in the latter. The HM-DORT computational
time, (206 s), is about 200 times shorter than that of the HM scheme. This discrepancy is explained
by the number of incidences and the convergence rate, see Fig. 4.6 (c). Indeed, the HM-DORT
uses only 6 incidences (which correspond to the significant eigenvectors of the TRO) whereas the
HM scheme uses 243 different incidences.

The HM-DORT technique can also be used to reconstruct the targets sequentially. In Fig. 4.7,
we have restricted the investigating domain to a smaller domain Ω1 (Ω2) that surrounds the first
(second) target. In this case, sole the incident fields focusing on the chosen target are kept in
the inversion process. We observe in Fig. 4.7 that this sequential reconstruction yields a better
estimation of the targets while diminishing the computational time. With the HM using non-
optimized incident fields, the selective reconstruction on Ω1 and Ω2 is worse than that obtained
with the initial larger investigating domain Ω, as shown in Fig. 4.8.
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Figure 4.7 : HM-DORT reconstructions for the same configuration as that of
Fig. 4.5, but with investigating boxes that are restricted, successively, to domains
surrounding each target, Ω1 and Ω2. Ω1 is centered at the origin with size λ×λ×
0.8λ, while Ω2 is centered at (0.5λ, 0,−0.7λ) with same size. (a) map in the (x, y)
plane at z = 0 in Ω1. (b) map in the (x, y) plane at z = −0.7λ in Ω2. (c) map in
the (x, z) plane at y = 0 in Ω1. (d) map in the (x, z) plane at y = 0 in Ω2.
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Figure 4.8 : Same as Fig. 4.7, but with the HM procedure.

4.3.3 Influence of the size of the clutter and of its specific
permittivity distribution

The size of the scattering domain chosen for these simulations may be thought too small to mimic
accurately a realistic experiment where the targets are buried in an infinite inhomogeneous soil.



58 4.3 Homogeneous space configuration

Indeed, as it stands the width of W is smaller than the antennas lattice width. We have thus
performed other experiments with twice bigger scattering domains to check that the reconstructions
provided by the HM-DORT procedure were not changed. More precisely, we considered a scattering
domain W of size (10λ×10λ×10λ) that is enlarged by a factor of two in x, y directions and of two
and a half in z direction as compared to the one chosen in the previous simulation. For a meaningful
comparison, we kept exactly the same clutter around the objects as that used in Fig. 4.5.

We observe in Fig. 4.9 that the six dominant eigenvectors of the TRO for the large scattering
domain W yield intensity maps that are very similar to that obtained for the small W , Figs. 4.3
and 4.4. Hence, even if the noise level ratio Errs is changed from 171% (small W ) to 541% (large
W ), the DORT method still enables to generate incident fields that focus on targets.

(d) (e) (f)

(a) (b) (c)

Figure 4.9 : Intensity map of the electric field formed by the eigenvectors of
the TRO related to the six largest eigenvalues in (x, z) plane for y = 0, for a
configuration similar to that used for Figs. 4.3 and 4.4, except that the scattering
domain W is ten times larger.

Comparing Fig. 4.5 with Fig. 4.10, we observe that the reconstruction obtained with the HM-
DORT procedure for large W , is very close to that obtained with small W , with similar contrast
errors, Errχ = 68% and 62% respectively.
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Figure 4.10 : HM-DORT reconstructed permittivity for a configuration similar
to that used in Fig. 4.5 except that the scattering domain W is ten times larger,
(the investigating domain Ω is kept the same). (a) and (b) maps in the (x, y)
plane at z = 0 and z = −0.7λ, respectively. (c) map in the (x, z) plane at y = 0.
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This result is not surprising as, with the DORT focusing fields, sole the inhomogeneities close
to the targets participate to the scattered field data that are used in the inversion procedure. Note
that this property may also be considered a drawback, as it confers an increased importance to the
specific clutter distribution surrounding the targets. Thus, to check the generality of our results,
we have also verified that the reconstructions obtained for different clutter realizations with the
same statistics, were similar.

The analysis presented in this section was repeated for different clutter types and always led to
the same conclusion: The HM-DORT is always superior to the HM scheme without optimized inci-
dent fields for characterizing the targets and for limiting the computational cost and it ameliorates
significantly the information brought by the DORT approach alone, in particular for localizing the
target along the z-axis. Moreover, thanks to the studies conducted on large scattering domain
and many clutter realizations, we believe that our simulations give a good estimate of the imaging
achievements of the HM-DORT for realistic geometries in which the targets are buried in an infinite
clutter with given statistics. We now describe more precisely the performances of the HM-DORT
for different clutter types.

4.3.4 Robustness of the HM-DORT with respect to the clut-
ter statistics.

In this section, we apply the HM-DORT to data stemming from targets buried in different clutter
types. We study the robustness of the reconstructions versus increasing clutter standard deviation
σf and versus the clutter correlation length lc.

4.3.4.1 Influence of the clutter standard deviation.

In this paragraph, the correlation length is kept fixed at lc = λ/10, while the standard deviation
is increased. In the first example, the realization-dependent standard deviation of εf , σf=0.096εb,
which yields Errs ≈ 400% and Errd = 2%. The evolution of eigenvalues versus different levels
of noise is presented in Fig. 4.11. In case of σf = 0.068εb (green circle line), the eigenvalues
corresponding to the targets can be easily distinguished from those belonging to the noise. As the
standard deviation increases, the ones corresponding to the noise space raise so much that there
is no significant discrepancy between the echogeneous scatterers and the noise. Fig. 4.12 present
the intensity map concerned with the eigenvectors and one can observe that the two scatterers are
still well localized.
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Figure 4.11 : Eigenvalue of the time reversal operator in homogeneous space
with vectorial illumination, in presence of two scatterers. The correlation length
of the clutter keeps at lc = λ/10, but the standard deviation is varied: σf = 0.068εb
(green-circle line), σf = 0.096εb (blue-star line), σf = 0.125εb (magenta-add line),
σf = 0.145εb (black-cross line).
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Figure 4.12 : Same as Fig. 4.5 but the clutter is defined by lc = λ/10, σf=0.096εb
yielding Errs = 400% and Errd = 2%.

In the second example, the standard deviation reaches σf=0.125εb, leading to Errs=682% and
Errd = 2%. In this case, there is only two eigenvectors that focus on the deepest scatterer (the least
echogeneous one), as showed in Fig 4.13 but the selective reconstruction of the targets provided
by the HM-DORT is still satisfactory, see Figs 4.14. Note that, in this case, the reconstruction of
the least echogeneous target has been obtained using the only two focusing incident DORT fields.
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Figure 4.13 : Intensity in the (x, z) plane at y = 0, of the electric field given by
the six eigenvectors corresponding to the six highest eigenvalues. The structural
noise, Errs = 682% and Errd = 2% is obtained with lc = λ/10 and σf=0.125εb.
Top: the intensity corresponding to the first, the second, the third eigenvalue.
Bottom: the intensity corresponding to the fourth, the fifth, the sixth eigenvalue.
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Figure 4.14 : Same as Fig. 4.5 but the clutter is defined by lc = λ/10, σf=0.125εb
yielding Errs = 682% and Errd = 2%.

If the noise is further amplified to reach σf=0.145εb, corresponding to Errs = 900% and
Errd = 2%, the DORT method does not provide any eigenvectors focusing on the deepest scatterer
and the related reconstruction is deceiving.

4.3.4.2 Influence of the correlation length.

In this paragraph, we analyze the influence of the clutter correlation length on the reconstruction.
We first consider clutters with standard variations σf ≈ 0.06εb and noise levels Errs ≈ 200%,
that are similar to the one taken for Figs. 4.5 and increase the correlation lengths lc from λ/10
to λ. At this moderate noise level, we observe that the DORT focusing properties weakly depend
on the correlation lengths. Whatever the correlation lengths, the six dominant eigenvectors yield
incident fields that focus on each scatterer. The HM-DORT reconstructions are quite accurate and
resembles that obtained for the uncorrelated clutter, Fig. 4.5.

On the contrary, at higher standard deviations, σf ≈ 0.1εb and higher noise levels Errs ≈ 400%,
the DORT focusing properties depend strongly on the correlation lengths. At lc = λ/10, one obtains
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three eigenvectors focusing on each target and the reconstructions are good and similar to that
displayed in Fig. 4.12. For lc = λ/2, it becomes difficult to localize the deepest scatterer with the
first six dominant eigenvectors intensity maps, as seen in Figure 4.15. However, the HM-DORT
permits to retrieve accurately both targets, Fig. 4.16. When lc = λ, the focusing properties of the
DORT fields are further deteriorated. Moreover, the eigenvectors that are roughly focusing on the
least echogeneous target do not correspond to the third, fourth and fifth highest eigenvalues. In
this case, it is required to conduct a careful study of the intensity maps of the eigenvectors in order
to determine the most significant eigenvectors. This analysis implies that we have some a priori
information on the sought targets. With this additional procedure, the HM-DORT reconstruction
obtained with the six most significant eigenvectors yields a good estimate of the targets. Note
that, similarly to the lc = λ/2 case, the localization of the targets given by HM-DORT is much
better than that obtained with DORT alone.
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Figure 4.15 : Same as Fig. 4.13, but the clutter with the correlation length
lc = λ/2, σf = 0.1εb, where the clutter environment corresponds to 400% noise.
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Figure 4.16 : Same as Fig. 4.5, except that the clutter environment corresponds
to 400% noise, with the correlation length lc = λ/2, σf = 0.1εb.

4.3.4.3 Influence of the coupling between the targets and the clutter

Up to now, we have considered configurations in which targets and the clutter are weakly coupled,
Errd < 5%. In other terms, the field detected by the antennas can be modeled by the coherent
sum of the field radiated by the spheres in the homogeneous background medium with the field



4.3 Homogeneous space configuration 63

radiated by the clutter alone. In this paragraph we investigate the performance of the HM-DORT
algorithm when there is multiple scattering between the targets and the clutter. Keeping almost
the same Errs as Fig. 4.5, we chose a configuration with lc = λ and σ(εf ) = 0.055εb, that yielded
Errd = 54%, Errborn = 123%. The coupling between the targets and the clutter is caused by the
presence of highly contrasted inhomogeneities close to the targets. The HM-DORT reconstruction
displayed in Figs. 4.17 (a)-(c) shows that this configuration can be handled without difficulty with
our algorithm.
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Figure 4.17 : Reconstructed permittivity distribution, (a)-(c): using the HM-
DORT. (d)-(f) using the HM procedure. The clutter is defined by lc = λ, σf =
0.055εb but one has chosen a specific realization where Errs = 182% and Errd =
54%, implying a significant coupling between the spheres and the clutter.

Figure 4.18 show that without DORT, the reconstructed relative permittivity of the deepest
scatterer is overestimated while that obtained with DORT is accurately retrieved.
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Figure 4.18 : Relative permittivity versus z/λ along the vertical line in
Fig. 4.17 (c) and (f). (a) y = 0 and x = 0 (smallest scatterer). (b) y = 0
and x = 0.5λ (largest scatterer). Solid line presents the actual profile, dashed
line reconstruction with DORT and solid line with crosses reconstruction without
DORT.

To summarize this part, we have shown that the HM-DORT algorithm provides satisfactory
images of the targets even when they are buried in clutters with high standard deviations (up
to 0.125εb) or large correlation lengths in which the focusing properties of the DORT fields are
deteriorated. In the following section, we stress the importance of using a non-linear inversion
scheme and the full-polarized data to obtain this performance.

4.3.4.4 Evolution of the reconstruction versus different clutter with the
same statistical characteristics

In order to test the stability of our HM-DORT, we choose 20 different noise realizations with the
same statistical characteristics as that used in Sec. 4.3.2, i.e. the same standard deviation and
the same correlation length. Figure 4.19 shows the evolution of the error on the contrast Errχ of
the brightest scatterer versus 20 random seeds. The mean value of Errχ is 54%, and the standard
deviation is 9%, assuring again that the case presented in Sec. 4.3.2 corresponds to a typical case.
We report in Fig. 4.20 the reconstruction for the worst case, i.e. Errχ = 75%. The scatterer is
still well reconstructed, except that at the edge of the investigating domain, it is deteriorated by
the strong noise. Notice that this study has been done for the case of small and large correlation
lengths, either in presence of multiple scattering, or using different size of the clutter yielded always
the same results: the reconstruction does not depend noticeably of the clutter realizations of the
random process but only of the standard deviation and correlation length of the noise.
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Figure 4.19 : Errχ for the selective reconstruction on the brightest scatterer
versus different noise seedings, where lc = λ/10, and σf = 0.068εb.
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Figure 4.20 : Selective reconstruction results for the brightest scatterer, corre-
sponding to the case of the largest reconstruction error, Errχ = 75%.

4.3.5 Interest of using a non-linear inversion scheme and
full polarized data

The HM-DORT used in this work is based on a non-linear inversion scheme. In other terms,
both the permittivity and the total field inside the investigating domain Ω are unknown and
sought by the algorithm. In this section, we consider a simpler linear-inversion-DORT technique
in which the total field inside Ω is assumed to be the incident field (Born’s approximation). The
linear-inversion-DORT scheme is implemented easily from the HM-DORT algorithm by setting
the search directions for the total field to zero and enforcing the total field to be equal to the
incident field. The interest of the linear-inversion technique is that it is much faster than the non-
linear-inversion version. Unfortunately, it is seen in Fig. 4.21 that the linear-HM-DORT scheme
fails to retrieve the targets even in the least noisy configuration, Errs = 174%, corresponding to
Fig. 4.5. In this configuration, the coupling between the targets and the clutter is weak but there is
some multiple scattering within the clutter and within the targets as indicated by Errborn = 48%.
The latter is sufficient to deteriorate significantly the performances of the linear inversion scheme.
This example stresses the importance of using non-linear inversion techniques even for moderately
contrasted clutter (σf ≈ 0.06εb) and even if there is no coupling between the targets and the clutter
(Errd < 5%).
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Figure 4.21 : Same as Fig. 4.5 but a linear-HM-DORT procedure assuming single
scattering is used for getting the reconstructions.

Another reason for the performance of our imaging scheme in highly noisy environment is that
we use the three orientations of the antennas for illuminating and observing the scene. We are
thus able to generate several DORT fields focusing on each targets. We now consider a simpler
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imaging configuration where the emitting and receiving antennas are oriented only along the x
or y-axis so that only scalar data are collected as in an acoustical problem. In this case, only
one DORT field focusing on each target can be found. In Fig. 4.22 we plot the reconstructions
obtained with these truncated data for the same geometry as that used in Fig. 4.6. We observe a
significant deterioration of the results as compared to Fig. 4.6 (a), the reconstruction error on the
contrast reaching Errχ = 191% and Errχ = 177% for the x and y orientations, to be compared to
Errχ = 62% for the full-polarized data. Hence, even for the least noisy experiment (Errs = 171%),
the use of the full-polarized data appears to ameliorate significantly the reconstruction.

(a) (b)
xx yy

Figure 4.22 : Iso-surface of the reconstructed permittivity profile at ε = 2 using
the HM-DORT procedure for the same configuration as that used in Fig. 4.6. (a)
The antennas are oriented along the x direction and the scattered field is detected
along the x direction only. (b) The antennas are oriented along the y direction
and the scattered field is detected along the y direction only.

4.3.6 Conclusion

In this section, we have numerically studied the imaging issue of targets buried in a random
inhomogeneous medium, with the antennas lying in the same homogeneous medium. We have
shown that using the three-dimensional vectorial Time Reversal Operator (DORT method), one
can generate different incident fields that focus selectively on each target. We have proposed an
hybrid method, named HM-DORT, that uses the answer of the medium to these DORT fields
for reconstructing the permittivity of a region of interest with a non-linear optimization scheme.
The HM-DORT procedure appears localizes better the targets than the DORT procedure alone,
especially in the z direction, and is more efficient than a HM scheme for characterizing the targets,
with significantly less computational burden. It permits to handle very noisy configurations, with
clutter standard deviation up to 12%, that support multiple scattering. Last, we have stressed
the importance of using non-linear inversion algorithms and full-polarized data for achieving this
performance.

4.4 Half-space configuration

In the last section, we deal with detecting and characterizing three-dimensional scatterers in a
disordered medium with no interface. In general, sources and objects to be detected are always
located in two different mediums, which has more significance especially in medical imaging, mineral
exploration and through-wall imaging. The rules of detection and localization also hold, similar as
the homogeneous configuration in Sec. 4.3. Herein, we focus to ‘limited-aspect’ data configurations,
where a flat interface separates the homogeneous medium (the air) containing the full-polarized
antennas, from another semi-infinite medium embedding the objects under test. Different from the
homogeneous case, the response in presence of the interface in Green’s function is taken into account
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for both forward and inverse scattering problem, given in Sec. 1.4.3.2. It has been proved that
accounting for the interface is mandatory in Ref. 82, especially for the scattered field calculations.

4.4.1 Computational setup

In this section are reported performances of our approach to localize and characterize buried targets
in a highly cluttered environment. All data are obtained with the CDM forward solver for which
the mesh size of the scattering domain a = λref/18 where λref = 0.6 m is the wavelength in vacuum
of an impinging wave at the reference frequency fref = 500 MHz. The flat interface separating the
measurement medium (air) and the host medium (drive soil of relative permittivity εb = 3) where
targets are buried in is at z = λref . The measurement surface Γ is at z = 2λref and therefore at
λref above the interface as shown in Fig. 4.23. The measurement surface Γ is made of a lattice
of L = 81 antennas regularly distributed on a square of side size 8λref . Each antenna may play
either the role of an emitter or the role of a receiver. Scattering objects to be characterized are
confined entirely in a large box W beneath the interface and of volume (3λref × 3λref × 3λref). The
scattering domain W is centered at (0, 0,−0.5λref). For the inversion, the investigating domain
Ω ⊂ W is discretized with a mesh size of a = λref/10 which is almost twice larger than the mesh
size a = λref/18 used to generate the synthetic data. All reconstructed imaginary parts of relative
permittivities vanish. Hence, only the real part of the reconstructed permittivities are presented.

Figure 4.23 : Geometry of the studied problem. Targets are embedded in the
lower medium and probed from the upper medium. The probing surface is consti-
tuted of transmitters and receivers regularly distributed on a plane. Geometrical
dimensions of targets being about the order of the wavelength of the incident field
thus the scattering is within resonant regime.

We can obtain better imaging resolution working at higher excitation frequencies, but the initial
guess deduced from the backpropagation procedure8,56 or set as a tiny constant is not efficient any
more in presence of interfaces. When the contrast of the scatterer is large with respect to the
surrounding medium, or the diameter becomes large compared to the wavelength in the medium,
there exists non-uniqueness of the solution, which has been explored in Ref. 5. An acceptable
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reconstruction can be obtained by using the frequency-hopping approach5,19,55,99. The initial guess
of an unknown object at the lowest frequency is assumed to be a small constant εini = C, in which
ξ0 = η0 = 0 must be rejected since it involves vanishing gradients. By gradually increasing the
operating frequency, the initial guess of the higher frequency is obtained at the final reconstruction
result of the lower frequency, we are then able to determine the required detail of distribution of
permittivity. The a priori information should be included in the inversion procedure, stating that
the contrast χ is positive in the medium100. This is achieved by changing Eq. (2.20) to

χn = ξ2n + iη2
n, (4.9)

the reconstructed relative permittivity of the target is in the form of

ε(r) = εb + ξ2n(r) + iη2
n(r). (4.10)

4.4.2 Reconstruction of a target without clutter

We start the analysis of the performance of the reconstruction with ideal data, i.e. two spheres
of relative permittivity ε = 5 buried below the interface. The smallest scatterer located at
(0.5λref , 0.4λref , 0.5λref), with radius r1 = λref/8 is closer to the interface, while the larger sphere
of radius r2 = λref/6 and centered at (−0.5λref , 0.4λref ,−0.5λref) is embedded deeper.
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Figure 4.24 : Intensity map in W of the electric field deduced from four eigenvec-
tors related to the four largest eigenvalues using illuminations at fixed wavelength
λref , when two scatterers are embedded in background medium without clutter. (a)-
(d): in the (x, y) plane, (a) and (b) for z = 0.5λref , (c) and (d) for z = −0.5λref .
(e)-(h): in the (x, z) plane for y = 0.4λref . Each column corresponds to the first,
the second, the third and the fourth eigenvalue. The circles represent the actual
profiles of the targets, while the dashed box represents the investigating domain Ω
to be used in the inversion procedure.

Intensities of fields within W domain derived from eigenvectors of the TRO are presented in
Fig. 4.24 for the first four largest eigenvalues. Clearly, eigenvectors corresponding to the first and
the second eigenvalue synthesize a wave focusing onto the scatterer near to the interface while
eigenvectors corresponding to the third and the fourth eigenvalue focus on the deeper sphere far
away from the interface. Notice that in the absence of the interface each scatterer is associated to
three eigenvalues46, hence the first effect of the presence of the interface is to decrease the number
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of pertaining eigenvalues per scatterer. In the (x, z) plane, the elongated shape of the field intensity
along the z-axis results from positions of antennas which are placed only on one side of targets.
From these intensities maps, the investigating domain Ω to be used in the inversion can fairly be
restricted to a volume of (2λref × λref × 2λref), centered at (0, 0.4λref , 0). The volume of this box
is 4λ3

ref , about seven times smaller than the scattering domain W used in the forward scattering
problem to generate the data.
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Figure 4.25 : Map of reconstructed permittivity distribution using the DORT
focusing fields shown in Figs. 4.24 at fixed wavelength λref , when no noise is added.
(a) in the (x, y) plane for z = 0.5λref . (b) in the (x, y) plane for z = −0.5λref .
(c) in the (x, z) plane for y = 0.4λref .

Figure 4.25 shows the reconstruction results at λref using focusing waves deduced from the
DORT method shown in Fig. 4.24. The reconstruction exhibits ghost objects along the z-direction
which are particularly visible on the axial cut of the reconstructed profile plotted in Figs. 4.28 (a)
and (b). The low value of the cost function shows that these repica located along the z-axis with
a periodicity about λref

2
√

εb
provide the same scattered field than that of the actual scatterer. This

oscillating behavior is a direct consequence of the limited numerical aperture of the imaging system
and has been largely studied in the two-dimensional configuration5. Indeed, in our configuration,
the objects under study are localized more or less at the center of the array antennas. The incident
field at the object domain radiated by transmitters located around the edge of the measurement
array is weak as compared to the one generated by a transmitter located just above the object.
This is due to the strong Fresnel reflection on the interface for large angle of incidence. This is
the same for the measured field, the scattered field by the targets on the antennas close to the
edge of the array is weak. It means that the antennas on the edge participate weakly to the
construction of the DORT focalizing incident field. We have checked that reducing by a factor
two the width of the domain where the antennas are located leads to similar reconstructions (not
shown) than those of Fig. 4.25. It means that the numerical aperture of the illumination and
reception are dramatically reduced by the presence of the interface. Therefore the number of
admissible solutions for the inverse scattering problem increases, in others terms, false alarms are
unfortunately expected in the axial direction of illumination. We have checked that this oscillating
behavior of the reconstructed profile also occurs in homogeneous configuration when the numerical
aperture is drastically reduced.

To compensate for the lack of information due to the small numerical aperture of the imaging
system, we used polychromatic data and applied the frequency-hopping approach as described in
Ref. 5. It consists in reconstructing the targets with a low frequency data and using the result as
an initial guess for performing the inversion at higher frequency. We simulated the data for three
different incident wavelengths λ1 = 3λref , λ2 = 1.5λref and λref . Note that these supplementary
illuminations do not provide higher numerical aperture of the imager and do not provide higher
spatial frequencies information.



70 4.4 Half-space configuration

−1 0 1

−1

−0.5

0

0.5

1

1.5

Y/λ

X
/λ

 

 

10

20

30

−1 0 1

−1

−0.5

0

0.5

1

1.5

Y/λ

X
/λ

 

 

5

10

15

20

25

30

−1.5 −1 −0.5 0 0.5

−1

−0.5

0

0.5

1

1.5

Z/λ

X
/λ

 

 

10

20

30

−1.5 −1 −0.5 0 0.5

−1

−0.5

0

0.5

1

1.5

Z/λ

X
/λ

 

 

5

10

15

20

25

30

(a) (b) (c) (d)

−1 0 1

−1

−0.5

0

0.5

1

1.5

Y/λ

X
/λ

 

 

20

40

60

80

100

120

−1 0 1

−1

−0.5

0

0.5

1

1.5

Y/λ

X
/λ

 

 

20

40

60

80

100

120

−1 0 1

−1

−0.5

0

0.5

1

1.5

Y/λ

X
/λ

 

 

20

40

60

80

100

−1 0 1

−1

−0.5

0

0.5

1

1.5

Y/λ

X
/λ

 

 

20

40

60

80

100

(e) (f) (g) (h)

−1.5 −1 −0.5 0 0.5

−1

−0.5

0

0.5

1

1.5

Z/λ

X
/λ

 

 

20

40

60

80

100

120

−1.5 −1 −0.5 0 0.5

−1

−0.5

0

0.5

1

1.5

Z/λ

X
/λ

 

 

20

40

60

80

100

120

−1.5 −1 −0.5 0 0.5

−1

−0.5

0

0.5

1

1.5

Z/λ

X
/λ

 

 

20

40

60

80

100

−1.5 −1 −0.5 0 0.5

−1

−0.5

0

0.5

1

1.5

Z/λ

X
/λ

 

 

20

40

60

80

100

(i) (j) (k) (l)

Figure 4.26 : Same configuration as Fig. 4.24, but with the antennas working at
two larger wavelengths. (a)-(d): map of modulus of the focusing wave associated
with the first and the second eigenvalue at the wavelength λ1 = 3λref , (a) and (b)
in (x, y) plane for z = −0.5λref , (c) and (d) in (x, z) plane for y = 0.4λref . (e)-
(l) intensity map deduced from the eigenvectors for the wavelength λ2 = 1.5λref ,
each column corresponds to the first, the second, the third eigenvalue and the fourth
eigenvalue, (e) and (f) [(g) and (h)] in (x, y) plane for z = −0.5λref [z = 0.5λref ].
(i)-(l): in (x, z) plane for y = 0.4λref .

The detection and localization of scatterers are always determined by the highest operating
frequency when the frequency-hopping approach is used. Comparing Fig. 4.26 with Fig. 4.24,
the focusing spot slims down when the frequency increases, proving that the best resolution of
focalization can be reached at the highest frequency. As regards illuminations at the wavelength
λ1 = 3λref , the two scatterers are not resolved any more, there exist yet two eigenvectors focusing
on the area of interest, Figs. 4.26 (a)-(d). With a shorter wavelength λ2 = 1.5λref , as shown in
Figs. 4.26 (e)-(l), the scatterers are separated despite of slight coupling.
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Figure 4.27 : Reconstructed permittivity distribution for two scatterers using
the frequency-hopping approach and the DORT method, when no noise is added.
(a)-(c): results obtained at the wavelength λ1 = 3λref using a tiny constant as
the initial guess. (d)-(f): results obtained at the wavelength λ2 = 1.5λref with
the final reconstruction result obtained at λ1 = 3λref as the initial guess. (g)-(i):
results obtained at the wavelength λref with the final reconstruction result obtained
at λ2 = 1.5λref as the initial guess. Left: in (x, y) plane for z = 0.5λref . Middle:
in (x, y) plane for z = −0.5λref . Right: in (x, z) plane for y = 0.4λref .

The result of the frequency-hopping approach is shown in Fig. 4.27. The inversion started at
λ1 and the final result was used as initial guess for the inversion at λ2 and repeated the process for
λref . For the illuminations at the largest wavelength λ1 = 3λref , ratios of radii of two spheres to the
wavelength are about r1 = λ1/24 and r2 = λ1/18, respectively. Due to the small size of the sphere
compared to the wavelength, it is difficult to retrieve such small details. Hence, the reconstructed
relative permittivity is much smaller than the actual one at the lowest frequency. As the frequency
increases, the reconstruction resolution is ameliorated. The two scatterers are now satisfactorily
reconstructed at λref both in shape and permittivity estimation and the oscillating behavior of the
estimated permittivity has disappeared. Quantitative comparison between reconstructed profiles
and the actual one along the axial direction is shown in Figs. 4.28 (a) and (b). The best result,
plotted with red solid lines, is obtained when the frequency-hopping approach is applied.
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Figure 4.28 : Map of reconstructed permittivity distribution using the DORT
focusing fields shown in Figs. 4.24 without a clutter. The relative permittivity is
plotted versus (a) z for x = 0.5λref and y = 0.4λref ; (b) z for x = −0.5λref and
y = 0.4λref . The solid curves denote the actual profiles of the scatterers, the profile
of the permittivity obtained in use of frequency hopping is in red solid line, while
the profile obtained at fixed wavelength is in dark green dashed line.

4.4.3 Reconstruction in a cluttered medium

We now investigate the influence of clutter on the imaging performance. We consider the same
configuration as previously but the targets are now buried in a cluttered medium, described as
Sec. 3.2. The ratio of clutter-to-signal (CSR) is defined as Eq. (3.2). In the next reported examples
the multiple scattering between the clutter and the targets is negligible. Yet, the computation of
the scattered fields is carried out rigorously.
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Figure 4.29 : Intensity map of the electric field deduced from eigenvectors work-
ing at the shortest wavelength λref , when 101.9% noise is added, corresponding
to lc = λref/18 and σf = 0.058. (a) and (b) [(c) and (d)] in the (x, y) plane for
z = 0.5λref [z = −0.5λref ]. (e)-(h): in the (x, z) plane for y = 0.4λref . Each
column corresponds to the first, the second, the third eigenvalue and the fourth
eigenvalue.
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In the first example, we consider an quasi-uncorrelated clutter with standard deviation σf =
0.058 and correlation length lc = λref/18, the corresponding CSR is 6.5%, 16.0%, 102% at λ1 =
3λref , λ2 = 1.5λref , λref , respectively. For all wavelengths and even when the clutter-to-signal CSR
is as high as 102%, the DORT method permits to localize the targets, seeing Fig. 4.29.
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Figure 4.30 : Reconstructed permittivity distribution at the wavelength λref using
the frequency-hopping approach, when 102% noise is added, corresponding to lc =
λref/18 and σf = 0.058. (a)-(c): using the HM-DORT. (a) in (x, y) plane for
z = 0.5λref . (b) in (x, y) plane for z = −0.5λref . (c) in (x, z) plane for y = 0.4λref .
(d)-(f): same as (a)-(c) while using the HM algorithm.

The reconstruction obtained using the HM-DORT and with the HM alone are reported in
Fig. 4.30. In both cases, the frequency hopping procedure is applied. The superiority of HM-DORT
is clearly seen. Using HM, bright scatterers are reconstructed in the entire volume of the investigat-
ing domain, blurring the targets signal and increasing the level of false alarms, Figs. 4.30 (d)-(f).

The improvement of the HM-DORT is particularly obvious in the view of iso-surfaces where
with the HM false alarms appear in the entire investigating domain, blurring thus the reconstructed
targets, Fig. 4.31 (b). With the HM-DORT [Fig. 4.31 (a)] effects related to the presence of the
clutter is remarkably diminished and only the two echogeneous targets are retrieved. The quality
of the reconstruction is quantitatively estimated by the reconstruction error of χ. Using HM-
DORT this error is about 66% and raises up to 282% when HM is used. The value of the cost
function is one order of magnitude lower with the HM-DORT than the one obtained with the HM,
Fig. 4.31 (d). Moreover, the computational time of HM-DORT (which uses only 4 incident fields
at each inversion) at the wavelength λref is 287 s, about 80 times smaller than that of the HM
(22201 s) (which uses 81 incident fields).
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Figure 4.31 : The configuration is the same as that described in Fig. 4.29. (a)
Iso-surface of the reconstructed permittivity profile at ε = 3.5 using the HM-DORT
procedure. (b) same as (a) using the HM procedure. (c) same as (a) in case that
clutter is generated in a larger domain W with the size of (6λref × 6λref × 3λref).
(d) Evolution of the cost function (log-scale representation) versus the iteration
step using the HM-DORT (dashed curve) and the HM (solid curve). All these
plots correspond to the reconstruction results shown in Fig. 4.30.

It is worth noting that, although the clutter is accounted for only in the domain W , our
numerical experiment can be used to infer the behavior of the imaging system in a realistic situation
where the clutter is present everywhere in the host medium. Indeed, results do not change when
the size of W increased. We display in Fig. 4.31 (c) the reconstruction obtained by HM-DORT
when W is multiplied by a factor of four to reach (6λref × 6λref × 3λref) (keeping the same clutter
distribution in the initial W and the same statistics). In this case, the clutter-to-signal ratio is
increased to 29%, 65%, 325% at wavelengths λ1 = 3λref , λ2 = 1.5λref , λref , respectively. Yet,
the two scatterers are still well localized by DORT and the reconstructions are similar to those
obtained with the small W with the same error Errχ = 66%. The focusing property of DORT
permits to diminish drastically the influence of the clutter far from the targets.

To evaluate the reproducibility of HM-DORT, different distributions of clutter with the same
statistical characteristics have been generated. We used the same correlation length and standard
deviation of fluctuation as those used in Fig. 4.30. Twenty different random seedings are used for
generating correlated noise. For each realization the HM-DORT is run.
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Figure 4.32 : Evolution of error of reconstruction on the contrast of scatterers at
the wavelength λref versus 20 different noise seedings, with the same configuration
as Sec. 4.4.3, where lc = λref/18, and σf = 0.058.

Figure. 4.32 reports the evolution of the reconstructed contrast error Errχ versus 20 different
noise seedings. In the case of lc = λref/18, despite of different noise contributions, the mean
value of reconstruction error is 64%, the confidence interval is 3%, ensuring that for most clutter
distributions, the reconstruction error Errχ is inside the interval of confidence. This means that
our HM-DORT succeeds in characterizing scatterers in the presence of different kinds of noise. We
present here the reconstruction result corresponding to the worst case for which Errχ is the highest
(seed 1), see Fig. 4.33. Comparing with Figs. 4.30 (a)-(c), the two scatterers are well characterized
with however some minor artefacts.
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Figure 4.33 : Same as Figs. 4.30 (a)-(c), while the clutter distribution is differ-
ent, corresponding to the worst case in which the reconstruction error is greatest
(Errχ = 110%). (a) in (x, y) plane for z = 0.5λref . (b) in (x, y) plane for
z = −0.5λref . (c) in (x, z) plane for y = 0.4λref .

4.4.4 Influence of the polarization of the incident field

In our configuration, emitting and receiving antennas are oriented along three orientations, x-axis,
y-axis and z-axis, respectively. In order to illustrate the necessity of using the vectorial case we
consider a simple configuration where the antennas are oriented along one single direction, x-axis
or y-axis.
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(a) (b)

Figure 4.35 : Iso-surface of the reconstructed permittivity profile at ε = 3.5 using
the HM-DORT procedure for the same configuration as that used in Fig. 4.31 (a).
(a) The antennas are oriented along the x-direction and the scattered field is de-
tected along the x-direction only. (b) The antennas are oriented along the y-
direction and the scattered field is detected along the y-direction only.
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Figure 4.34 : Intensity map of the electric field deduced from eigenvectors work-
ing at the shortest wavelength λref , when 102% noise is added, corresponding to
lc = λref/18 and σf = 0.058, in the case of antennas taking only one orientation.
(a)-(d): The antennas are oriented along the x-direction and the scattered field is
detected along the x-direction only. (e)-(h): The antennas are oriented along the
y-direction and the scattered field is detected along the y-direction only. (a) and
(e) [(b) and (f)] in the (x, y) plane for z = 0.5λref [z = −0.5λref ], corresponding
to the first [the second] eigenvalue. (c) and (g) [(d) and (h)]: in the (x, z) plane
for y = 0.4λref , corresponding to the first [the second] eigenvalue.

Figs. 4.34 shows the intensity map of the focusing field when emitting and receiving antennas
are oriented along only x-direction or y direction. Comparing with Figs. 4.29, only one eigenvalue
is associated to each echogeneous scatterer. The reconstruction obtained from the scalar data with
HM-DORT is displayed as iso-surface in Fig. 4.35. We observe a clear deterioration of the image as
compared to that obtained with the vectorial data, Fig. 4.31 (a). The reconstruction is deteriorated
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qualitatively. The reconstruction error in the scalar case is Errχ = 101% and Errχ = 96% for the
x and y orientations respectively, to be compared to Errχ = 66% for the full-polarized data.

4.4.5 Influence of the structural noise

In this section, we study the robustness of HM-DORT and the frequency-hopping approach55,85.

4.4.5.1 Influence of the standard deviation

The correlation length lc is kept fixed at λref/18, while the standard deviation is augmented to
σf = 0.07, leading to CSR = 9%, 23%, 148% for the wavelength λ1 = 3λref , λ2 = 1.5λref , λref ,
respectively. Unsurprisingly, with such level of noise at λref , the ability of DORT for focusing on
the scatterers is deteriorated. In particular, the eigenvector corresponding to the fourth eigenvalue
generates a wave that focuses both on the scatterer and on the clutter with the same intensity
level, shown in Fig. 4.36. On the other hand, the data at λ2 = 1.5λref are less noisy and yield
DORT fields that focus exclusively on the scatterer. Thus we use the DORT intensity maps at
λ2 = 1.5λref for defining the investigating domain used for the inversion procedure.
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Figure 4.36 : Intensity map of the electric field deduced from the eigenvectors at
the wavelength λref , when 148% noise is added, in which lc = λref/18 and σf =
0.07. Each column corresponds to the first, the second, the third and the fourth
eigenvalue. (a) and (b) [(c) and (d)] in (x, y) plane for z = 0.5λref [z = −0.5λref ].
(e)-(h) in (x, z) plane for y = 0.4λref .
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Figure 4.37 : Same as Fig. 4.30, while 148.4% noise is added, corresponding
to lc = λref/18 and σf = 0.07, using the incident focusing waves as shown in
Fig. 4.36.

In Fig. 4.37, we plot the reconstructed relative permittivity in (x, z) plane obtained at the
wavelength λref with the frequency-hopping procedure. Due to the bad focalization of the fourth
eigenvalue, sole the three incident fields associated to the three largest eigenvalues are used in
the inversion procedure. The reconstruction of the two scatterers is similar to that displayed in
Figs. 4.30 (a)-(c). On the other hand, the reconstruction given by the HM is totally blurred by
the noise stemming from the clutter, Figs. 4.30 (d)-(f).

4.4.5.2 Influence of the correlation length

In this section, the influence of the correlation length lc on the reconstruction is analyzed. Hereafter,
the standard deviation of the clutter σf = 0.058 is kept equal to the one used for Fig. 4.30 while
the correlation length lc is increased. We quantify the strength of the clutter (SC) with a single
number as

SC =
N∑

l=1

x,y,z∑
α

‖f clutter
l,α ‖2

Γ. (4.11)

Figure 4.38 (a) shows the evolution of SC with respect to the correlation length for the half-
space configuration (solid line) and for the homogeneous background configuration (dashed line)
(corresponding to εb = 1)46. When lc � λ the clutter can be homogenized which leads to a low
scattered field, and when lc � λ the large-scale spatial variation of the clutter does not perturb the
signal radiated by the targets as it is locally homogeneous. The most disturbing effect of the clutter
is expected for correlation lengths corresponding to the maximum of SC. Notice that the behavior
of SC with respect to the correlation length differs strongly depending on the configuration under
study. In the half-space configuration, the SC curve exhibits a sharp peak centered about lc = 0.1λ,
while in the homogeneous configuration, the SC curve exhibits a smooth behavior with a maximum
at lc ≈ 0.3λ. When lc = λref/10 and σf = 0.058, one obtains a CSR equal to 34%, 66% and 282%
for λ3 = 3λref , λ2 = 1.5λref and λref , respectively. In this case, due to the high level of noise, the
DORT fields at λref are not able to focus on the target far from the interface. One obtains only
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two fields focusing on the target close to the interface. On the other hand, at λ2 = 1.5λref and
λ3 = 3λref , the DORT method yields four focusing fields aiming at both targets.

The reconstruction obtained with HM-DORT and the frequency-hopping procedure for λ2 =
1.5λref and λ3 = 3λref using the four focusing incident fields is displayed in Fig. 4.38. The two scat-
terers are well localized but the smallest target close to the interface is under evaluated. Adding the
third wavelength λref in the frequency-hopping procedure with the four incident fields deteriorates
the reconstruction (not shown) because the additional data obtained with the third and fourth
DORT eigenvectors at λref correspond essentially to the clutter signature. Yet, by restricting at
λref the incident DORT fields to the first two eigenvectors and running the inversion with an initial
guess corresponding to the reconstruction obtained at 1.5λref , one ameliorates the reconstruction
of the target close to the interface while leaving unchanged the reconstruction of the target far
from the interface, Fig. 4.38.

In the last example, we consider a clutter with lc equal to 0.3λref . As expected in this case,
the CSR decreases with the wavelength. It is equal 339%, 64% and 41% for λ1 = 3λref = 10lc,
λ2 = 1.5λref and λref , respectively. The reconstruction obtained with the frequency-hopping pro-
cedure using the three wavelengths is shown in Fig. 4.39 (a) and Figs. 4.39 (c) and (d) in dashed
line. One observes that the scatterer far from the interface is under evaluated and that it is ac-
companied by ghost objects regularly placed along the z-axis. These oscillations indicate that
the frequency-hopping procedure is not optimal. Indeed, the reconstruction obtained at 3λref is
strongly perturbed by the clutter signature and this noisy initial guess compromises the following
inversions. Now, choosing another wavelength for starting the frequency-hopping procedure is not
easy. Taking a much larger λ, which ensures that the clutter signature is low, yields a poor recon-
struction, due to the lack of high spatial frequency information, which is basically useless in the
frequency-hopping procedure. Similarly, the smaller wavelengths which permit the diminution of
SC, are too close to 1.5λref and do not bring additional information. Thus, we decided to keep
the same wavelength range [λref , 3λref ] but used a finer discretization step. When six operating
wavelengths, 3λref , 2.5λref , 2λref , 1.5λref , 1.25λref , λref , are considered in the frequency-hopping
procedure, the reconstruction is ameliorated, as seen in Fig. 4.39 (b) and Figs. 4.39 (c) and (d) in
solid line. This example points out the limitation of the frequency-hopping procedure. Depending
on the clutter characteristics, its implementation (choice of the wavelengths, choice of the kept
incident fields in the inversion) must be adapted.

4.4.6 Influence of the Born approximation on focalization
and reconstruction

The HM-DORT discussed above is based on a non-linear algorithm. The synthetic data is gener-
ated rigorously, the total field is calculated by considering the polarization interaction inside the
scattering domain. In the inversion procedure, both the permittivity and the total field inside
the investigating domain are unknown and sought by the algorithm. While it is time-consuming
for calculating rigorously the total field, especially for a large number of subunits. Hence it is
meaningful to check the validity of the Born approximation in use of the DORT focusing fields in
the inversion procedure, similarly as the homogeneous case that we have discussed in Sec. 4.3.

4.4.6.1 Forward and inverse problem with Born’s approximation

In this subsection, we propose to test the DORT method under the Born approximation. Bearing
in mind that the scattered field equation is calculated with the Green’s function that accounts for
the interface, Eq. (1.21). While one does not need to resolve the self-consistent Eq. (1.33), the total
field is assumed to be equal to the incident field. For the inverse problem, we consider a simpler
linear inversion algorithm, using the same approximation as the forward problem, and the search
direction for the total field is set to zero.

We keep the same realization of the correlated noise as above. Referred to Eq. (4.6), the
computation error on Born’s approximation ErrBorn is 150%, 134% and 204% at the wavelength
λ1 = 3λref , λ2 = 1.5λref and λref , respectively. In this configuration, the coupling effect between
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Figure 4.38 : (a) Strength of the clutter scattered intensity, SC, versus lc/λ
for the half-space configuration (solid line) and for the homogeneous configuration
(dashed line). (b)-(d) Reconstructed permittivity obtained with HM-DORT and a
frequency-hopping procedure using only λ3 = 3λref and λ2 = 1.5λref . The clutter is
defined by a correlation length lc = 0.1λref and a standard deviation σf = 0.058 (b)
Cut in the (x, z) plane for y = 0.4λref . (c) Reconstructed permittivity with respect
to z at x = 0.5λref and y = 0.4λref . The blue solid curve denotes the actual
permittivity of the targets, the red dashed line corresponds to the reconstructed
profile obtained with HM-DORT and a frequency-hopping procedure restricted to
λ3 = 3λref and λ2 = 1.5λref . The black line indicates the reconstruction obtained
when the data obtained at λref for the two incident DORT fields focusing on the
target close to the interface are included in the frequency-hopping procedure. (d)
same as (c) but x = −0.5λref and y = 0.4λref . Note that the black line (not shown)
is superposed to the red one.
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Figure 4.39 : Reconstructed relative permittivity with lc = 0.3λref and σf =
0.058, using the HM-DORT Only the results obtained at the wavelength λref are
given here. (a) using three wavelengths, in the (x, z) plane for y = 0.4λref . (b)
same as (a) but using six wavelengths for the frequency hopping. (c) and (d)
the relative permittivity is plotted versus (c) z for x = 0.5λref and y = 0.4λref .
(d) z for x = −0.5λ and y = 0.4λref . The plain solid curves denote the actual
profiles of the scatterers. The green dashed lines denote the result obtained using
three wavelengths, and the red solid lines correspond to the results given using six
wavelengths.
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clutter and scatterers is negligible. While the notable value of ErrBorn indicates that the multiple
scattering effects within the clutter and within the scatterers are dominant.
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Figure 4.40 : Evolutions of the eigenvalues corresponding to the rigorous compu-
tation and the computation under the Born approximation, with the same config-
uration as Fig. 4.29 (circle curve, rigorous computation; cross curve, computation
under the Born approximation).

We observe from Fig. 4.40 the evolution of the eigenvalues. Under the Born approximation,
the plot of the eigenvalues on Fig. 4.40 (cross curve) exhibits four dominant eigenvalues. According
to the analysis above, the first two eigenvalues focus on the most echogeneous scatterer. The third
and the fourth eigenvalue correspond to the second echogeneous scatter. On the contrary, in the
case of the simulated date generated rigorously, only two eigenvalues are clearly separated from
other ones (circle curve). The following two eigenvalues corresponding to the second scatterer
are roughly of the same order as those belonging to the noise space. One can conclude that the
scatterers are easily recognizable under the Born approximation, because the multiple scattering
effects within the scatterers and within the clutter are not taken into account.
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Figure 4.41 : Same as Figs. 4.30 (a)-(c), while the synthetic data are generated
under the Born approximation, and a linear Inversion-DORT method is used in
the inversion procedure. (a) in (x, y) plane for z = 0.5λref . (b) in (x, y) plane for
z = −0.5λref . (c) in (x, z) plane for y = 0.4λref .

In Fig. 4.41, we plot the map of relative permittivity obtained with a linear inversion procedure
scheme, where the Born approximation is used for both the forward and inverse problem. We can
yet observe the profile of each scatterer in the imaging plane, while comparing with Fig. 4.30 (a)-
(c), the two scatterers are surrounded by enormous small ghosts, especially at the edge of the
investigating domain. The imaging resolution is greatly deteriorated using the linear algorithm,
confirmed quantitatively by Errχ equal to 468% (only 66% for the HM algorithm).
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4.4.6.2 Forward problem computed rigorously and the Born approxima-
tion for the inverse problem

Now, for the forward problem, the scattered field is calculated rigorously, the same manner as
mentioned in Sec. 4.4.3. The difference is that we consider a simpler linear inversion algorithm,
assuming that the total field equal to the incident field, and the search direction for the total field
is set to zero.
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Figure 4.42 : Same as Figs. 4.41 (a)-(c), except that the synthetic data are
generated rigorously.

Unfortunately, the linear HM-DORT fails to retrieve the two scatterers at the wavelength λref ,
in the case of the synthetic diffracted field generated rigorously, Figs. 4.42. Errχ = 851%, meaning
that the reconstruction is no longer accurate using the inversion technique under the classical Born
approximation. Up to now, we have checked the validity of Born’s approximation in the process of
using DORT method. In our configuration, it is required to calculate rigorously the scattered field
and use a non-linear algorithm for reconstructing scatterers, regardless of the computation time.

4.4.7 Conclusion

In this section, we have analyzed the performance of the HM-DORT for localizing and characteriz-
ing scatterers buried under a flat interface in a highly cluttered semi-infinite medium. This realistic
imaging configuration is plagued by a low numerical aperture due to the impedance matching be-
tween the antennas and the host medium. We have shown that the HM-DORT approach, which
uses only data obtained with the DORT incident fields that focus on the strongest scatterers, is
always more efficient than the classical inversion technique, where the entire of data are used, for
extracting and imaging the targets.

To diminish the reconstruction artifacts stemming from the small effective numerical aperture
of the imager, we have considered multi-frequency data and implemented a frequency-hopping
procedure. We have pointed out that the clutter effect depends strongly on the ratio between
the clutter correlation length and the wavelength. The frequency-hopping performance depending
strongly on the initial reconstruction at low frequency, its strategy (choice of the wavelengths,
choice of the DORT incident fields in the inversion procedure) must be adapted to the clutter
characteristics.

To avoid the wavelength adjustment of this sequential inversion procedure and to ameliorate
the reconstruction, a global multi-frequency reconstruction approach using the DORT incident
fields may be an interesting alternative.

4.5 Conclusions

In this chapter, we investigated the focalization ability of the DORT method on simulated data
under two different configurations in the time-harmonic regime, firstly, antennas lying in the same
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medium as the scatterers, and secondly, antennas and scatterers are separated by an interface. For
both of these two configurations, we have verified that using the HM-DORT inversion procedure, we
can obtain a better characterization of targets under test than with the HM. While in the presence
of the interface, we have to use the frequency-hopping approach to eliminate the oscillations due
to the fact the numerical aperture is greatly reduced. The focusing waves and subsequently the
reconstruction are dependent of the correlation length and of the standard deviation. We should
adapt the frequency-hopping strategy following the correlation length. We have also emphasized
the importance of using non-linear inversion algorithms and full-polarized data for achieving better
reconstructions.
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Introduction of PART III

Three-dimensional experimental results in
Tomographic Diffractive Microscopy

In the last chapters, we have presented the forward model and the inversion scattering
algorithm. We have provided that using a nonlinear iterative inversion method (HM),
combined with the DORT focusing technique, a quantitative characterization and ame-
liorate the signal-to-clutter ratio in the case of scatterers buried in cluttered medium was
achieved.
In this part, we propose to study the characterization ability of this combined method us-
ing experimental data. The DORT method has been applied in RADAR with microwave
data101 and also in optical imaging domain48. In our team (SEMOX, Insitut Fresnel), a
quite recent optical imaging technique, Tomographic Diffractive Microscopy (TDM) has
been developed experimentally in three-dimension, while in scalar configuration, meaning
that the illuminations are polarized along one single direction and the scattered field are
collected in the same projection. In this thesis work, we propose to apply the DORT
method in TDM technology. Thanks to DORT, scatterers are focalized selectively in
the case of a multi-target medium. The extra information around each scatterer can be
eliminated thanks to DORT. In particular, in the presence of disordered medium, the
signal-to-noise ratio can be ameliorated using DORT. Using the time-reversal concept, it
has been shown that an isotropic reconstruction can be realized by placing a mirror after
the focal point102. This concept could be applied in DORT for obtaining an isotropic
focalization.
As we have presented in Chap. 4, combining with DORT, it is important to use full-
polarized data for improving the imaging performance. In this part, firstly,a full-
polarization TDM technology will be provided in Chap. 5 and it will be combined with
the DORT method in Chap. 6.
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Chapter 5

Full-polarization technology in
tomographic diffractive

microscopy

This chapter is related to one publication:
1. T. Zhang, Y. Ruan, G. Maire, D. Sentenac, A. Talneau, K. Belke-
bir, P. C. Chaumet and A. Sentenac, Full-polarized tomographic diffrac-
tion microscopy achieves a resolution about one fourth of the wavelength,
Physical Review Letters, 111, 243904 (2013).
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5.1 Introduction

Tomographic Diffractive Microscopy (TDM) is a promising digital imaging technique. It consists
in recording (via an interferometric setup103–105 or using a wavefront sensor13, or an off-axis
holography technique106), the amplitude and phase of the scattered field for many successive
different illuminations. In the single scattering regime, the merging of the scattered data over
different incidences enables the TDM theoretically to reconstruct the sample permittivity with a
transverse resolution about one-fourth of the wavelength103,105, see Appendix F. Notice that in
conventional optical microscope107–109, the resolution is limited to half of the wavelength (Abbe’s
limit).

Remarkably, in two-dimension, a transverse resolution about λ/4 has been experimentally ob-
served on elongated objects110 with TDM. Yet, this achievement has never been evidenced on a
three-dimensional specimen. The most likely reason is that TDM does not account for the light
polarization effect in the image formation process. The holograms are obtained for one given polar-
ization state and the reconstruction procedures are based on scalar approximate models50,51,104. In
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three dimension, with only 20 different illumination angles, a transverse reconstruction resolution
of 400 nm can be provided experimentally49. This resolution corresponds exactly to the Rayleigh
limit of our microscope (0.6λ/NA ≈ 400 nm) with λ = 633 nm and NA=0.95, and is far from the
theoretical resolution limit achieved by TDM.

In this chapter, we sought to exploit the full potential of TDM by taking advantage of the light
polarization111,112. We will present the first experimental implementation of a TDM that records
and processes the vectorial field scattered by a sample (both amplitude and phase) for any incident
polarization state to yield the sample permittivity map.

5.2 Polarization resolved methods for TDM

In this section, we will present the retrieval of the measured full vectorial scattered field of the
sample, for any polarization state of the illumination (full-polarized TDM), with the help of the
Jones operator. The TDM setup is a modified reflection microscope in which an off-axis holography
technique has been introduced to recover the phase and amplitude of the field at the microscope
image plane, see Fig. 5.1. We chose the reflection configuration because it has been shown to
allow a significant improvement of the axial resolution98,102,113. A collimated laser beam (He-
Ne wavelength λ = 633 nm), controlled by a mirror mounted on step motors (Newport NSA12),
illuminates the sample through an air objective with NA = 0.95 (Zeiss Epiplan-Apochromat ×50)
under various angles of incidence.

For the experimental realization, two half wave plates HW1 and HW2 have been inserted in
the setup to adjust the polarization state for both the illumination beam and the reference beam,
where the reference beam is used to control the polarization state of the measured scattered field.
The experimental work has been done by Yi RUAN, and more precise experimental descriptions
have been given in his thesis work106. I will explain in detail how one links to the theoretical
vectorial fields calculated by the forward model.

Figure 5.1 : Schematic of the full-polarized TDM setup. M the rotative mirror.
BE the beam expander. D the diaphragm. BS the beam splitter. OL the objective
lens. P the pinhole. L1 the tube lens. L2 and L3 are the relay lenses (f ′ = 3.5
and 20 cm, respectively). HW1 and HW2 the half-wave plate on the incident field
and reference field, respectively.
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5.2.1 Measurement of the full vectorial scattered field

At the image plane of the microscope, overlooking the magnification factor, the field scattered by
the sample Esca, for a given illumination, reads as

Esca(r‖) =
∫

k‖<k0NA

1
γ

(esŝ+ epp̂) exp(ik‖ · r‖)dk‖, (5.1)

where ez denotes the optical axis of the microscope, k0 = 2π/λ, γ =
√

(2π/λ)2 − k2
‖, ŝ = ez × k̂,

p̂ = ŝ× k̂ with k = k‖ + γez, and (es, ep) are the complex amplitudes of the scattered plane wave
propagating along k, corresponding to ŝ and p̂ components, respectively.

Generally, the polarization states in the illumination and the detection bases are fixed by the
vertical and horizontal directions of polarizer, denoted by ŷ and x̂, respectively. In most of the
previous work of our group on 3D TDM technology13,25, all the measurements were conducted with
both the illumination and the detection bases polarized along ŷ direction (called ŷŷ configuration,
first letter indicating the direction of the illumination, and second one for the detection). Now for
realizing full-polarization and measuring the Jones operator, this procedure has to be repeated for
two independent incident polarization states (x̂, ŷ) and measured along two orthogonal directions
(x̂, ŷ). Hence, the full-polarized TDM mode requires four intensity measurements for each incident
angle (and possibly only two using Ref. 112), for example, ŷŷ, ŷx̂, x̂ŷ and x̂x̂, respectively, to
match the rigorously calculated theoretical scattered field. The amplitude and the phase of the
measured scattered field have to be calibrated, by using the specular reflected field49. It has to
be noted that there is no specular reflection for the measurements ŷx̂ and x̂ŷ. Thus, to avoid
turning off the specular reflection, one records with a CCD camera (Kappa DX4-1020FW), the
interference patterns between Esca and an off-axis reference wave which is successively polarized
along two different directions d̂1 and d̂2, as shown in Fig. 5.2, here, α = 45 degree. Processing
the holograms yield E · d̂1 and E · d̂2 from which (es, ep) for all k‖ such that k‖ < k0NA are
easily extracted. Then for each incident angle, the new four groups of measured scalar data are
defined as: Eŷd̂1

s;exp, Eŷd̂2
s;exp, Ex̂d̂1

s;exp and Ex̂d̂2
s;exp, where the superscript, for example, ŷd̂1 means that

the incident wave is oriented along the ŷ direction and the reference wave is polarized along the
d̂1 direction.

Figure 5.2 : The detection and the illumination state for full-polarization con-
figuration.

Once we get the scattered electric field with the incident field in the base ŷ or x̂, of any
polarization state (TM and TE mixed), we need to first perform the normalization procedure
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to match with the theoretical calculated field. Then we will decompose the normalized fields
corresponding to pure TM or TE illumination.

5.2.2 The normalization procedure

Note that this part is explained very technically. You can skip it for the first reading and move
directly to the reconstruction results.

The fluctuations of the laser source change the amplitude of the illuminations for different
incidences. The phase of the illumination beam is different when reaching the sample for different
illumination angles because the optical path of the illumination and reference beams varies for each
illumination. It is necessary to normalize the measured scattered fields f l, prior to performing the
non-linear inversion. The matching of the different scattered fields is based on a normalization
ensuring that each specularly reflected field matches (both in amplitude and phase) with that
theoretically calculated by the forward scattering model, at each illumination. This normaliza-
tion procedure implies that the permittivity of the substrate is known (note that ellipsometric
measurements can be performed at a known incidence angle by rotating polarizer to determine
the unknown complex reflection and transmission coefficients of the optical components present
between the source and the camera) and that the specular reflection has to be far stronger than
the field scattered in the same direction by the sample.

5.2.2.1 Amplitude normalization

The amplitude normalization procedure is done in the part of experimental processing proce-
dure49,106, which will be recalled briefly here. Note that the total field measured in the image
space for illumination number l is called f̃ l, to distinguish it from f l, the field transferred in the
Fourier space and used by the inversion algorithm.

The inversion assumes that the object is illuminated for each angle of incidence by a plane wave
with unit amplitude. The measured amplitudes ‖f̃ l‖ have therefore to be normalized according to
this hypothesis so that a correct estimation of the permittivity can be retrieved. The amplitude
normalization is moreover useful to correct the intensity fluctuations of the illuminating beam
that can occur from one illumination angle to another. It is performed for each illumination l by
multiplying f̃ l by the factor Ml :

Ml =
|γl|S

2π〈‖f̃ l‖〉S
, (5.2)

where γl = −k0 cos θl is the projection of the illumination wave vector on the optical axis of the
microscope (the minus sign is due to the reflection configuration), and S the surface of the field
of view that can be imaged on the CCD sensor. 〈‖f̃ l‖〉S is the mean field modulus averaged over
the field of view: as the object is small on the CCD image, it can be considered as the mean field
modulus reflected by the substrate. The multiplication by Ml ensures that the maximal value of
‖f l‖ in far field, which corresponds to the specular reflection, is equal to that scattered by a portion
of substrate of surface S when illuminated by a plane wave with unity amplitude, as calculated
by the forward scattering model. The Fresnel amplitude reflection coefficient on the substrate rl
for each illumination l is extracted from Eq. (5.2) and will be introduced in the following phase
normalization procedure.

5.2.2.2 Phase normalization

In the forward scattering model, the phase origin is placed on the substrate and in the middle of
the transverse dimensions of the investigating domain Ω, shown as Fig. 5.3. It means that for any
illumination angle, the phase of this incident beam is equal to zero at this position. Experimentally,
the phase origin is drifted and different for each illumination beam. This mismatch of phase caused
by the varied optical path must be corrected106. Here, we need firstly to normalize the amplitudes
and the phases of measured specular reflected fields. Then we add the term of the theoretical
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specular reflected fields (projected along two detected polarizers), obtained by the theoretical
incident field with amplitude |Atheo

inc | = 1 and ϕtheo
inc = 0.

Figure 5.3 : Position of the theoretical phase origin with respect to the substrate
and the object.

The theoretical incident plane waves polarized along TM and TE polarization, for each illumi-
nation, are represented respectively as

Eŝ
inc;theo = ŝ exp(ikinc · r), (5.3)

Ep̂
inc;theo = p̂i exp(ikinc · r), (5.4)

where the amplitude is equal to 1 and the phase origin ϕtheo
inc is taken to be equal to zero. Then

the reflected fields propagating along kref are represented as

Eŝ
ref;theo = rs ŝ exp(ikref · r), (5.5)

Ep̂
ref;theo = rp p̂r exp(ikref · r), (5.6)

where rp and rs are the Fresnel amplitude reflection coefficients corresponding to TM and TE
polarization, respectively.

An incident plane wave polarized along x-direction can be decomposed along TM and TE
polarization as

Einc;theo = −sinφincE
ŝ
inc;theo + cosφincE

p̂
inc;theo, (5.7)

where φinc is the angle between Einc;theo and p̂ direction, and the reflected field is represented as

Eref;theo = −sinφincE
ŝ
ref;theo + cosφincE

p̂
ref;theo, (5.8)

= (−sinφincrs ŝ+ cosφincrp p̂r) exp(ikref · r). (5.9)

Hence the phase of Eref;theo depends both of rs and rp and this phase should match the phase of
the experimental specular reflected field.

To normalize the phase, the procedure to follow is

Step 1:
Firstly, we define several parameters here. The simplified system is shown as Fig. 5.4 (a). In
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Figure 5.4 : Simplified geometry of the problem. (a) The whole experiment is
divided into two parts, part-1 and part-2. OL: microscope objective; L1: associated
tube lens. (b) Rotation around axis u = kinc;1 ∧ kinc;2.

part-1, after the deflection of the mirror and before the transmission through the objectives and
lens, θinc;1 ≈ 0, the illumination beam is supposed to be propagating along the optical axis. The
incident wave vector kinc;1(θinc;1, φinc;1) ≈ ez. The incident fields can be polarized along vertical
direction or horizontal direction

P theo
inc;1 ≈

{
ŷ vertical direction,
x̂ horizontal direction.

(5.10)

Step 2:

After passing through objectives and tubes lens, we illuminate the sample with a parallel beam
over a wide range of incidence angles θinc;2. The wave vector kinc;2(θinc;2, φinc) in part-2 of the
plane wave illuminating the samples

kinc;2 =

 sinθinc;2cosφinc

sinθinc;2sinφinc

cosφinc

 =

 kx
inc;2

ky
inc;2

kz
inc;2

 , (5.11)

where θinc;2 is the illumination angle in the sample plane. We note that the objective conserves
the modulus of the plane wave and rotates the electric field vector direction around u, see Fig. 5.4.

For calculating the incident field vector P theo
inc;2 in part-2 with any polar angle, we use the

rotation matrix. In three-dimensional space, every rotation can be interpreted as a rotation by a
given angle about a single fixed axis of rotation, seeing Fig. 5.4 (b). The direction u that is left
fixed by the rotation is defined as here

u =

 ux

uy

uz

 =
kinc;1 ∧ kinc;2

‖kinc;1 ∧ kinc;2‖
. (5.12)

The matrix for a rotation by θinc;2 about u is

R =

[
u2

x+(1−u2
x)cosθinc;2 uxuy(1−cosθinc;2)−uzsinθinc;2 uxuz(1−cosθinc;2)+uysinθinc;2

uxuy(1−cosθinc;2)+uzsinθinc;2 u2
y+(1−u2

y)cosθinc;2 uyuz(1−cosθinc;2)−uxsinθinc;2

uxuz(1−cosθinc;2)−uysinθinc;2 uyuz(1−cosθinc;2)+uxsinθinc;2 u2
z+(1−u2

z)cosθinc;2

]
, (5.13)
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where det(R) = 1 and R−1 = Rt, the inverse of this matrix is its own transpose.
Now, the incident field in part-2 can be calculated by applying the rotation matrix, written as

below
P theo

inc;2 = R P theo
inc;1. (5.14)

Step 3:

The incident field P theo
inc;2 in part-2 can be transferred from the base R(x̂, ŷ, ẑ) to the base

S(ŝ, p̂), by applying a transfer matrix as

SP
theo
inc;2 = M RP

theo
inc;2, (5.15)

where M is a 2 × 3 matrix, defined as

M =
[

cosθinc;2cosφinc cosθinc;2sinφinc −sinθinc;2

−sinφinc cosφinc 0

]
, (5.16)

Then, the reflected field SP
theo
ref;2 in part-2 is calculated as

SP
theo
ref;2 = f(SP

theo
inc;2, rs, rp), (5.17)

where f(SP
theo
inc;2, rs, rp) is the Fresnel reflectivity depending on SP

theo
inc;2 and the polarization state,

as shown in Eqs. (5.5) and (5.6).
Then we go back to the base R(x̂, ŷ, ẑ), by performing

RP
theo
ref;2 = M ′

SP
theo
ref;2, (5.18)

where M ′ is defined as

M ′ =

 cosθinc;2cosφinc −sinφinc

cosθinc;2sinφinc cosφinc

−sinθinc;2 0

 . (5.19)

Step 4:

The reflected field is finally received on CCD camera. After the lens in Fig. 5.1, the polar angle
θinc;1 is closed to zero. We can perform a similar projection as

P theo
ref;1 = R−1P theo

ref;2. (5.20)

Seeing Fig. 5.2, the two polarizers for detection d̂1 and d̂2 are represented as

d̂1 = −sinα x̂+ cosα ŷ, (5.21)
d̂2 = cosα x̂+ sinα ŷ. (5.22)

The experimental specular reflected field measured on CCD camera, i.e. for illumination polarized
along x̂ direction and detection polarized along d̂1, can be expressed as

Ex̂d̂1
spec;mes = Ex̂

ref;exp · d̂1 = |Aexp
spec|exp(iϕexp

spec), (5.23)

where |Aexp
spec| and ϕexp

spec are modulus and phase of the specular field Ex̂d̂1
spec;mes measured on CCD

camera.
In order to match the measured scattered field with the theoretical scattered field, using the

measured specular field as reference, we perform a normalization procedure as

Ex̂d̂1
sca;cor = Ex̂d̂1

sca;mes ×
P theo;x̂

ref;1 · d̂1

Ex̂d̂1
spec;mes

. (5.24)
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Similarly, all of other measured scattered fields Ex̂d̂2
sca;mes, E

ŷd̂1
sca;mes and Eŷd̂2

sca;mes can be corrected as
Eq. (5.24), denoted by Eŷd̂1

sca;cor, E
ŷd̂2
sca;cor, E

x̂d̂1
sca;cor and Ex̂d̂2

sca;cor.
For x̂-orientation incident field, the corrected scattered fields projected along horizontal and

vertical direction are written as (where α denotes the angle between x̂ and d̂2 for detections)

Ex̂x̂
sca;cor = −sinα Ex̂d̂1

sca;cor + cosα Ex̂d̂2
sca;cor, (5.25)

Ex̂ŷ
sca;cor = cosα Ex̂d̂1

sca;cor + sinα Ex̂d̂2
sca;cor. (5.26)

Similar as above, for ŷ-orientation incident field, the corrected scattered fields projected along
horizontal and vertical direction are written as

Eŷx̂
sca;cor = −sinα Eŷd̂1

sca;cor + cosα Eŷd̂2
sca;cor, (5.27)

Eŷŷ
sca;cor = cosα Eŷd̂1

sca;cor + sinα Eŷd̂2
sca;cor. (5.28)

Notice that if the incident field is in pure TM or TE polarization, then the reflectivity f(SP
theo
inc;2,

rs, rp) in Eq. (5.17) is simplified into a scalar coefficient. The reflected field in part-2 can be written
as

RP
theo
ref;2 = M ′

SP
theo
ref;2,

= M ′f(SP
theo
inc;2, rs, rp) SP

theo
inc;2,

= M ′f(SP
theo
inc;2, rs, rp) M RP

theo
inc;2,

= f(SP
theo
inc;2, rs, rp)RP

theo
inc;2.

(5.29)

Finally, we get the same representation as Eqs. (5.5) and (5.6). In scalar case, we calculate the
specular reflected field as Eqs. (5.5) and (5.6) in Ref. 13. Otherwise, we have to perform the
complicated projection procedure involved with full-polarized data, using the rotation matrix R.

5.2.2.3 Decomposition in TM and TE polarizations

Once we get the scattered fields by illuminations in the base (x̂, ŷ), one can easily obtain the scat-
tered field for the illuminations along TM and TE polarizations. The incident fields after passing

Figure 5.5 : Orientation of the TM and TE polarizations compared to the vertical
ŷ and horizontal x̂ directions. φinc is azimuthal angle in spherical coordinate
system.
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through objective and tube lens, seeing Fig. 5.5, are decomposed for TM and TE polarizations as(
Ep̂

inc

Eŝ
inc

)
=
(

cosφinc;2 sinφinc;2

−sinφinc;2 cosφinc;2

)(
Ex̂

inc

Eŷ
inc

)
, (5.30)

where Ep̂
inc and Eŝ

inc are normalized incident fields polarized along TM and TE polarization,
respectively.

The vectorial scattered fields Eŷ
cor and Ex̂

cor can be deduced from the corrected scattered fields
measured on CCD camera Eŷx̂

sca;cor, E
ŷŷ
sca;cor, E

x̂x̂
sca;cor and Ex̂ŷ

sca;cor.
The linear combination relationship between the incident field in the base (x̂, ŷ) and (p̂, ŝ) is

same for each component of the scattered field. Now, for each illumination angle, we can write as(
Ep̂

cor

Eŝ
cor

)
=
(

cosφinc;2 sinφinc;2

−sinφinc;2 cosφinc;2

)(
Ex̂

cor

Eŷ
cor

)
. (5.31)

Ep̂
cor and Eŝ

cor is the scattered field corresponding to pure TM and TE incident polarization,
respectively.

With this normalization procedure, for any illumination angle polarized along x̂ or ŷ [even
if it is not in (x, z) plane or (y, z) plane] and for two measurements on CCD camera in the base
(d̂1, d̂2), we can decompose the measured scattered fields into two parts, corresponding to TM and
TE polarization, respectively. The vectorial scattered fields are obtained for both TM and TE
polarizations, with unit incident amplitude and phase angle fixed at the substrate surface.

5.2.3 Influence of polarization measurements

For comparison purposes, we also consider the classical implementation of TDM in which the
incident and reference polarization directions are the same, either x̂ or ŷ. In these configurations
(hereafter indicated by x̂x̂ or ŷŷ), the data consists of the scalar projection of the scattered field
on the incident polarization state. Thus, there is four times less data in the x̂x̂ or ŷŷ modes than
in the full-polarization mode. In this section, we present new reconstructions for the objects using
different polarization configurations for the measurements:

1. ŷŷ

2. x̂x̂

3. combining ŷŷ and x̂x̂

4. combining ŷd̂1, ŷd̂2, x̂d̂1 and x̂d̂2 to retrieve the full vectorial field for both TE and TM
illuminations

5. combining ŷd̂1, ŷd̂2, x̂d̂1 and x̂d̂2 to retrieve the full vectorial field for TE illuminations
only

6. combining ŷd̂1, ŷd̂2, x̂d̂1 and x̂d̂2 to retrieve the full vectorial field for TM illuminations
only

The experimental setup is shown in Fig. 5.1. All of the samples that we used were fabricated
by Anne Talneau at the Laboratoire de Photonique et Nanostructures de Marcousssis.

In this study, the samples to be imaged are deposited on a silicon substrate and are described
by a relative permittivity contrast χ(r) with respect to the planar geometry13,98. The unknown
sample permittivity contrast is reconstructed from the TDM data using the HM based on a rigorous
vectorial electromagnetic model of the scattered far field (es, ep), which, in particular, accounts for
the substrate82, described in Sec. 1.4.3 and 2.2.4. To improve the reconstruction, the unknown
permittivity contrast in the investigating domain Ω is assumed to be real and positive. Note that
the method is adapted to any TDM data. In the full-polarization mode, the cost function involves
the full vectorial field scattered by the sample whereas in the x̂x̂ or ŷŷ mode, it involves only the
projection of the scattered field.
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(b)(a)

Figure 5.6 : (a) Sample geometry. D =150 nm and h =150 nm. (b) Wide-field
image of the sample obtained using spatially incoherent illumination: details of
the object are not resolved.

5.2.3.1 Resin cylinders with diameter 150 nm and height 150 nm

For investigating the performance of our setup, we consider a sample made of four h = 150 nm high
resin cylinders with diameter D = 150 nm and relative permittivity ε = 2 deposited on a planar
Si substrate of relative permittivity 15 + i0.15, and centered at the summits of a square with sides
300 nm along x̂ and ŷ as depicted in Fig. 5.6 (a). The scattered far field was measured in both
the full-polarized and scalar (x̂x̂, ŷŷ) modes for 10 incident directions in the (x, z) plane and 10
in the (y, z) plane with inclined angles varying from −50◦ to 50◦. With this angular configuration,
the Rayleigh limit of the microscope is about 0.6λ/NA ≈ 400 nm, i.e. well above the cylinders
interdistance. It is observed in Fig. 5.6 (b) that, unsurprisingly, the four cylinders can not be
distinguished on a classical wide-field microscope image (here obtained by summing the sample
field intensities for all the illuminations).

We first analyze the achievement of a classical TDM implementation by processing the scalar
ŷŷ data with the usual inverse Fourier transform algorithm103. The latter relies on a scalar,
free-space (no substrate) single scattering model which states that the far field scattered in the
k direction by a sample illuminated by a plane wave with wave vector kinc is proportional to
the three-dimensional Fourier transform of χ(r) taken at k − kinc. Theoretically, in a noise-free
configuration, the transverse image resolution should be about 0.25λ/NA ≈ 170 nm with our angle
configuration, i.e. below the rods center interdistance105. Yet, it is seen in Fig. 5.7 (a) that the
simple inversion scheme fails in retrieving the sample. Its noise sensitivity (due to the weak number
of incidences) and its model errors are prohibitive for imaging such small objects. On the other
hand, applying the iterative inversion method to the same scalar data provides a much better
sample estimate, by processing the scalar x̂x̂ or ŷŷ data, shown in Figs. 5.7 (b) and (c). The
cylinders height is now accurately retrieved. However, their shapes are strongly elongated along
the ŷ axis for x̂x̂ data, Fig. 5.7 (b), and similarly, they are elongated along the x̂ axis for ŷŷ data,
see Fig. 5.7 (c). This resolution anisotropy is a direct consequence of the incident and reference
polarization choice, as observed in Ref. 114, and will be explained below. Here, we also Errχ to
assess quantitatively the quality of reconstruction, defined as Eq. (4.8). For the only measured
scalar data x̂x̂ and ŷŷ, the reconstruction error Errχ is 76% and 72%, respectively.
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Figure 5.7 : Sample reconstructions obtained from the scalar ŷŷ and x̂x̂ data.
(a) Longitudinal and transverse cuts of the three dimensional image given by a
direct inversion method based on a free-space scalar model, using the scalar ŷŷ
data. (b) Longitudinal and transverse cuts of the relative permittivity estimation
given by the HM algorithm using the scalar ŷŷ data. (c) Same as (b) while using
the scalar x̂x̂ data.

We now turn to the reconstructions obtained with vectorial data stemming either from the
combined scalar x̂x̂ and ŷŷ data, Figs. 5.8 (a)-(c), or the full-polarized vectorial mode, Figs. 5.8 (d)-
(f). In both cases, the four cylinders are accurately retrieved with isotropic resolution. The full-
polarized vectorial data yielding a slightly better quantitative estimation of the permittivity level
with Errχ = 56% than the combined x̂x̂ and ŷŷ data (Errχ = 63%). Note that the resolution,
defined as the full width at half maximum of the reconstructed permittivity peaks, Figs. 5.8 (c)
and 5.8 (f), is about one fourth of the wavelength.
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Figure 5.8 : Sample reconstructions obtained by the iterative inversion method
based on a rigorous vectorial model of the field, (a)-(c) from the combined x̂x̂ and
ŷŷ data. (d)-(f) from the full-polarized vectorial data. (a) and (d) (x, y) section.
(b) and (e) (y, z) section taken along the dashed line in (a) and (d). (c) and (f)
reconstructed permittivity along the dashed line in (b) and (e). The full width
at half maximum of the reconstructed permittivity averaged over the four dots is
slightly below half the classical Rayleigh criterion.

The role of the incident and reference polarization states on the image resolution requires a
careful analysis. Indeed, when single scattering is dominant (which is the case for this sample),
the scalar x̂x̂ or ŷŷ data give access to the sample permittivity Fourier coefficients within the
same Fourier domain as the vectorial full-polarized data98. Hence, the resolution of the image
depends only on the ability to extract, from noisy data, the permittivity Fourier coefficients at the
highest accessible spatial frequencies. The latter are conveyed by the far field scattered at high
angles, namely for large k − kinc. Now, in presence of a substrate, the far field behavior in these
directions significantly differs depending on the incident polarization state. In Fig. 5.9, we plot
the scattered far field modulus in the k‖ plane obtained experimentally and theoretically when
the sample is illuminated under 50◦ in the (x, z) plane with a TM-polarized (corresponding to the
x̂-direction for the incident half-wave plate) and TE-polarized (corresponding to the ŷ-direction)
plane waves. In both cases, we have verified that with a larger illumination angle, we can detect a
diffraction lobe at higher spatial frequencies, which guarantees the imaging resolution. We observe
that the back scattered field is about twice bigger with the TM-polarized incident wave than with
the TE-polarized incident wave. The better signal to noise ratio at high angles obtained with
TM-polarized incident waves explains the better resolution along the ŷ direction that is observed
in Fig. 5.7 (d).

To confirm this interpretation, we plot, in Fig. 5.10, the relative permittivity map reconstructed
by the iterative inversion method from the scattered vectorial field obtained using only TE-polarized
incident waves, Figs. 5.10 (a) and (b), or only TM-polarized incident waves, Figs. 5.10 (c) and (d).
As expected, the TM-polarized mode yields an accurate sample reconstruction (Errχ = 69%),
with the profile similar to that of the full-polarized mode, while the TE-polarized mode provides
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(a)

(c)

(b)

(d)

Figure 5.9 : Experimental (a)-(c) and theoretical (b)-(d) modulus of the far field
scattered by the sample illuminated in the (x, z) plane under 50◦ of incidence.
The scattered field is normalized by the incident magnitude times 108. The black
disk on the left indicates the non-exploitable angular domain about the specular
reflection. (a)-(b) the incident wave is TE-polarized. (c)-(d) the incident wave
is TM-polarized. One observes on the right of the plots that the back scattered
field amplitudes, which convey the highest spatial frequency sample information,
are twice bigger in TM-polarization than in TE-polarization.

a totally blurred image(Errχ = 75%). Note that, with our specific illumination configuration,
the combined x̂x̂ and ŷŷ data include that corresponding to TM-polarized illumination, which
explains the accuracy of its related reconstruction, Figs. 5.8 (a)-(c).
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Figure 5.10 : (x, y) (a) and (d), (x, z) (b) and (e) and (y, z) (c) and (f) sections
of the reconstructed permittivity given by the iterative ‘rigorous’ inversion method
from the measured far field. (a)-(c) with TE-polarized incident waves. (d)-(f) with
TM-polarized incident waves. The superiority of TM illumination for imaging the
sample is evidenced.

5.2.3.2 Dielectric dodecagon structure made of 12 resin rods

Now, in order to confirm the potential of the full-polarized TDM technology, we consider a more
complex sample made of twelve resin rods of width 100 nm, length 300 nm and height 140 nm
radially placed at the summit of a dodecagon (Fig. 5.11 gray map). We consider eight directions of
incidence, defined by a fixed polar angle θinc = 60◦ and an azimuthal angle φinc regularly spaced
within 2π. This illumination scheme corresponds typically to that encountered in a dark-field
microscope. The synthesized dark-field microscope image, obtained by summing the scattered
intensities recorded at the image plane for all the illuminations, displays a simple ring with appro-
priate inner and outer radius without any hint of the rods presence (Fig. 5.11 hot map). On the
other hand, the full-polarized TDM recovers the twelve rods, Fig. 5.12 (a), demonstrating a reso-
lution about 160 nm (about λ/4), similar to that obtained with the cylinder. The reconstructed
permittivity taken along a circle passing trough the middle of the rods demonstrate that the tech-
nique is able to distinguish the rods whatever their orientation and even when their interdistance
is smaller than one-fourth of the wavelength. On the contrary, when sole the combined x̂x̂ and ŷŷ
data are used, one observes a significant deterioration of the reconstruction as compared to that
obtained with the full-polarized data.
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Figure 5.11 : Transmission electronic microscope image (gray map) and dark-
field optical microscope image (hot map).

(a) (b)

300nm 300nm

300nm 300nm

(c) (d)

Figure 5.12 : (a) Reconstructed permittivity averaged over the sample’s height
using full-polarized TDM data. (b) Reconstructed permittivity averaged over the
sample’s height using combined x̂x̂ and ŷŷ data. (c) Reconstructed permittivity
averaged over the sample’s height using scalar ŷŷ data. (d) Reconstructed permit-
tivity averaged over the sample’s height using scalar x̂x̂ data.

To further illustrate the importance of getting the full-polarized data, we plot in Fig. 5.13 (a),
the reconstruction obtained with the combined x̂x̂ and ŷŷ data and that obtained with the full-
polarized data, along the dashed circle of Fig. 5.12. This observed anisotropy of resolution is due
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to the absence of the cross polarization in the x̂x̂ and ŷŷ data, and in agreement with the analysis
conducted for four cylinders of diameter 150 nm.

The reconstruction of the dodecagon sample using only the scalar x̂x̂ or ŷŷ data is illustrated
in Figs. 5.12 (c) and (d) and Fig. 5.13 (b). We observe that the x̂x̂ and ŷŷ data fail to reconstruct
the rods oriented parallel to the other polarization, and is worse than that obtained with the
combined x̂x̂ and ŷŷ data.
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Figure 5.13 : Permittivity along the blue dashed circle in Fig. 5.12. (a) Blue
plain line the full-polarized data and red dashed line the combined x̂x̂ and ŷŷ data.
(b) Blue plain line the scalar ŷŷ data and red dashed line the scalar x̂x̂ data.

5.3 Conclusions

In conclusion, we have developed a three-dimensional TDM microscope that exploits all the infor-
mation accessible via the diffraction process (intensity, phase and polarization state of the scattered
field for any possible illumination within the numerical aperture of the objective). The full-polarized
information is obtained with four intensity measurements per incident angle and special care must
be taken to calibrate properly the measured scattered fields. In the single scattering regime, this
ultimate full-polarization microscope is able to reconstruct permittivity maps with a resolution
about one-fourth of the wavelength. The illuminations with TM-polarization can give a better
reconstruction resolution than TE-polarization, one reason is that the intensity of the scattered
field is larger with TM-polarization than with TE-polarization when the sample is deposited on a
substrate, for large incident angles. The better resolution stems from in TM-polarization than in
TE. We have shown that characterizing a sample with a complex structure (dodecagon structure),
the full polarized data was necessary to obtain a resolution about one-fourth of the wavelength.



Chapter 6

Application of DORT in
tomographic diffractive

microscopy

Contents
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.2 Selective imaging and characterizing problem in TDM . 106

6.2.1 Four identical resin cylinders in a symmetrical geometry . 107

6.2.2 Four resin cylinders of different sizes distributed in a large
domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.1 Introduction

In chapter 4, we have tested the focalization ability of the DORT method in three-dimensional
cluttered medium. The information on ‘bright’ scatterers can be extracted from the surrounding
medium owing to DORT. Each significant eigenvalue is associated to one scatterer in single scat-
tering regime, depending on the polarization state of illuminations. Selective focalization can be
realized by numerically backpropagating the corresponding eigenvector. Then, the investigating
domain for each scatterer can be determined by observing the intensity map generated by the
eigenvector. Using the combined HM-DORT procedure, we can get a better characterization of
targets than HM only, and the calculation time can be drastically reduced due to the reduction of
illumination numbers. All of these results were based on simulated data.

In chapter 5, we presented a full-polarization TDM able to measure the vectorial field scat-
tered by a sample for any incident polarization state. The full-polarized microscope enables to
reconstruct the sample permittivity map with a resolution about one-fourth of the wavelength
whatever the direction in the transverse plane. This achievement is superior to all previous TDM
realizations13,49. In this chapter, we propose to use the vectorial experimental data provided by
TDM to test the DORT method presented in chapter 4. Note that we have shown that HM-DORT
procedure yielded a better reconstruction when using vectorial data than when using scalar data
only .

With the classical TDM reconstruction procedure (HM), the investigating domain is taken
large enough to include the whole sample. If the latter is made of a few small scatterers that are
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far from one another this choice leads to an important useless time-consuming inversion procedure.
Therefore, it is important to detect and localize the scatterers forming the sample prior to apply
any inverse scattering algorithm. To solve this computation burden, we propose to use the DORT
method to localize a specific scatterer. Then we define a ‘bright’ region around it to form a
investigating domain dedicated to this target. Last, we apply the HM-DORT procedure in the
investigating domain to retrieve more precisely the permittivity map of the target

6.2 Selective imaging and characterizing problem

in TDM

Three steps are required1 to apply the DORT method in the experimental setup of TDM. First,
we need to calculate the scattering matrix K from the scattered field measured by the TDM,
see Chap. 5. After processing, one obtains the vectorial field scattered by the sample for l =
1, 2, · · · , N different incident angles and two incident polarization states TE (s) and TM (p), for
N observation directions (corresponding to N pixels of the camera). The measured scattered fields
can be decomposed into two parts, Esca

s and Esca
p , corresponding to the incident field in pure TE

(s) and TM (p) polarization. Then, the measured vectorial scattered fields can be further projected
along TM and TE polarization. The scattering matrix K is reconstructed in a different way from
Chap. 4, where the antennas take three different orientations (x, y and z). In TDM, the scattered
field is approximately a transverse plane wave in far field region. So for each incident angle i, at
the receiving position j, four different groups of data are measured, as Kpp

ij , Kps
ij , Ksp

ij and Kss
ij .

The first letter of the superscript indicates the polarization state of the illumination (TM or TE),
and the second letter indicates the projection of the vectorial scattered field on the polarization
state TM or TE. Then we can construct a scattering matrix K of dimension 2N × 2N .

K =



Kpp
11 Kpp

12 . . . Kpp
1N Kps

11 Kps
12 . . . Kps

1N

Kpp
21 Kpp

22 . . . Kpp
2N Kps

21 Kps
22 . . . Kps

2N
...

...
. . .

...
...

...
. . .

...
Kpp

N1 Kpp
N2 . . . Kpp

NN Kps
N1 Kps

N2 . . . Kps
NN

Ksp
11 Ksp

12 . . . Ksp
1N Kss

11 Kss
12 . . . Kss

1N

Ksp
21 Ksp

22 . . . Ksp
2N Kss

21 Kss
22 . . . Kss

2N
...

...
. . .

...
...

...
. . .

...
Ksp

N1 Ksp
N2 . . . Ksp

NN Kss
N1 Kss

N2 . . . Kss
NN


. (6.1)

The second step is the eigenvalue decomposition of the time reversal operator L = K†K.
In theory, the scattering matrix K is strictly symmetrical (due to the reciprocity theorem), see
Chap. 3. In the experimental configuration however, this is not the case. The non-symmetrical
behavior can be corrected by replacing each element Kij , by 1

2 (Kij +Kji)95. If one performs the
singular value decomposition on the matrix K, there is no need to care about this non-symmetric
character115. Here, we did not modify the data and kept the non-symmetric K matrix for building
the time reversal operator and calculating the eigenvalues of the TRO. It is known that in scalar
configuration, for one single point-like scatterer, there exists one significant eigenvalue of the time-
reversal operator. According to the analysis in Chap. 3, with TM and TE illumination together, it
is likely that each independent point-like scatterer yields two dominant eigenvalues. However, when
complex configurations are considered, the number of eigenvalues will depend on the size of the
scatterer, the polarization state of the illumination and the property of the background medium,
etc. Thus, one must give a specific attention to the determination of the significant eigenvalues.

The third step is the backpropagation of each eigenvector. This procedure can be accom-
plished either numerically or experimentally. The experimental backpropagation can be realized
by generating a new incident pulse with spatial light modulator, with the phase modulated by the
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eigenvector48, and we can observe the localization map on the CCD camera at the image plane.
The numerical backpropagation can also be simulated if the propagating medium is known.

In this chapter, we used the simulation of the backpropagated eigenvectors of the time reversal
operator to localize the different scatterers forming the sample and applied the HM-DORT to
characterize more quantitatively their shape and permittivity.

6.2.1 Four identical resin cylinders in a symmetrical geom-
etry

We first consider a symmetrical structure, where the sample is made of four h = 150 nm high
resin rods with diameter D = 500 nm and relative permittivity ε = 2 deposited on a planar
silicon substrate of relative permittivity 15+ i0.15. The four cylinders are centered at the summits
of a square with sides 1 µm. The structure of sample is similar as Fig. 5.6 (a). The sample is
imaged with the TDM setup described in Chap. 5. This first experiment will help us to understand
what happens if the different targets have the same ability of diffraction. For this experiment, we
consider 88 different plane wave illuminations. The polar angle (angle between the incident vector
and the z-axis) θmax

inc = 57◦, and the azimuthal angle φinc is evenly distributed between 0 and 360◦.
The size of the scatterer is of the same order as the wavelength of illumination, so we are in the
resonance domain. The investigating domain is set as 2 µm × 2 µm × 0.4 µm. The scattered
fields are measured for both TM and TE incident polarizations. In this experiment, the scattered
field along the directions that are close to the specular reflection direction is masked by the huge
specular reflection due to the silicon substrate and must be discarded, see Fig. 6.1 (a). Thus, the
components of matrix K whose receiving position is inside the specular reflection region are set
to zero, shown as Fig. 6.1 (b). Then the time reversal operator L is constructed and diagonalized.
The eigenvalues distribution is shown in Fig. 6.2.

(a) (b)

Figure 6.1 : Experimental modulus of the far field scattered by the sample illumi-
nated in the (x, z) plane under 17◦ of incidence, (a) with the specular reflection,
(b) without the specular reflection.
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Figure 6.2 : Eigenvalue of the time reversal operator in presence of four equal
resin cylinders, using both TM and TE illuminations.

From Fig. 6.2, one observes that the largest eight eigenvalues are of the same order and signifi-
cantly greater than the other eigenvalues. We expect that these eight eigenvalues correspond to the
four targets. The following eigenvalues correspond either to that of the antisymmetric eigenvectors
linked to the targets, or to the noise space.
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Figure 6.3 : Intensity map in the investigating domain formed by the eight
eigenvectors of the TRO related to the eight largest eigenvalues, in (x, y) plane for
z = 200 nm, with four identical cylinders deposited on the substrate.

Figure 6.3 shows the intensity map in the (x, y) plane for z = 200 nm, generated by the eight
eigenvectors corresponding to the largest eight eigenvalues. In an ideal experiment without noise,
each eigenvector should generate a field focusing simultaneously on the four targets95. Experimen-
tally, however, this degenerate situation is disturbed by the measured noise. For some eigenvectors,
the modulus of the backpropagated field is maximum on several cylinders i.e. corresponding to
an incomplete degenerate case. For some other eigenvectors, the modulus of the backpropagated
incident fields is maximum exclusively on one scatterer, i.e. a complete non-degenerate case, see
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Fig. 6.3 (e). Thus, as it stands, the backpropagation of the eigenvectors does not permit a selec-
tive focalization on each scatterer. Yet, the scatterers being sufficiently well resolved, a selective
focalization can be obtained by forming an appropriate linear combination of the different eigen-
vectors95, as described in Appendix D. By forming a linear combination of the eight eigenvectors
we were able to generate four incident fields that focused selectively on each of the four bright
spots that were observed in Fig. 6.3. The selective focusing field on each scatterer is presented in
Fig. 6.4. In the (x, y) plane, the intensity of the incident focusing field presents a ‘maximum’ in the
region where the scatterer is. In the (x, z) plane, the focusing spot is elongated along z-direction,
as shown in Figs. 6.4 (e)-(h). The transverse focusing width is about λ/2, centered at z = 200 nm.
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Figure 6.4 : Intensity map in the investigating domain formed by the four linear
combined eigenvectors. (a)-(d) in (x, y) plane for z = 200 nm. (e)-(h) in (x, z)
plane for y = 500 nm [(e) and (h)] or y = −500 nm [(f) and (g)]. The four
identical cylinders are focused selectively.

To ameliorate the characterization of a given target, we then apply the HM-DORT inversion
procedure with the only one incident field that focuses on that target. The investigating domain
is defined from the intensity level of the focusing incident field. It is restricted to a small domain
about the scatterer and plotted as a green line in Fig. 6.4. The height of the investigating domain
in the z-direction is 0.4 µm. This procedure is repeated for the four scatterers.
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Figure 6.5 : Reconstructed permittivity distribution, (a)-(d) in (x, y) plane for
z = 100 nm. (e) and (h) in (x, z) plane for y = −500 nm. (f) and (g) in (x, z)
plane for y = 500 nm.

The reconstruction result with the HM-DORT procedure is shown in Fig. 6.5. We observe that
owing to the HM-DORT procedure, the targets are better localized in especially in the z-direction.
The real height of the scatterers can be now be inferred from the reconstructed permittivity map
with a good accuracy. On the contrary, the DORT method is totally unable to estimate the
dimension of the target along z-direction.

6.2.2 Four resin cylinders of different sizes distributed in a
large domain

The first example that we have considered was a symmetrical structure made of four identical
scatterers which required to form a linear combination of eigenvectors to focus on each scatterer
selectively. Now, consider a configuration in which the scatterers have different scattering cross
section so that each eigenvector is associated to sole one scatterer.
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Figure 6.6 : Sample geometry in the transverse cut plane, composed of four
different resin cylinders.

The sample is described in Fig. 6.6. It is composed of four different resin cylinders, with same
permittivity and same height h = 150 nm deposited on a Si substrate. The radius of these cylinders
are 100 nm, 150 nm, 200 nm and 250 nm respectively. The largest scatterer has the strongest
scattering cross section. The experiment is conducted with 88 illuminations, with θmax

inc = 61◦, and
φinc is evenly distributed between 0 and 360◦. To avoid setting the components of K which are
close to the specular region to zero, as in Sec. 6.2.1, we conducted two measurements, one with the
sample and one without the sample (sole the silicon substrate). By subtracting these two fields we
were able to restitute the scattered field in the specular region.
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Figure 6.7 : Eigenvalue of the time reversal operator in presence of four different
resin cylinders, with both TM and TE illuminations.

The distribution of the eigenvalues of the time reversal operator is presented in Fig. 6.7. We
observe six eigenvalues that are of the same order and significantly larger than the others. The
following eigenvalues decay smoothly down to the 15-th eigenvalue. The remaining eigenvalues
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are much smaller and are clearly attributed to the noise space. In the following, we consider only
the first 16-th eigenvalues. In Fig. 6.8 we plot the intensity map formed by the corresponding 16
eigenvectors.

(a) (d)(c)

(e) (f) (h)(g)

(i) (j) (k) (l)

(m) (o) (p)(n)

1um

(b)

Figure 6.8 : Intensity map in (x, y) plane for z = 100 nm, generated by sixteen
eigenvectors corresponding to the sixteen largest eigenvalues, with both TM and
TE polarizations.

From Fig. 6.8, we can determine the number and the location of scatterers. The first and the
second eigenvectors form focusing waves associated to the strongest scatterer A [Figs. 6.8 (a) and
(b)], of the radius 250 nm. The second strongest scatterer B (with r = 200 nm) is localized with
the focusing waves generated by the third and the fourth eigenvectors, seeing Figs. 6.8 (c) and
(d). The scatterer C, of radius 150 nm, is localized by the waves formed by the fifth and sixth
eigenvalues, as shown in Figs. 6.8 (e) and (f). Then, the analysis of the field of the eigenvector
corresponding to the seventh eigenvalue to the 16-th must be done with caution because of the
noise influence.

Basically, we interpret the seventh, the eighth, the ninth and the tenth eigenvectors as antisym-
metric eigenvectors related to scatter A [Figs. 6.8 (g)-(j)]. Yet, it seems that the tenth eigenvector
is coupled with the weakest scatterer D (of the radius 100 nm). Indeed, the scatterers being not
point-like, the electromagnetic scattered field is no longer isotropic, so that the symmetric and
antisymmetric eigenvectors can couple to each other4. Fortunately, the scatterer D is not totally
blurred by its surrounding stronger scatterers and by the experimental noise. The eigenvectors cor-
responding to the eleventh and the twelfth eigenvalues allow synthesizing a backpropagated waves
that focuses on it [Figs. 6.8 (k) and (l)]. The thirteenth and fourteenth eigenvectors present an an-
tisymmetric property on scatterer B and at the same time are coupled to scatterer D [Figs. 6.8 (m)
and (n)]. Similarly, the fifteenth eigenvector corresponds to the antisymmetric eigenvector of scat-
terer C [Fig. 6.8 (o)], while the sixteenth eigenvector correspond to a higher order eigenvector
linked to scatterer A [Fig. 6.8 (p)]. To summarize, in this configuration, with both TM and TE
incident polarizations, we found at least two eigenvalues corresponding to eigenvectors focusing on
each scatterer.

The reconstruction obtained with only HM procedure is shown in Fig. 6.9. The investigating
domain used in the HM inversion procedure had a dimension of 5 µm × 5 µm × 200 nm. There
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were 88 known illuminations (with both TM and TE polarizations) and 88 measured vectorial
scattered fields to be used.

−2 0 2
−2

0

2

x (µ m)

y 
(µ

 m
)

 

 

1.5

2

2.5

Figure 6.9 : Reconstruction permittivity distribution of four different resin cylin-
ders, in (x, y) plane for z = 100 nm, with only HM procedure. The investigating
domain is chosen as 5 µm × 5 µm × 200 nm, containing all scatterers inside it.

One observe that the three strongest scatterers are accurately reconstructed. The retrieved
value of permittivity is closed to the real one for scatterer A and B. While the permittivity is
underestimated for scatterer C, and unfortunately the information about the scatterer D is totally
lost. Its size is so small compared to the other three scatterers that it is hidden in the reconstruction
procedure. This remark points out the interest of the DORT technique which was able to localize
scatterer D and the interest of the HM-DORT approach.

As the four scatterers can be localized with DORT, we can define four investigating domains
surrounding each scatterer. We thus perform an HM-DORT for each target by using only the
incident backpropagated eigenvector fields that focus on that target.
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Figure 6.10 : Selective HM-DORT reconstruction for four different cylinders,
with the investigating domains restricted surround each scatterer, refereed to
Fig. 6.8, of the dimension 1 µm × 1 µm × 300 nm.

From Fig. 6.10, we observe that permittivity profiles of all the scatterers are satisfactorily
reconstructed. The different sizes of these scatterers can be easily distinguished from the largest
to the smallest. We admit that the reconstructed permittivity of scatterer D is weaker than the
actual permittivity of itself, while this imperfection is not the consequent of the inversion procedure.
The eigenvectors which synthesize the incident focusing fields on this scatterer are unfortunately
also coupled to the antisymmetric eigenvectors of other scatterers, this can be perceived from
Figs. 6.8 (k) and (l). So the corresponding scattered fields include not only the contribution of
scatterer D, but also that stemming from its neighboring scatterers. However, the HM-DORT
procedure appears are significantly superior to the HM procedure alone: first, we can obtain an
initial estimation of location information of scatterers, thanks to the focalization ability of the
DORT method. Second, once the location for each scatterer is determined, the investigating
domain can be limited to a small region, and only the incident focusing fields are included in the
inversion procedure, instead of all illuminations (HM procedure). Thus, the number of unknowns
in the inverse problem is significantly reduced, and the computation time is also greatly reduced.
In fact, with the HM procedure, it takes about 1380 s per iteration. While with the HM-DORT
procedure, we only need 3 s per iteration. The superiority of HM-DORT over HM is all the more
important than the scatterers are far from each other. Third and most important, the smallest
scatterer is satisfactorily reconstructed using the HM-DORT whereas it is not seen with the HM.

6.3 Conclusions

In conclusion, we have applied the HM-DORT reconstruction technique to experimental data ob-
tained with the TDM setup. Scatterers of different scattering cross section are detected and
characterized in a much better way with the HM-DORT procedure than with the HM alone.
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Introduction of PART IV

Imaging and characterizing problem in time domain

In the last chapters, we have presented some reconstruction examples using time-
harmonic electromagnetic fields. We have studied the DORT method in order to tackle
the problem of the characterization of buried targets in cluttered media. We have pro-
posed to combine the DORT method with an iterative algorithm and reported results
of its application to the problem of characterizing targets surrounded by cluttered envi-
ronment. Moreover, this new approach has been tested against experimental data in the
framework of the TDM. With full-polarization data, we were able to reconstruct scat-
terers with a resolution about one-fourth of the wavelength. In the presence of several
‘isolated’ scatterers, we realized a selective reconstruction.
In Chap. 4, we showed that to diminish the reconstruction artifacts stemming from the
small effective numerical aperture of the imager, we need to consider multi-frequency
data. This can be achieved by using a sequential inversion procedure (frequency-hopping
approach) or by using a global multi-frequency procedure (multiple-frequency approach).
In this part, we propose to investigate the non-linear inversion algorithm using experimen-
tal frequency-diversity data116. The scattering domain is now assumed to be illuminated
by a short-time pulse, which is equivalent to illuminate by a field with large bandwidth
spectrum. In this case, both lower and higher frequencies components are considered.
We will firstly test the transient inversion method using synthetic data, generated by the
CDM. Then, we perform this inversion procedure using experimental data.
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Chapter 7

Inversion problem using
frequency-diversity data
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7.1 Introduction

In the last chapters, we have studied the non-linear inversion algorithm (HM) for monochromatic
configuration. This algorithm was combined with one of the time reversal technique (DORT) to
detect and characterize scatterers in noisy environments, using synthetic data. The combined
method (HM-DORT) has also been applied in the TDM, with full-polarized measured data in
order to realize selective focalizations and characterizations. These configurations require a large
number of exciting sources, and scattered fields need to be measured by large number of receiving
points. As we have stated in Chap. 4, when targets are separated from the upper medium (where
sources and receivers are) by an interface, the mono-frequency data is not sufficient anymore. The
effective numerical aperture is reduced because, for antennas far away from targets, the reflection
of the radiated field increases as the incident angles increase. To circumvent this, we proposed
to apply the frequency-hopping procedure in order to improve the quality of the reconstruction.
The drawback is in some cases, analyzed in Chap. 4, the clutter is very strong at one frequency,
and consequently, the reconstruction at higher frequencies, as is suggested with frequency-hopping
approach, fails. To avoid the bottleneck brought by this sequential inversion procedure, we propose
to use a multiple-frequency inversion approach, where scattered data at all frequencies are inverted
together.

In this chapter, we will test the reconstruction ability of these inversion algorithms on stepped-
frequency experimental data. This full-polarization data was measured in an anechoic chamber of
Institut Fresnel, France116.
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7.2 Reconstruction of targets using frequency -

diversity experimental data

In this section, we report the performance of the multiple-frequency inversion approach and com-
pare the reconstruction results with the ones obtained using the frequency-hopping approach. Data
used for inversion are these carried out in the anechoic chamber of Institut Fresnel116.

7.2.1 Multiple-frequency inversion procedure

When applying the frequency-hopping approach, the minimized cost function is at each frequency
step defined as in Eq. (2.18). We minimize this function sequentially for each operating frequency.
The initial estimate at the lowest operating frequency is obtained by the back-propagation proce-
dure.

On the contrary, using the multiple-frequency method, the measured data at all operating
frequencies are minimized together. In this case, the minimized cost function takes the form

Fn(χn,E1,1,n, · · · ,E1,P,n, · · · ,EN,1,n, · · · ,EN,P,n) = Fn(χn,E�,�,n) (7.1)

= WΓ

N∑
l=1

P∑
p=1

‖h(2)
l,p,n‖

2
Γ +WΩ

N∑
l=1

P∑
p=1

‖h(1)
l,p,n‖

2
Ω,

where N is the number of incidences, P is the number of frequencies. This minimization procedure
is described in detail in Sec. 2.3. The initial estimate is also obtained by the back-propagation
procedure, with however data being the scattered fields for all frequencies.

In order to improve the efficiency of the inversion procedure, and for both of these two mini-
mization procedures, we exploit a priori information stating that the real and imaginary part of the
desired complex electrical permittivity must be greater than unity and non-negative, respectively.

7.2.2 Experimental setup

All experimental data were obtained in an anechoic chamber of dimensions (14 × 6.5 × 6.5) m3.
The experimental setup is described in detail in Ref. 117. The incident field is changed with two
polarizations, while the total field is measured for only one direction of the receiving antenna.
By virtue of the reciprocity theorem, i.e., switching the role of the emitter and the receiver, we
can obtain the vectorial total field for one incident polarization. The experimental data consists
measuring the co-polarized and cross-polarized scattered fields. The co-polarized scattered field
is noisier at high frequencies than at low frequencies. The cross polarization error due to the
experimental setup is larger than co-polarization error. Since targets are relatively small compared
to the wavelength of the incident field, the cross-polarized field component is much weaker than
its co-polarized counterpart and consequently much noisier. More precisely, we found that the
magnitude of the cross-polarized term is at least ten times smaller than that of the co-polarized
term and the residue h(2)

l,p,n between the experimental data and the field computed for the actual
targets, is always below 0.1 for the co-polarized term, while it reaches 4000, 57, and 17 for the
cross-polarized component at 3, 5, and 7 GHz, and is about 1 for the total vectorial field (combined
co-polarized term and cross-polarized term) at all frequencies118. Nevertheless, we will consider
both co-polarized and cross-polarized components in the inversion procedure.
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Figure 7.1 : Sketch of the experimental setup. The illumination is done on the
(x, y) plane with θinc ranging from 0◦ to 350◦ with a step 10◦ (green line). The
receiver position θdiff ranges from 0◦ to 320◦ with the angular step 40◦ and φdiff

ranges from 30◦ to 150◦ with the step 15◦ (red line).

Figure 7.1 shows the sketch of the experimental setup. The incident wave is assumed to be a
plane wave propagating in the (x, y) plane with θinc ranging from 0◦ to 350◦ with a step 10◦ (green
line). The receiver position θdiff ranges from 0◦ to 320◦ with the angular step 40◦ and φdiff ranges
from 30◦ to 150◦ with the angular step 15◦ (red line), therefore the total field are measured in 81
different positions. The distance from the emitter or receiver to the center of the setup is 1.795 m
and 1.796 m, respectively. Two different fields are measured for each receiver, the total field (i.e.,
the field measured in the presence of targets) and the incident field (i.e., the field measured without
targets). Therefore, the scattered field is obtained by subtracting the incident field from the total
one. The drift errors caused by this long delay are corrected according to the procedure described
in Ref. 119. The scattered field is recorded for 21 different frequencies, ranging from 3 GHz up to
8 GHz with a step 0.25 GHz, respectively. Targets are placed in the vacuum.

Several previous work have been carried out with the same three-dimensional (3D) Fresnel
experimental data, using all emitters and receivers (complete configuration). In Ref. 57, different
three-dimensional targets were reconstructed using the CGM method at fixed frequency. The
multiple scattering effect was considered in Ref. 118, where a priori information on the lower and
upper permittivity of the targets was also included for improving the resolution. Performances of
CGM, CSI, and HM methods have been analyzed in Ref. 12. It has been verified that the HM was
more efficient than other iterative methods and more robust against the presence of the noise in
data. The frequency-hopping procedure was also applied using HM.
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All reconstructions using Fresnel experimental data mentioned above are based on iterative
inversion method at fixed frequency or processed with the frequency-hopping approach. In Ref. 120,
these data are inverted using a multiplicative-regularized contrast inversion method, for different
frequencies either simultaneously or sequentially. In this thesis work, we will also use a multiple-
frequency method with HM inversion procedure. However a regularization procedure is not plagued
in the inversion. The multiple-frequency inversion procedure has been described in Sec. 2.3. First,
we will check the effectiveness of these methods using complete data. Then, we will consider a
more difficult case, by using only one emitter, located at (x = 1.795 m, y = 0 m, z = 0 m) and the
receivers in the angular direction with θdiff = 120◦, 160◦, 200◦, 240◦, as shown in Fig. 7.1. Only the
transmitted scattered field is considered in the inversion procedure. Henceforth, this configuration
is refereed from now on as incomplete configuration. For the inversion procedure, we assume that
targets are confined in a bounded box Ω sized (12.5 × 12.5 × 12.5) cm3. The discretization size
of Ω is taken equal to d = 0.5 cm whatever the operating frequency. At the central frequency
f0 = 5.5 GHz, the lattice size is about λ0/10. In all reported results, we present only the real part
of the reconstructed permittivity. The reconstructed imaginary part vanished in all cases.

7.2.3 Multiple-frequency and frequency-hopping approach

The multiple-frequency method and the frequency-hopping approach will be compared. Four dif-
ferent targets will be considered (Fig. 7.2).
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(a)

(c) (d)
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Figure 7.2 : (a) Two dielectric cubes of relative permittivity ε = 2.4 and of the
side a = 2.5 cm located at (a/2, a/2, a/2) and (a/2, a/2, 5a/2). (b) Same cubes as
(a) located at (−a/2, a/2, a/2) and (a/2,−a/2, a/2). (c) same cubes as (a) located
at (a/2,−a/2, 3a/2) and (a/2, 3a/2, 3a/2). (d) Two dielectric spheres in contact
of relative permittivity ε = 2.6 and of radius r = 2.5 cm located at (−r, 0, 0) and
(r, 0, 0).



7.2 Reconstruction of targets using frequency diversity experimental data 123

7.2.3.1 Two cubes along the z-direction

The first considered target [Fig. 7.2 (a)] is made of two cubes placed along z-axis of relative
permittivity ε = 2.4 and of side size a = 2.5 cm, and they are separated along the z- axis by
5 cm. Under the complete configuration, we obtain an accurate reconstruction result using the
frequency-hopping approach, Figs. 7.3 (a)-(c). Switching to the incomplete configuration, the
reconstruction result obtained with the frequency-hopping approach is deteriorated, Figs. 7.3 (g)-
(i), where artefacts appear outside the targets. Whereas with the multiple-frequency method,
successful reconstruction is obtained for both configurations. The reconstructed background is
perfectly equal to one and the reconstructed permittivity is close to the actual value, Figs. 7.3 (d)-
(f) and (j)-(l). This is emphasized through the contrast error. With the multiple-frequency method,
Errχ = 29% for the complete configuration and Errχ = 48% for the incomplete configuration,
whereas with the frequency-hopping approach, Errχ = 53% for the complete configuration and
Errχ = 354% for the incomplete configuration. One can conclude that the multiple-frequency
method is more robust to the presence of the noise in data than the frequency-hopping approach,
particularly under the incomplete configuration.
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Figure 7.3 : Reconstructed permittivity of the first target (two cubes along the
z-axis) presented in Fig. 7.2 (a), in use of (a)-(c): frequency-hopping method
(complete configuration). (d)-(f): multiple-frequency method (complete configu-
ration). (g)-(i): frequency-hopping method (incomplete configuration). (j)-(l):
multiple-frequency method (incomplete configuration). (a), (d), (g) and (j): in
the (x, y) plane at z = 1.25 cm. (b), (e), (h), and (k): in the (x, z) plane at
y = 1.25 cm. (c), (f), (i), and (l): in the (y, z) plane at x = 1.25 cm.

7.2.3.2 Two cubes in contact by one edge

In this section, we consider two cubes placed in the (x, y) plane that are in contact through
one edge as depicted in Fig. 7.2 (b). Figure. 7.4 compares the reconstruction results using the
multiple-frequency method and the frequency-hopping approach, under the complete and the in-
complete configuration. Under the complete configuration, the reconstruction result obtained by
the multiple-frequency approach is satisfactory, except that the permittivity is underestimated,
Figs. 7.4 (d)-(f) with Errχ = 54%. The reconstruction result is better than that obtained by
the frequency-hopping approach, [Figs. 7.4 (a)-(c)]. The contrast error for the latter approach
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reaches Errχ = 98%. When dealing with the incomplete configuration, the reconstruction with
the frequency-hopping is deteriorated, Figs. 7.4 (g)-(i) with Errχ = 141%. The two cubes are
stuck together and seem to constitute a single object. In this case, using the multiple-frequency
approach, the reconstruction result is not so good as the previous case (for the two cubes along
the z direction), Figs. 7.4 (j)-(l) with Errχ = 105%. Nevertheless, the contrast error is still better
than that of the frequency-hopping approach.
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Figure 7.4 : Reconstructed permittivity of the second target (two cubes with
one edge in contact) presented in Fig. 7.2 (b) using (a)-(c): frequency-hopping
method (complete configuration). (d)-(f): multiple-frequency method (complete
configuration). (g)-(i): frequency-hopping method (incomplete configuration). (j)-
(l): multiple-frequency method (incomplete configuration). (a), (d), (g) and (j):
in the (x, y) plane at z = 1.25 cm. (b), (e), (h) and (k): in the (x, z) plane at
y = −1.25 cm. (c), (f), (i) and (l): in the (y, z) plane at x = 1.25 cm.

This failure of the multiple-frequency method is surprising and unexpected. Since the frequen-
cy-hopping approach provided a reasonable reconstruction [Fig. 7.4 (g)-(i)]. One would expect to
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arrive at worst to a similar reconstruction with the multiple-frequency algorithm. This is clearly
not the case [Fig. 7.4 (j)-(l)].

One possible interpretation of the non-satisfactory reconstruction could be due to the fact
that the measured scattered field of high frequencies contribute too much in the minimized cost
function, Eq. (7.1). Hence, the iterative processus might be trapped into a local minimum. It is
well-known that iterative technique convergences at low frequency with a poor resolution, while
at high frequency the convergence is not guaranteed58. Notice that both techniques, the multiple-
frequency approach and the frequency-hopping approach provide reconstructions of quality far
away from the ones obtained with the complete configuration.

In the following, we investigate the possibility to restore the resolution. One option would be
to modify the minimized cost function to a frequency-weighted cost function.

In order to quantify the contributions for both high frequencies and low frequencies, we propose
to analyze the behavior of the weighting coefficient at each operating frequency in Eq. (7.2). We
define a new frequency-dependent function W (p):

W (p) =
N∑

l=1

‖fmes
l,p ‖2

Γ. (7.2)

Figure 7.5 shows the evolution of W (p)/(fp)α versus the frequency fp with different weighting
coefficient α. The behavior of W (p) without the weighting coefficient (α = 0) is represented with
the blue-solid line. As the frequency increases, the amplitude of the measured fields at higher
frequencies become more significant as compared to those of lower frequencies. We propose to
weight the measured scattered fields by a factor of 1/(fp)α. We present here evolutions with three
different weighting coefficients, α = 1, 2 and 3. Fig. 7.5 shows that for α = 0, high frequencies are
dominant while for α = 3, low frequencies are dominant.
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Figure 7.5 : Evolution of W (p)/(fp)α of the second target (two cubes with one
edge in contact) versus the frequency (GHz) with the weighting coefficient α equal
to 0 for black-solid line, 1 for blue-dashed line, 2 for green-dash-dot line, 3 for
red-dotted line.

The idea is now to take profit, in the inversion algorithm, of this weighting function in order
to balance high and low frequency contributions. We let one parameter α free that we will vary.
Other choices of a weighting function were not investigated.
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We introduce the frequency weighting in the inversion by defining a new cost function
F̃n(χn,E�,�,n) as

F̃n(χn,E�,�,n) =

N∑
l=1

P∑
p=1

(1/fp)α‖h(2)
l,p,n‖2

Γ

N∑
l=1

P∑
p=1

(1/fp)α‖fmes
l,p ‖2

Γ

+

N∑
l=1

P∑
p=1

(1/fp)α‖h(1)
l,p,n‖2

Ω

N∑
l=1

P∑
p=1

(1/fp)α‖Einc
l,p ‖2

Ω

, (7.3)

here the two normalizing coefficients are defined as

W̃Ω =
1

N∑
l=1

P∑
p=1

(1/fp)α‖Einc
l,p ‖2

Ω

, and W̃Γ =
1

N∑
l=1

P∑
p=1

(1/fp)α‖fmes
l,p ‖2

Γ

. (7.4)

Eq. (7.3) can be represented as

F̃n(χn,E�,�,n) = W̃Γ

N∑
l=1

P∑
p=1

(1/fp)α‖h(2)
l,p,n‖

2
Γ + W̃Ω

N∑
l=1

P∑
p=1

(1/fp)α‖h(1)
l,p,n‖

2
Ω, (7.5)

with the residue errors h(1)
l,p,n and h(2)

l,p,n defined as

h
(1)
l,p,n = Einc

l,p + χ
=

ApEl,p,n −El,p,n, and h
(2)
l,p,n = fmes

l,p −
=

BpχEl,p,n. (7.6)

We need to pay attention to the calculation of the gradient with respect to the contrast and the
total field, presented in Appendix. C.3. A part of this, the inversion scheme is unchanged.

We try the multiple-frequency method weighted by different coefficients, and we compare the
reconstruction results in Fig. 7.6.
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Figure 7.6 : Reconstructed permittivity of the second target (two cubes with one
edge in contact) presented in Fig. 7.2 (b) in incomplete configuration in use of
multiple-frequency method with the weighting coefficient (a)-(c) : α = 1, with
Errχ = 61.5%. (d)-(f): α = 2, with Errχ = 47.4%. (g)-(i): α = 3, with Errχ =
46.9%. (a), (d) and (g) in the (x, y) plane at z = 1.25 cm. (b), (e) and (h) in the
(x, z) plane at y = −1.25 cm. (c), (f) and (i) in the (y, z) plane at x = 1.25 cm.

From Fig. 7.6, we can conclude that weighting the measured field contribution at all frequencies
can ameliorate the reconstruction, compared to the same incomplete configuration while without
any weightings, as shown in Figs. 7.4 (j)-(l). With α = 2 or α = 3, the reconstructed two cubes
are more homogeneous and clearly better than the reconstruction result without the weighting
processing under complete configuration, Figs. 7.4 (d)-(f). To further numerically evaluate the
amelioration of this weighting coefficient, we define a parameter as

Errp =

N∑
l=1

‖fmes
l,p −Ecal

l,p‖2
Γ

N∑
l=1

‖fmes
l,p ‖2

Γ

. (7.7)

The residual error versus the frequency between the measured scattered field and the calculated
field obtained with the best available estimated contrast χ is defined in Eq. (7.7). The behavior
of this residual error versus different weighting coefficients is shown in Fig. 7.7 (b) for all targets
of the database. The residual error is minimum with α = 2 and α = 3 at almost all frequencies,
which corresponds to the satisfactory reconstruction results obtained in Fig. 7.6.
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Figure 7.7 : Evolution of Errp versus the frequency (GHz) with the weighting
coefficient α equal to 0 for black solid line, 1 for blue dashed line, 2 for green
dash-dot line, 3 for red dotted line, under the incomplete configuration. (a) for
the first target (two cubes along the z-axis). (b) for the second target (two cubes
with one edge in contact). (c) for the third target (two cubes along the y-axis).
(d) for the fourth target (two spheres in contact).

Now, we explain the impact of the weighting factor on the first target (two cubes along the
z-axis). The cost functional is weighted by these three different coefficients, the behavior of the
residue error is shown in Fig. 7.7 (a). There is no much difference among the evolutions of the
residual error for these three weighting coefficients. In order to make this more convincing, we
have also tried other weighting coefficients α = 1 ∼ 3, with an interval 0.1, and we arrive at the
same conclusion. Moreover, the reconstruction result is not influenced by the introduced weighting
coefficients.

From the above analysis, we can conclude that for some targets, it is mandatory to perform
the frequency weighting version of the inverse scheme. In most cases, with α = 3, satisfactory
reconstructions are achieved.

7.2.3.3 Two cubes along the y-direction

Herein, we investigate the resolution along y-axis, Fig. 7.2 (d). Using the weighted multiple-
frequency approach, we can see that the behavior of Errp [Fig. 7.7 (c)] is similar to that of the
previous case, Fig. 7.7 (b). With the weighting coefficient α = 3, we can obtain a minimum residue
error.

Under the complete configuration, using the multiple-frequency approach, the reconstruction
result is correct. Similar to the previous case (two cubes in contact by one edge), the permittivity is
underestimated and the two cubes are not distinctly separated along y-axis leading to Errχ = 60%,
Figs. 7.8 (a)-(c). It is not surprising that with incomplete configuration the reconstruction result
obtained by the frequency-hopping approach is clearly deteriorated (Errχ = 287%), Figs. 7.8 (d)-
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(f). For the multiple-frequency approach without any weighting process, we can not obtain a
satisfactory reconstruction result, Figs. 7.8 (g)-(i) (Errχ = 187%). The best result is obtained by
the multiple-frequency approach with the weighting coefficient α = 3 (Errχ = 62%), Figs. 7.8 (j)-
(l). The two cubes are better separated along y-axis than in the complete configuration. Notice
that in the (x, y) plane, the two cubes are linked by a ‘bridge’ of weak permittivity distribution. To
understand this undesirable result, we tried to invert the theoretical data generated by the CDM.
The reconstruction is acceptable and the ‘bridge’ dispears. We can conclude that this is caused by
the presence of noise in data.
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Figure 7.8 : Reconstructed permittivity of the third target (two cubes along the
y-axis) presented in Fig. 7.2 (c), in use of (a)-(c): multiple-frequency method
(complete configuration). (d)-(f): frequency-hopping method (incomplete config-
uration). (g)-(i): multiple-frequency method (incomplete configuration) without
weighting coefficient. (j)-(l): multiple-frequency method (incomplete configura-
tion) with weighting coefficient α = 3. (a), (d), (g) and (j) in the (x, y) plane at
z = 3.75 cm. (b), (e), (h) and (k) in the (x, z) plane at y = 3.75 cm. (c), (f), (i)
and (l) in the (y, z) plane at x = 1.25 cm.

7.2.3.4 Two identical spheres in contact

For the fourth and the last example, we consider the target made of two dielectric spheres of relative
permittivity ε = 2.6 and of radius r = 2.5 cm in contact, as shown in Fig. 7.2 (c). This case is
more difficult than the previous cases because the two spheres are in contact and the dimension
of the object is larger than the wavelength at the central illumination frequency f0 = 5.5 GHz.
We first attempted to reconstruction this structure with the incomplete configuration. Results are
deceiving. Neither the multiple-frequency method nor the frequency-hopping approach succeeded
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in retreiving the two spheres. With the complete configuration, results of inversions are presented in
Fig. 7.9. We give here the reconstruction results using the multiple-frequency approach without and
with the weighting coefficient, and we compare these results with the frequency-hopping approach.
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Figure 7.9 : Reconstructed relative permittivity distribution for the fourth target
(two spheres in contact) in the (x, y) plane (a)-(c) for z = 0 cm, (d)-(f) for
z = −2 cm. (a) and (d) using the frequency-hopping approach. (b) and (e) using
the multiple-frequency approach with the weighting coefficient α = 0. (c) and (f)
same as (b) and (e), while with α = 3.

From Fig. 7.9, we can conclude that using the multiple-frequency approach with α = 3,
Figs. 7.9 (c) and (f), satisfactory reconstruction result is obtained leading to Errχ = 21%. The re-
constructed permitivity distribution is almost homogeneous and the profile is well represented. On
the contrary, without using the weighting coefficient (α = 0), Figs. 7.9 (b) and (e), the reconstructed
permittivity is poorer than with α = 3, and the permittivity at the contact point is underestimated,
leading to Errχ = 43.5%. For this case, the frequency-hopping approach [Figs. 7.9 (a) and (d)], fails
to reconstruct this target, where the permittivity at the contact point is overestimated, leading to
Errχ = 76.4%.

7.3 Conclusions

In this chapter, we have tested our non-linear inversion algorithm on experimental frequency-
diversity data. Dealing with four different dielectric targets, we have shown that the reconstruc-
tion obtained with multiple-frequency method is always better than the one obtained with the
frequency-hopping approach. For some targets and under the incomplete configuration, weighting
the cost functional to ajust the balance of the fields for higher and lower frequencies is needed.
Otherwise, if the components at high frequencies dominate too much in the cost functional, the
stability of the minimization algortihm would not be guaranteed. Notice that with the weighting
coefficient α = 3, we always obtained satisfactory reconstruction result for the incomplete con-
figuration. We have also tried α = 4. The reconstruction is equivalent or slightly deteriorated
compared to α = 3. Moreover, the optimum α = 3 is obtained for the incomplete configuration.
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In fact, the choice of this parametre depends on the configuration, i.e., α = 3 is not always the
optimum for the complete configuration at hand.
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8.1 Introduction

In the last chapter, we validated our multiple-frequency inversion algorithm against experimental
data. In this chapter, we will move on to the transient scattered data. The excitation is assumed
to be a single transient pulse, and the inversion problem is formulated in the frequency domain
rather than directly in the time domain54, as mentioned previously in Sec. 1.5 and 2.3. The short
time-duration incident pulse is transformed into the frequency domain by the Fourier transform.
Both low and high frequency components are obtained. It has been shown that the dynamic range
of iterative inversion techniques is large at lower frequencies than at higher frequencies19. At high
frequencies, iterative techniques lead to better resolution but the convergence is not guaranteed.

In this chapter, we first apply the transient inversion method using synthetic data. Before to
process the transient inversion, the scatterers are localized thanks to the time reversal approach.
The performances of reconstruction using the frequency-hopping approach and the transient inver-
sion method are analyzed and compared. We end this chapter with the validation of this transient
inversion algorithm against experimental data described in Chap. 7.
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8.2 Inversion problem for transient scattered fiel-

ds using synthetic data

In this section, we test the characterization ability on synthetic transient data, under the config-
uration of homogeneous background medium. The scattering domain is illuminated by a single
incident electromagnetic pulse with a Gaussian envelop,

F(t) = A exp

[
−16

(
t− ttrans

τ

)2
]

cos(2πf0t). (8.1)

The scattering problem is formulated in the frequency domain by the Laplace transform. The
number of sampling frequencies P should be large enough such that the spectrum of the incident
pulse is well represented. Then P resulting harmonic scattering problems are solved by the CDM.
The harmonic scattered fields are then transformed into the transient domain by the inverse Laplace
transform. This procedure is described in detail in Sec. 1.5. The inverse problem is resolved in
the frequency domain. The minimization procedure is the same as that of the multiple-frequency
approach. The difference is that the incident field and the scattered fields in the frequency domain
are weighted by F (ωp), the spectrum of the incident Gaussian pulse. The principle of the inversion
procedure in the time domain that we choose is similar as the multiple-frequency approach. The
minimized cost function is defined as

Fn(χn,E�,�,n) =

N∑
l=1

P∑
p=1

‖h(2)
l,p,n‖2

Γ

N∑
l=1

P∑
p=1

‖fmes
l,p ‖2

Γ

+

N∑
l=1

P∑
p=1

‖h(1)
l,p,n‖2

Ω

N∑
l=1

P∑
p=1

‖Einc
l,p ‖2

Ω

, (8.2)

where the residue errors h(1)
l,p,n and h(2)

l,p,n are defined as

h
(1)
l,p,n = F (ωp)Einc

l,p + χ
=

ApEl,p,n −El,p,n, and h
(2)
l,p,n = F (ωp)fmes

l,p −
=

BpχEl,p,n. (8.3)

8.2.1 Statement of the problem

The geometry of the problem is illustrated in Fig. 8.1, where W denotes the scattering domain and
Ω denotes the investigating domain that is confined in W . The scattering domain W is illuminated
by a single source located at (0,0,1.2 m), fed by the current of the Gaussian envelop, modulated
at the central frequency f0 = 2 GHz, with the wavelength λ0 = 0.15 m. The time duration of
the Gaussian pulse τ = 4 ns, and the observation time window is between 2 ns and 16 ns. The
pulse is shifted at ttrans = 6 ns. The receivers array collecting the transient electromagnetic field
is represented by a lattice of N = 81 dipole antennas regularly distributed on a square of side size
of 4.8 m, and is located at z = 1.2 m. Three-dimensional targets are presented in a homogeneous
medium whose electromagnetic constants are ε0 and µ0. In this configuration, the single source
is located at the centre of the receivers array. Targets are assumed to be non-magnetic (µ = µ0)
and homogeneous with the relative permittivity ε. The emitting dipole antenna is oriented along a
single direction x, whereas the receiving dipole antennas are polarized along x, y and z directions.
The vectorial scattered field can thus be obtained. Measurements are performed using the CDM
with P = 28 frequencies uniformly distributed from 1 GHz up to 3 GHz, with a frequency step of
71 MHz. Compared to the analytical expression of the pulse, we have checked that the spectrum
of the incident pulse can be well represented with this choice of sampling frequencies.

8.2.2 Issue of time reversal focusing in time domain

In the time-harmonic regime, we choose one of the time reversal technique, the DORT method to
detect and localize buried objects, using monochromatic data. In the time domain, according to
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W
Ω

Z

Y

X
Target

Receivers

Source

Figure 8.1 : Geometry of the problem. The receivers are regularly distributed on
a plane Γ, located on one side of the objects. The system is illuminated by a single
source.

the time invariance of the wave propagation Eq. (3.4), with t changed to −t, the phase conjugation
mirror becomes time reversal mirror with the same robustness and focusing properties. The back-
propagated waves synthesize a wave focusing on each bright scatterer present in the scattering
domain sequentially along the time2,35,45.

The time reversal procedure is described as:

1. The scattering domain W is illuminated by a single source, which radiates a Gaussian pulse
F(t), shown as Fig. 8.2 (a).

2. The transient scattered fields are measured by all receivers, Fig. 8.2 (b).

3. The time reversal procedure is implemented numerically, Fig. 8.2 (c).

The transient scattered fields EEE d(rm, t) are transformed into the frequency domain using the
Laplace transform Ed(rm, ωp) = Lβ=0[EEE d(rm, t)], where rm(m = 1, 2, · · · ,M) denotes positions
of receivers, p = 1, 2, · · · , P is the number of sampling frequency. For each receiver m, we have P
harmonic scattered fields Ed(rm, ωp). The time reversal operation in the time domain is equivalent
to the phase conjugation in the frequency domain. Thus, we can construct a focusing wave Ẽ(r, ωp)
in the frequency domain as

Ẽ(r, ωp) (r ∈W ) =
M∑

m=1

G(r, rm, ωp)P (rm, ωp), (8.4)

where P (rm, ωp) ∝
[
Ēd(rm, ωp)

]
. The overbar denotes the complex conjugation. G(r, rm, ωp)

denotes the Green function at each frequency ωp. The transient focusing field EEE (r,−t) is obtained
through the inverse Laplace transform, EEE (r,−t) = L −1

β=0[Ẽ(r, ωp)]. The intensity of this transient
field at each point r inside the scattering domain W along the time axis t provides where the
scatterers are.

8.2.3 Numerical results

In this section, we present some numerical results using synthetic data generated by the CDM.
A single or two scatterers are studied. The investigating domain that is used in the inversion is
determined by analyzing the time reversal waves. In the inversion procedure, two different inversion
approaches are considered, the frequency-hopping approach and the transient inversion approach.
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Figure 8.2 : Schematic view of the time reversal procedure. (a) The scattering
domain is illuminated by a transient source. (b) The transient scattered fields are
detected by all receivers. (c) The time-reversed scattered fields are backpropagated
by all receivers (new sources) for generating a focusing wave on the scatterer.

8.2.3.1 One single scatterer

Consider one single dielectric sphere of the radius λ0/6 and of the relative permittivity ε = 3,
located at the origin. The synthetic data are generated in a box of volume (2λ0 × 2λ0 × 4λ0),
centered at the origin. The forward scattering problem is calculated with a mesh size λ0/10,
independent of the operating frequency. Fig. 8.3 presents one of the scattered fields received by
the antenna at (−2.4 m,−2.4 m,1.2 m), at the edge of the receiver array.
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Figure 8.3 : Form of the scattered field versus the time, that is received by the
antenna located at (−2.4 m,−2.4 m,1.2 m).

From Fig. 8.3, we can conclude that the time window is large enough to represent the scattered
field in the time domain. We checked that if the time window tmax − tmin is enlarged without
changing the frequency range, by augmenting the number of sampling frequencies P , nothing
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changes with the scattered field EEE d(rm, t). There is no need to increase the number of sampling
frequencies.

The investigating domain Ω is derived from the maximum position of the modulus of the time-
reversed wave EEE (r,−t). Indeed, this maximum is related to the target under test and one can
determine the scattering area, Fig. 8.4 (b).
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Figure 8.4 : Modulus of the amplitude of the time-reversed wave in the scattering
domain W at three time points (a) t = 6.34 ns, generation of the wave. (b) t =
7.46 ns, focalization of the wave on the scatterer. The green dashed line represents
the investigating domain Ω that we use to perform the inversion procedure. (c)
t = 9.7 ns, disappearance of the wave.

The time-reversed wave arrives at the edge of the scattering domain, Fig. 8.4 (a), and then,
it focalizes on one echogeneous scatterer, Fig. 8.4 (b), and finally, it disappears, Fig. 8.4 (c). The
instant of the focalization can be determined either by finding the maxima of the intensity of
the time-reversed wave, or by determining the change in the convexity of the wavefront. In fact,
before the focalization on the scatterer, the wave is concave, while after the focalization, this wave
becomes convex.

Thus, thanks to the focalization ability of the time-reversed wave, we can limit the investigating
domain in the inversion procedure to a box, of the size (λ0 × λ0 × λ0), centered at the origin. We
use the same discretization size as the forward problem, ainv = λ0/10.

In the following, we present the reconstruction results using two different strategies. The first
one is the frequency-hopping approach. P = 28 inverse scattering problems are solved successively.
For the lowest frequency, the initial estimate is obtained by the back-propagation procedure. For
higher frequencies, the final inversion result obtained at the lower frequency is used as the initial
estimate. The reconstruction result is shown in Figs. 8.5 (a)-(c).
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Figure 8.5 : Reconstructed relative permittivity distribution for one single scat-
terer, with noiseless data. (a)-(c) using the frequency-hopping approach. (d)-(f)
using the transient inversion method. (a) and (d) in (x, y) plane for z = 0. (b)
and (e) in (x, z) plane for y = 0. (c) and (f) in (y, z) plane for x = 0.

The second strategy is the transient inversion method, as described in Sec. 2.3. The cost
functional is defined in Eq. (8.2), with the incident source N = 1 and the number of frequency
P = 28. Harmonic scattered fields at all frequencies are weighted by the spectrum of the incident
pulse F (ω). The initial estimate is obtained for all frequencies by the back-propagation procedure.
The reconstruction result is presented in Figs. 8.5 (d)-(f). This result is slightly better than that
obtained with the frequency-hopping approach. This is particularly obvious in the (x, z) plane
where two spots appears on the single scatterer with the frequency-hopping approach.

Now, we propose to test the robustness of our inversion algorithms against noisy data. To
simulate the measured noise, a random perturbation is added separately to the real and imaginary
parts of each component of the harmonic scattered fields,

Re[Eb
m,p(r)] = Re[Em,p(r)] + bαp(Emax

r,p −Emin
r,p ), (8.5)

Im[Eb
m,p(r)] = Im[Em,p(r)] + bβp(Emax

i,p −Emin
i,p ), (8.6)

where the coefficient b denotes the level of noise that we want to add. αp and βp are two random
numbers with the uniform distribution between −1 and 1. Emax

r,p and Emin
r,p (resp. Emax

i,p and Emin
i,p )

correspond to the maximum and the minimum value of the real part (resp. imaginary part) of the
scattered field at the frequency fp for all receivers.

The reconstruction results with b = 40% noisy data are reported in Fig. 8.6. Using the
frequency-hopping approach, with one single source and in the presence of the noise, Figs. 8.6 (a)-
(c), we can not obtain any reliable information from the permittivity map, neither the localization
nor the geometric profile of the targets are accurately reconstructed. Several ‘artefacts’ appear. On
the contrary, using the transient inversion method, we can obtain similar result as those obtained
for noiseless data, Figs. 8.6 (d)-(f). It means that the inversion is more robust against the presence
of noise in data when it is performed with all frequencies than when it is performed using the
frequency-hopping approach.



8.2 Inversion problem for transient scattered fields using synthetic data 141

−0.4−0.2 0 0.2 0.4
−0.4

−0.2

0

0.2

0.4

x/λ
0

y/
λ 0

 

 

1

2

3

−0.4−0.2 0 0.2 0.4
−0.4

−0.2

0

0.2

0.4

x/λ
0

z/
λ 0

 

 

1

2

3

−0.4−0.2 0 0.2 0.4
−0.4

−0.2

0

0.2

0.4

y/λ
0

z/
λ 0

 

 

1

2

3

(a) (b) (c)

−0.4−0.2 0 0.2 0.4
−0.4

−0.2

0

0.2

0.4

x/λ
0

y/
λ 0

 

 

1

2

3

−0.4−0.2 0 0.2 0.4
−0.4

−0.2

0

0.2

0.4

x/λ
0

z/
λ 0

 

 

1

2

3

−0.4−0.2 0 0.2 0.4
−0.4

−0.2

0

0.2

0.4

y/λ
0

z/
λ 0

 

 

1

2

3

(d) (e) (f)

Figure 8.6 : Same as Fig. 8.5, while b = 40% noise is added into the real part
and the imaginary part of the harmonic scattered field.

8.2.3.2 Discrimination of two scatterers

In this section, we apply the inversion to test the ability of our scheme to spatially separate the
two scatterers.

We consider two dielectric spheres with the same radius (λ0/6) and of the same permittivity
(ε = 3), located at the origin (target B) and at (0.5λ0, 0,−0.7λ0) (target A), respectively.
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Figure 8.7 : Modulus of the amplitude of the time-reversed wave in the scattering
domain W focusing on (a) target A at t = 7.04 ns, generating of the wave. (b)
target B at t = 8.02 ns. The green dashed line denotes the investigating domain.

Generally, the scattered fields by target B arrive firstly at the receivers, those of target A arrive
later, because target B is closer to the receiver. From Fig. 8.7, the time-reversed wave focalizes
on target A and then on target B. This can be understood as for the focusing wave, the time is
reversed. The investigating domain can be limited into a smaller box of the size (1.5λ0×λ0×1.5λ0),
centered at (0.25λ0, 0,−0.35λ0).



142 8.2 Inversion problem for transient scattered fields using synthetic data

−0.4 0 0.4 0.8
−0.4
−0.2

0
0.2
0.4

x/λ

y/
λ

 

 

1

2

3

−0.4 0 0.4 0.8
−0.4
−0.2

0
0.2
0.4

x/λ

y/
λ

 

 

1

2

3

−0.4 0 0.4 0.8
−1

−0.5

0

x/λ

z/
λ

 

 

1

2

3

(a) (b) (c)

−0.4 0 0.4 0.8
−0.4
−0.2

0
0.2
0.4

x/λ

y/
λ

 

 

1

2

3

−0.4 0 0.4 0.8
−0.4
−0.2

0
0.2
0.4

x/λ

y/
λ

 

 

1

2

3

−0.4 0 0.4 0.8
−1

−0.5

0

x/λ

z/
λ

 

 

1

2

3

(d) (e) (f)

Figure 8.8 : Reconstructed permittivity distribution for two scatterers, with the
noiseless data. (a)-(c) using the frequency-hopping approach. (d)-(f) using the
transient inversion method. (a) and (d) in (x, y) plane for z = 0. (b) and (e) in
(x, y) plane for z = −0.7λ0. (c) and (f) in (x, z) plane for y = 0.

The reconstruction results with noiseless data are reported in Fig. 8.8, using the two dif-
ferent algorithms. If we add b = 40% noise, the transient inversion method outperforms the
frequency-hopping approach, Figs. 8.9 (d)-(f). When the frequency-hopping approach is used, the
two scatterers are completely blurred by the noise, Figs. 8.9 (a)-(c).
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Figure 8.9 : Same as Fig. 8.8, while b = 40% noise is added.

From these numerical experiments, we conclude that the transient inversion method is efficient
as compared to the frequency-hopping approach. This is particularly emphasized when data contain
noise.
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8.3 Inversion problem for transient scattered fiel-

ds using experimental data

In order to perform the transient inversion procedure using experimental data, we synthesize a
transient field from the multiple-frequency data measured in the anechoic chamber, mentioned in
Chap. 7. These data have been processed with the multiple-frequency method in Chap. 7. We
propose herein to apply the transient inversion scheme to these data.

The experimental data are synthesized from P = 21 harmonic fields measured at 3 GHz up
to 8 GHz. The sampling frequency interval is therefore ∆f = 0.25 GHz. We have the measured
experimental data at hand, we need to furthermore synthesize a incident Gaussian wave. This wave
should be generated in coincidence with the frequency-diversity data. According to the description
in Sec. 1.5, the observation time span ∆t = 4 ns is fixed to ensure that ∆f∆t = 1. The incident
Gaussian pulse [Fig. 1.4 (a)] is sampled in the time domain, with the time duration τ = 1.5 ns,
and the spectrum of the incident field is shown in Fig. 1.4 (b). In the time domain, the target is
illuminated by the incident pulse, then the scattered field EEE sca will be received some time later,
depending on the distance among emitters, targets and receivers. But one does not need to increase
the observation time window, it suffices to perform the inverse Fourier transform with F (ω)eiwtshift

instead of F (ω). According to the Fourier transform property, a time delay doesn’t change the
frequency content of F(EEE sca) since the complex exponential always has a magnitude of 1, only the
phase is altered.

8.3.1 Two cubes along the z-direction, two cubes in contact
by one edge and two cubes along the y-direction

In order to verify if this time span is large enough, we augment four times the number of sampling
frequency P = 84, keeping the frequency range unchanged, from 3 GHz to 8 GHz. The frequency
step ∆f is reduced to 0.06 GHz, the time span ∆t is then increased to 16 ns. The theoretical
transient scattered field in this configuration [Fig. 8.10 (a) blue line] is exactly the same as the
one obtained with the sampling frequencies P = 21 (tshift = 6 ns) [Fig. 8.10 (b) red line]. We can
conclude that ∆f = 0.25 GHz is enough to perform a transient inversion procedure.
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Figure 8.10 : Shape of the theoretical scattered field in the time domain, for two
cubes in contact by one edge. (a) blue line: ∆f = 0.06 GHz, so the time span
∆t=16 ns. red line: ∆f = 0.25 GHz, ∆t=4 ns. (b) The blue line in (a) is shifted
into 0 − 4 ns, and the red line in (a) keeps unchanged.

8.3.1.1 Localization of targets

In this section, we aim at localizing the targets before to reconstruct them. Assume that we have
no knowledge about the target, we have to take a large box as the investigating domain. We
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synthesize the time-reversed wave using Eq. (8.4). The localization of the target is determined by
the maximum point of the intensity of time-reversed wave. The investigating domain used for the
reconstruction procedure can be restricted to a small region.
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Figure 8.11 : Modulus of the amplitude of the time-reversed wave in the scat-
tering domain W . (a) For the two cubes along the z direction. The dash box
indicates the investigating domain used in the inversion procedure. (b) For the
two cubes in contact by one edge. (c) For the two cubes along the y direction. We
present here only the moment at which the time-reversed wave focus on the target.

As we can see the time-reversed wave in the case of the two cubes along the z-direction
synthesizes a wave which focalizes on both cubes at the same time. Indeed, in this configuration,
each cube can be considered as a small scatterer (compare to λ0 the central frequency of the pulse)
and due to the polarization of the incident field, there is no coupling between both scatterers (the
two cubes are distributed along the z-direction and the incident polarization is also along the z-
direction). If the two cubes are considered as two dipoles, the coupling is of order 1/r2 and 1/r3,
where r is the interdistance between the two cubes. The Green’s function vanishes when r ≈ λ0,
λ0 is the central wavelength of the pulse. Hence we get two point of focalization on each cube,
Fig. 8.11 (a). The investigating domain used for the inversion procedure can be limited to a smaller
box indicated in Fig. 8.11 (a). This is no longer the case for the other configurations, i.e., the two
cubes along y-direction and the two cubes in contact by one edge. In fact, for these configurations
there is a stronger coupling between the two cubes (the coupling is done through the term in 1/r in
the Green’s function which produces multiple scattering), which gives a focalization less punctual
as the time-reversed wave feels the both scatterers as a large and single scatterer, as shown in
Figs. 8.11 (b) and (c). But the investigating domain remains the same as that of the two cubes
along the z axis.

8.3.1.2 Reconstruction of targets

The reconstruction result obtained with the transient inversion procedure is shown in Fig. 8.12.
For the first target, the reconstructed permittivity is underestimated while for the second target,
the reconstructed permittivity distribution is acceptable but less homogeneous than that obtained
by the weighted multiple-frequency approach, shown in Figs. 7.6. For the third target, the target
is well retrieved except that the permittivity is overestimated.



8.3 Inversion problem for transient scattered fields using experimental data 145

−5 0 5
−5

0

5

x(cm)

y(
cm

)

 

 

1

1.5

2

2.5

−5 0 5
−2

0
2
4
6
8

x(cm)

z(
cm

)

 

 

1

1.5

2

2.5

−5 0 5
−2

0
2
4
6
8

y(cm)

z(
cm

)

 

 

1

1.5

2

2.5

(a) (b) (c)

−5 0 5
−5

0

5

x(cm)

y(
cm

)

 

 

1

1.5

2

2.5

−5 0 5
−5

0

5

x(cm)

z(
cm

)

 

 

1

1.5

2

2.5

−5 0 5
−5

0

5

y(cm)

z(
cm

)

 

 

1

1.5

2

2.5

(d) (e) (f)

−4 −2 0 2 4 6
−4
−2

0
2
4
6

x(cm)

y(
cm

)

 

 

1

1.5

2

2.5

−4 −2 0 2 4 6
−2

0
2
4
6
8

x(cm)

z(
cm

)

 

 

1

1.5

2

2.5

−4 −2 0 2 4 6
−2

0
2
4
6
8

y(cm)

z(
cm

)

 

 

1

1.5

2

2.5

(g) (h) (i)

Figure 8.12 : Reconstruction results obtained by the transient inversion data,
under the incomplete configuration, where the scattered fields are weighted by a
Gaussian incident pulse. (a)-(c): for the first target (two cubes along the z-axis).
(d)-(f): for the second target (two cubes with one edge in contact). (g)-(i): for
the third target (two cubes along the y-axis).

All of reconstruction results obtained above are apparently better than that obtained by the
frequency-hopping approach, under the incomplete configuration. This is emphasized with the
contrast error Errχ. Here, we summarize Errχ into the table 8.1, for these three targets and for
different inversion methods. All reported results correspond to the incomplete configuration. Best

Errχ Along z-axis In contact Along y-axis

FH 354% 141% 287%

MF 48% 105% 187%

WMF (α = 3) 54% 47% 62%

TI 66% 57% 200%

Table 8.1 : Summarization of the contrast error, for three different targets and
for different inversion methods. All of results are obtained under the incomplete
configuration. FH: frequency-hopping approach. MF: multiple-frequency approach.
WMF: weighted multiple-frequency approach by α = 3. TI: time inversion method.
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reconstruction results are obtained with the weighted multiple-frequency approach (α = 3). The
‘superiority’ of the weighted multiple-frequency method is due to the fact that the components of
lower frequencies are conserved while for the transient inversion, lower frequency component of the
scattered fields are almost dumped by the Gaussian pulse shape.

8.3.2 Two identical spheres in contact

We propose to reconstruct the fourth target (two identical spheres in contact) using transient data,
always under the incomplete configuration. We have checked that the sampling frequency ∆f is
fine enough to well represent the transient scattered field. We begin with ∆f = 0.25 GHz which
leads to ∆t = 4 ns. The theoretical and experimental scattered fields in the frequency domain are
then transformed into the time domain, respectively. In Fig. 8.13, we present these fields computed
for the receiver at (−0.449 m, 0.778 m, 1.555 m).
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Figure 8.13 : X component of the scattered field in the time domain for the
receiver at (−0.449 m, 0.778 m, 1.555 m), for the two identical spheres in con-
tact, with ∆t=4 ns and ∆f = 0.25 GHz. (a) Theoretical calculated field. (b)
Experimental field.

We observe that components of experimental fields are different from the theoretical ones. It is
not surprising that these two spheres can not be well reconstructed (not shown here). We compare
these two fields in the frequency domain for each sampling frequency. The discrepancy between the
theoretical and experimental fields is stronger at high frequencies than at low frequencies. In order
to check that the unsatisfactory reconstruction are due, or not to the presence of the noise for high
frequencies, we perform the inversion using synthetic data. The reconstruction result is not satis-
factory. The size of spheres is relatively large with respect to the wavelengths at higher frequencies.
This result is comprehensible as with the weighted multiple-frequency approach, under the incom-
plete configuration, the reconstruction is also disappointing. One possible solution to improve
the result of the transient inversion for this specific target is to apply central-frequency-hopping
approach85,121. The reconstruction procedure begins with a pulse centered at lower frequency,
ranged for instance, from 3 GHz to 5.5 GHz. The final result is used as the initial estimate for
the next reconstruction procedure, where the incident pulse is centered at higher frequency, ranged
for instance, from 5.5 GHz to 8 GHz. Thus, we can take advantage of both lower frequencies
and higher frequencies. Unfortunately, this approach could not be investigated using the available
experimental data due to the rough frequency sampling.

8.4 Conclusions

In this chapter, we focused on the analysis of the performance of the transient inversion procedure,
using synthetic data and experimental data. The transient data are transformed into the frequency
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domain via a passage of Laplace transform. The time reversal focusing technique is studied for
localizing one single scatterer and discriminating two independent scatterers. The transient inver-
sion approach has been compared with the frequency-hopping procedure in presence of measured
noise. We conclude that minimizing the measured data at all frequencies at the same time is more
robust to the noise than minimizing them sequentially.

We have also tested the inversion methods using experimental data described in Chap. 7. The
reconstruction results using the transient inversion method are not so good as that obtained by
the weighted multiple-frequency approach, but clearly better than that obtained by the frequency-
hopping approach.
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Conclusion

This thesis addresses the fundamental issue of imaging three-dimensional (3D) targets using elec-
tromagnetic waves. The imager principle consists in illuminating the target under various illumi-
nations and processing the recorded scattered field with an appropriate inversion procedure (here
the Hybrid Method, HM) in order to obtain the permittivity map of the object. The specificity of
our approach is that all the possible information carried out by the scattered field by the target
(phase, polarization and amplitude) are accounted for in the reconstruction procedure which is
based on a rigorous modelling of the target-wave interaction.

We first studied, on simulated data, the localization and characterization of targets buried in
a random inhomogeneous medium using an array of monochromatic micro-wave antennas. Taking
advantage of the different polarizations directions of the emitting antenna and using the vecto-
rial time reversal operator (DORT), we were able to synthesize several incident fields focusing
selectively on each target. We developed a combined method, named HM-DORT, consisting in
applying the inversion procedure (HM) to data obtained with the focusing DORT fields only. HM-
DORT permitted to better localize and characterize the targets than the DORT technique alone.
Moreover, it was shown to be significantly more efficient (both in terms of reconstruction qual-
ity and computation time) than applying the inversion method (HM) to the data obtained with
the non-optimized fields radiated by the antennas. To improve the reconstruction in a half-space
configuration (when the antenna array is placed above a half inhomogeneous space with an impor-
tant dielectric contrast), we have implemented a HM-DORT frequency-hopping procedure taking
advantage of multiple frequency data. Oscillations due to the fact that the numerical aperture is
greatly reduced were eliminated. A resolution quasi-similar to that provided with the homogeneous
background space configuration was obtained.

In a second part, we applied the vectorial inversion scheme (HM) and HM-DORT to experi-
mental optical microscopy data provided by a specially built full-polarized tomographic diffractive
microscope. The latter, which functioned in the reflection configuration, was able to record, within
the numerical aperture of the objective, the intensity, the phase and the polarization state of the
scattered field for any possible illumination. Targets to be observed consisted in sub-micronic resin
cylinders deposited on a high reflective silicon substrate. We showed that for these weakly scat-
tering objects, a transverse resolution about one-fourth of the wavelength is achieved. Note that
this resolution is much better than that of all existing far field microscopes, and sets a landmark
in the optical far field microscopy. We also stressed the interest of the HM-DORT for enhancing
the signature of targets, and thus ameliorating the reconstruction of weak scatterers which may be
otherwise blurred by that of more echogeneous objects.

In the last part of this thesis, we considered the imaging problem in the transient regime. This
regime is mainly encountered in the microwave or radar domain in which the time response of a
scene to an electromagnetic pulse can be recorded. We reformulated the inversion algorithm so
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that all the frequency information contained in the time response are processed simultaneously.
By adjusting the weighting coefficients in the multi-frequency cost function to be minimized, we
were able to obtain a high resolution with a satisfactory stability. We showed on three-dimensional
microwave experimental and simulated data that this technique is significantly more robust than
the sequential frequency-hopping approach.

Perspectives of this work can be split in two parts, those concerning the use of the HM-DORT
and those concerned with the transient regime.

We believe that the HM-DORT procedure is a very interesting tool for processing data of
both the microwave and optical imaging domains especially when studying small localized objects.
It diminishes the noise influence, ameliorates the reconstruction and significantly decreases the
computational burden. In optical imaging, it could be used for improving the reconstruction of
specific targets embedded in a distorting or noisy environment (such as the nucleus in a cell or
inclusions in a dioptre with a rough interface). To check the performances of HM-DORT in presence
of structural noise, we could start the study by inserting an aberrating layer between the target
and the microscope objective48. Another challenge would be to apply HM-DORT to the mirror-
imaging configuration developed previously by our team98. Indeed, it is expected that, in presence
of a mirror, the DORT focusing fields will exhibit an isotropic intensity distribution (same width
along the axial direction as in the transverse plane). One can thus consider to focus selectively on
two targets distributed along the axial direction and to improve the axial resolution up to that in
the transverse plane.

For imaging in the transient regime, the main perspective concerns the experimental valida-
tion and the applications. In this work we considered only multiple-frequency data obtained in a
free-space configuration, in a controlled microwave experiment. We plan to extend the application
of our transient reconstruction procedure to the optical domain. The data will be obtained at
multiple frequencies with a super-continuum laser. The challenge will be to modify our inversion
algorithm in order to account for the presence of an interface (targets being above or below the
latter). Note that this development will be also required for addressing the important problem
of detection and characterization of buried objects (such as water pipes) with a moving emit-
ting/receiving microwave antenna. Last, and more fundamentally, we believe that studying the
role of the dispersion in the transient imaging performance can be most interesting. This will
require to introduce a model of the permittivity with respect to the frequency in the simulation of
the data and to introduce additional parameters in the minimization of the cost function.
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Appendix A

Green’s function

One approach to the solution of radiating problems is by means of vector potential A(r) and scalar
potential φ(r) in an infinite vacuum space. The vector potential A(r) is defined as

B(r) = µ0H(r) = ∇ ×A(r). (A.1)

A(r) is not uniquely determined, A′(r) = A(r) + ∇ψ(r) (according to the gauge freedom),

∇ ×E(r) = iωµ0H(r) = iω∇ ×A(r). (A.2)

We have

E = iωA(r) − ∇φ(r), (A.3)

H(r) =
1
µ0

∇ ×A(r). (A.4)

From the Maxwell equations (1.9), we can obtain a new equation associated to A(r) and J(r),
where J(r) is the source distribution,

∇ × ∇ ×A(r) = −iωµ0ε0E(r) + µ0J(r) = −iωµ0ε0 [iωA(r) − ∇φ(r)] + µ0J(r). (A.5)

The Lorenz gauge condition imposes

∇ ·A(r) = iωµ0ε0φ(r). (A.6)

We also have the mathematical relationship equation as

∇ × ∇ ×A(r) = −∇2A(r) + ∇[∇ ·A(r)], (A.7)

combining Eq. (A.7) together with the Lorenz gauge condition, we can rewrite Eq. (A.5) as

(∇2 + k2
0)A(r) = −µ0J(r). (A.8)

A.1 Scalar Green’s function

We start with the deviation of the scalar Green’s function g(r, r′), we replace the source µ0J(r)
in Eq. (A.8) by the point source δ(r − r′)

(∇2 + k2
0)g(r, r

′) = −δ(r − r′), (A.9)

The scalar Green’s function g(r, r′) is the response to point sources δ(r−r′), and we can determine
it in the spherical coordinate system. g(r, r′) depends on the relative position between observation
point and source point, we can define a position vector R = r − r′, with R = |R|

(∇2 + k2
0)g(R) = −δ(R). (A.10)
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The solution of Eq. (A.10), g(R) is spherically symmetric and independent of θ and φ, it can be
written as

1
R

d2

dR2
[Rg(R)] + k2

0g(R) = −δ(R), (A.11)

for R 6= 0, δ(R) = 0 and we have

d2

dR2
[Rg(R)] + k2

0Rg(R) = 0. (A.12)

The solution of Eq. (A.12) must be an outgoing wave, and we have the scalar Green’s function
reads as

g(R) =
eikR

4πR
. (A.13)

A.2 Dyadic Green’s function

Beginning from the scalar Green’s function, we deduce the dyadic Green function. A vectorial
current source J leads to an electric field E with three components, Ex, Ey and Ez. In this case,
the Green’s function must be a tensor that relates all components of the source with all components
of the field, denoted as dyadic Green’s function.

To determine the dyadic Green’s function, we start with Eq. (1.16) given above. The first
column of the tensor G corresponds to the field due to a point source in x-direction, the second
column is the field due to a point source in y-direction, and the third column is the field due to a
pint source in z-direction. Using the relation ∇ · (∇×) = 0, the divergence of Eq. (1.16) leads to

−k2
0∇G(r, r′) = ∇Iδ(r − r′). (A.14)

According to ∇ × ∇ × G(r, r′) = ∇ [∇G(r, r′)] − ∇2G(r, r′), combining Eqs. (1.16) and
(A.14), we get

−∇2G(r, r′) + ∇ [∇G(r, r′)] − k2
0G(r, r′) = Iδ(r − r′), (A.15)

(∇2 + k2
0)G(r, r′) = −

(
1
k2
0

∇∇ + I
)
δ(r − r′). (A.16)

Using Eq. (A.9), we replace the δ function in Eq. (A.16),(
∇2 + k2

0

)
G(r, r′) =

(
1
k2
0

∇∇ + I
)

(∇2 + k2
0)g(r − r′), (A.17)

(∇2 + k2
0)
[
G(r, r′) −

(
1
k2
0

∇∇ + I
)
g(r, r′)

]
= 0. (A.18)

Hence a possible expression of the dyadic Green’s function is

G(r, r′) =
[
I +

1
k2
0

∇∇
]
g(r, r′), (A.19)

where the operator ∇∇ is a dyadic operator

∇∇ =

∣∣∣∣∣∣∣
∂
∂x

∂
∂x

∂
∂x

∂
∂y

∂
∂x

∂
∂z

∂
∂y

∂
∂x

∂
∂y

∂
∂y

∂
∂y

∂
∂z

∂
∂z

∂
∂x

∂
∂z

∂
∂y

∂
∂z

∂
∂z

∣∣∣∣∣∣∣ . (A.20)

For the sake of computation simplicity, we replace x, y, z components by two variables α, β, where
α and β are either x− x′ or y − y′ or z − z′,

∂R

∂α
=
α

R
, (A.21)

∂( α
R )
∂β

= −αβ
R3

+
δαβ

R
. (A.22)
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Substituting Eqs. (A.21) and (A.22) into Eq. (A.19), we can get a final solution for the Green
function in homogeneous space

G(r, r′) =
eik0R

4πk2
0

[
(3R̂⊗ R̂− I)

(
1
R3

− ik0

R2

)
+ (I − R̂⊗ R̂)

k2
0

R

]
. (A.23)

where R̂ = R/R.
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Appendix B

Conjugate gradient method for
solving the self-consistent equation

Equation (1.33) is a self-consistent equation, represented as

(I −Gα0)Eloc = Einc. (B.1)

To get the solution of Eloc, this equation is simplified as

Ax = b, (B.2)

where x is an unknown vector, b is a known vector, A is a known matrix. The solution of Eq. (B.2)
is given by

x = A−1b, (B.3)

Where A−1 represents the inverse of the matrix A. In the case of a large scattering domain or a
thin discretization, the number of the subunits N becomes large and the computation of A−1 will
be time-consuming. In order to accelerate our computation, we propose to use one of the most
popular iterative methods, the conjugate gradient method57,81,122 to get x nearest to the exact
solution of Eq. (B.2). We minimize a function defined as

Fcgm =
‖Axn − b‖2

‖b‖2
, (B.4)

Beginning from an initial guess xi, which can be equal to zero or a rough estimate of the value of
x. In our case the initial guess is often the incident field. The final solution can be obtained by
series of iterative procedures n

xn = xn−1 + αndn, (B.5)

where αn is the scalar weight chosen at each iteration step n, by minimizing the function Fcgm,
with respect to xn. dn is chosen as the conjugate gradient direction. xn is updated iteratively
until the value of Fcgm reaches the tolerance that we set.
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Appendix C

Gradient calculation for the cost
functional

C.1 Definition of the gradient of a functional

To define the gradient of a functional, we need to give the definition of the directional derivative of
a functional F of the variable x in the space Ω. The directional derivative of F along the direction
u is defined as

DxF (u) = lim
t→0

F (x+ tu) − F (x)
t

. (C.1)

The gradient of F with respect to x is defined as

gx = arg max
u

(DxF (u)|‖u‖ = 1). (C.2)

C.2 Gradients for HM in the time-harmonic re-

gime

First, we give the gradients used in the HM described in Sec. 2.2.4, derived from the cost functional

F (χ,E1, · · · ,EN ) = F (χ,E�) (C.3)

= WΓ

N∑
l=1

‖fmes
l −

=

BχEl‖2
Γ +WΩ

N∑
l=1

‖Einc
l +

=

AχEl −El‖2
Ω,

where gχ is the gradient of F (χ,El) with respect to χ assuming that El do not change,

gχ = arg max
u

(DχF (u)|‖u‖ = 1) for (C.4)

DχF (u) = lim
t→0

F (χ+ tu,El) − F (χ,El)
t

. (C.5)

F (χ+ tu,E�) can be expanded as

F (χ+ tu,E�) = WΓ

N∑
l=1

‖fmes
l −

=

B(χ+ tu)El‖2
Γ

+ WΩ

N∑
l=1

‖Einc
l +

=

A(χ+ tu)El −El‖2
Ω. (C.6)
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For the sake of simplicity, we define here two residue errors for each illumination l

h
(1)
l = Einc

l +
=

AχEl −El, (C.7)

h
(2)
l = fmes

l −
=

BχEl, (C.8)

F (χ+ tu,E�) can be rewritten as

F (χ+ tu,E�) = WΓ

N∑
l=1

‖h(2)
l − t

=

BuEl‖2
Γ +WΩ

N∑
l=1

‖h(1)
l + t

=

AuEl‖2
Ω,

= F (χ,El) − 2t
N∑

l=1

WΓRe
〈
h

(2)
l ,

=

BuEl

〉
Γ

+ 2t
N∑

l=1

WΩRe
〈
h

(1)
l ,

=

AuEl

〉
Ω

+O(t2).

Thus, the directional derivative DχF (u) is

DχF (u) = −2
N∑

l=1

WΓRe
〈
h

(2)
l ,

=

BuEl

〉
Γ

+ 2
N∑

l=1

WΩRe
〈
h

(1)
l ,

=

AuEl

〉
Ω

,

= −2
N∑

l=1

WΓRe
〈

=

B
†
h

(2)
l , uEl

〉
Γ

+ 2
N∑

l=1

WΩRe
〈

=

A
†
h

(1)
l , uEl

〉
Ω

,

with
=

A
†

and
=

B
†

are the adjoint operators of
=

A and
=

B, respectively. u is a scalar function while
El is vectorial one.

Note that, 〈
=

B
†
h

(2)
l , uEl

〉
Γ

=
∫

Γ

(B†h
(2)
l )(uEl)dr,

=
∫

Γ

(Ēl

=

B
†
h

(2)
l )udr,

=
〈
Ēl

=

B
†
h

(2)
l , u

〉
Γ

,

where the overbar denotes the complex conjugation. Now,

DχF (u) = −2
N∑

l=1

WΓRe
〈
Ēl

=

B
†
h

(2)
l , u

〉
Γ

+ 2
N∑

l=1

WΩRe
〈
Ēl

=

A
†
h

(1)
l , u

〉
Ω

,

= −2Re

〈
WΓ

N∑
l=1

Ēl

=

B
†
h

(2)
l −WΩ

N∑
l=1

Ēl

=

A
†
h

(1)
l , u

〉
.

Thus, we can finally get the gradient

gχ = −WΓ

N∑
l=1

Ēl

=

B
†
h

(2)
l +WΩ

N∑
l=1

Ēl

=

A
†
h

(1)
l . (C.9)

The positivity of χ is realized by retrieving two real auxiliary functions ξ and η instead of the
complex valued χ

χ = ξ2 + iη2. (C.10)
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The gradients of these two real functions can be given as

gξ = gχ
∂χ

∂ξ
, (C.11)

gη = gχ
∂χ

∂η
, (C.12)

we can get the gradient with respect to ξ and η as

gξ = −2Re

(
WΓ

N∑
l=1

Ēl

=

B
†
h

(2)
l −WΩ

N∑
l=1

Ēl

=

A
†
h

(1)
l

)
, (C.13)

gη = −2Im

(
WΓ

N∑
l=1

Ēl

=

B
†
h

(2)
l −WΩ

N∑
l=1

Ēl

=

A
†
h

(1)
l

)
. (C.14)

Now, in order to get the gradient of F (χ,El) with respect to the total field El, we assume
that χ and total fields (Em)m=1,··· ,N,m 6=l do not change. We can write

gEl
= arg max

u
(DEl

F (u)|‖u‖ = 1) for (C.15)

DEl
F (u) = lim

t→0

F (χ,El + tu, (Em)m=1,··· ,N,m 6=l) − F (χ, (Em)m=1,··· ,N )
t

, (C.16)

and F [χ,El + tu, (Em)m=1,··· ,N,m6=l] can be expanded as

F [χ,El + tu, (Em)m=1,··· ,N,m 6=l] = WΓ

N∑
(m=1

m 6=l)
‖h(2)

m ‖2
Γ +WΩ

N∑
(m=1

m 6=l)
‖h(1)

m ‖2
Ω

+ WΓ‖f l −
=

BχEl − t
=

Buχ‖2
Γ

+ WΩ‖Einc
l +

=

AχEl −El − tu+ t
=

Auχ‖2
Ω,

= WΓ

N∑
(m=1

m 6=l)
‖h(2)

m ‖2
Γ +WΩ

N∑
(m=1

m 6=l)
‖h(1)

m ‖2
Ω

+ WΓ‖h(2)
l − t

=

Buχ‖2
Γ +WΩ‖h(1)

l + t
=

Auχ− tu‖2
Ω,

= F (χ, (Em)m=1,··· ,N ) − 2tWΓRe
〈
h

(2)
l ,

=

Buχu

〉
Ω

+ 2tWΩRe
〈
h

(1)
l ,

=

Aχu− u
〉

Γ

+O(t2).

Thus, the directional derivative DEl
F (u) is

DEl
F (u) = −2WΓRe

〈
h

(2)
l ,

=

Buχ

〉
Ω

+ 2WΩRe
〈
h

(1)
l ,

=

Aχu− u
〉

Γ

,

= −2WΓRe
〈
χ̄

=

B
†
h

(2)
l ,u

〉
Ω

+ 2WΩRe
〈
χ̄

=

A
†
h

(1)
l − h(1)

l ,u

〉
Γ

,

= 2Re
〈
−WΓχ̄

=

B
†
h

(2)
l +WΩ

(
χ̄

=

A
†
h

(1)
l − h(1)

l

)
,u

〉
.

We can finally have the descending direction with respect to El as

gEl
= −WΓχ̄

=

B
†
h

(2)
l +WΩ

(
χ̄

=

A
†
h

(1)
l − h(1)

l

)
. (C.17)
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method

We rewrite the cost functional with the frequency-weighted coefficient

F̃ (χ,E�,�) = W̃Γ

N∑
l=1

P∑
p=1

(1/fp)α‖h(2)
l,p ‖

2
Γ + W̃Ω

N∑
l=1

P∑
p=1

(1/fp)α‖h(1)
l,p ‖

2
Ω. (C.18)

We first calculate the gradient g̃χ with respect to the contrast, defined as

g̃χ = arg max
u

(DχF̃ (u)|‖u‖ = 1) for (C.19)

DχF̃ (u) = lim
t→0

F̃ (χ+ tu,El,p) − F̃ (χ,El,p)
t

, (C.20)

where F̃ (χ+ tu,E�) can be expanded as

F̃ (χ+ tu,E�) = W̃Γ

P∑
p=1

(1/fp)α
N∑

l=1

‖fmes
l,p −

=

B(χ+ tu)El,p‖2
Γ (C.21)

+ W̃Ω

P∑
p=1

(1/fp)α
N∑

l=1

‖Einc
l,p +

=

A(χ+ tu)El,p −El,p‖2
Ω.

We substitute the residue error in Eq. (C.21) with h(1)
l,p and h(2)

l,p and we get

F̃ (χ+ tu,E�,�) = W̃Γ

P∑
p=1

(1/fp)α
N∑

l=1

‖h(2)
l,p − t

=

BuEl,p‖2
Γ

+ W̃Ω

P∑
p=1

(1/fp)α
N∑

l=1

‖h(1)
l,p + t

=

AuEl,p‖2
Ω,

= F̃ (χ,El,p) − 2tW̃Γ

P∑
p=1

(1/fp)α
N∑

l=1

Re
〈
h

(2)
l,p ,

=

BuEl,p

〉
Γ

+ 2tW̃Ω

P∑
p=1

(1/fp)α
N∑

l=1

Re
〈
h

(1)
l,p ,

=

AuEl,p

〉
Ω

+O(t2).

Similarly to the derivation procedure in Sec. C.2, we can finally get the gradient with respect to ξ
and η with the frequency-weighted factor as

g̃ξ = −2Re

[
W̃Γ

P∑
p=1

(1/fp)α
N∑

l=1

Ēl,p

=

B
†
h

(2)
l,p − W̃Ω

P∑
p=1

(1/fp)α
N∑

l=1

Ēl,p

=

A
†
h

(1)
l,p

]
, (C.22)

g̃η = −2Im

[
W̃Γ

P∑
p=1

(1/fp)α
N∑

l=1

Ēl,p

=

B
†
h

(2)
l,p − W̃Ω

P∑
p=1

(1/fp)α
N∑

l=1

Ēl,p

=

A
†
h

(1)
l,p

]
. (C.23)

Now, in order to get the gradient of F (χ,E�,�) with respect to the total field El,p, we assume
that χ and total fields (Em,n)(m=1,··· ,N,m 6=l

n=1,··· ,P,n 6=p ) do not change. Then, we can write

gEl,p
= arg max

u
(DEl,p

F (u)|‖u‖ = 1) for (C.24)

DEl,p
F (u) = lim

t→0

F
[
χ,El,p + tu, (Em,n)(m=1,··· ,N,m 6=l

n=1,··· ,P,n 6=p )
]
− F

[
χ, (Em,n)(m=1,··· ,N

n=1,··· ,P )
]

t
. (C.25)
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F
[
χ,El,p + tu, (Em,n)(m=1,··· ,N,m 6=l

n=1,··· ,P,n 6=p )
]

can be expanded as

F
[
χ,El,p + tu, (Em,n)(m=1,··· ,N,m 6=l

n=1,··· ,P,n 6=p )
]

= W̃Γ

P∑
(n=1

n 6=p)
(1/fn)α

N∑
(m=1

m 6=l)
‖h(2)

m,n‖2
Γ

+ W̃Ω

P∑
(n=1

n 6=p)
(1/fn)α

N∑
(m=1

m 6=l)
‖h(1)

m,n‖2
Ω

+ W̃Γ(1/fp)α‖fmes
l,p − χEl,p − t

=

Bχu‖2
Γ

+ W̃Ω(1/fp)α‖Einc
l,p +

=

AχEl,p −El,p − tu+ t
=

Aχu‖2
Ω,

= W̃Γ

P∑
(n=1

n 6=p)
(1/fn)α

N∑
(m=1

m 6=l)
‖h(2)

m,n‖2
Γ

+ W̃Ω

P∑
(n=1

n 6=p)
(1/fn)α

N∑
(m=1

m 6=l)
‖h(1)

m,n‖2
Ω

+ W̃Γ(1/fp)α‖h(2)
l,p − t

=

Bχu‖2
Γ

+ W̃Ω(1/fp)α‖h(1)
l,p + t

=

Aχu− tu‖2
Ω,

= F
[
χ, (Em,n)(m=1,··· ,N

n=1,··· ,P )
]
− 2tW̃Γ(1/fp)αRe

〈
h

(2)
l,p ,

=

Bχu

〉
Ω

+ 2tW̃Ω(1/fp)αRe
〈
h

(1)
l,p ,

=

Aχu− u
〉

Γ

+O(t2),

we finally have the descending direction with respect to El,p as

g̃El,p
= −W̃Γ(1/fp)αχ̄

=

B
†
h

(2)
l,p + W̃Ω(1/fp)α

(
χ̄

=

A
†
h

(1)
l,p − h(1)

l,p

)
. (C.26)



164
C.3 Gradients for weighted multiple-frequency

method



Appendix D

Linear combination of eigenvectors
for selective focalization

Suppose that V l(ζ) is the l-th, component of TRO associated to the ζ-th eigenvalue. We use V l(ζ)
as the new complex currents of antennas, the corresponding backpropagated focusing field is noted
as Einc;DORT

ζ (r), r is the position vector inside the scattering domain W . In degenerate cases, each
eigenvector generates a wave focusing on M scatterers at the same time, where rj (j = 1, 2, · · · ,M)
denotes the center of each scatterer. The problem is to generate a new eigenvector focusing exclu-
sively on one scatterer, through an appropriate linear combination of these eigenvectors. A new
eigenvector V new

l (rj) corresponding to scatterer j can be generated by interpolating an additive
phase φj

k onto each original eigenvector associated with the eigenvalue k, shown as

V new
l (j) = V l(Ndiff) +

Ndiff−1∑
k=1

V l(k)exp(iφj
k), (D.1)

where Ndiff is the total number of eigenvalues focusing on these scatterers. In presence of a
substrate, there exist two eigenvalues for each scatterer. According to Eq. (3.12), the new back-
propagated field can be obtained with the same combination

Einc;DORT
new (r) = Einc;DORT

Ndiff
(r) +

Ndiff−1∑
k=1

Einc;DORT
k (r)exp(iφj

k). (D.2)

Starting from an initial guess φj
k,0 = 0 (k = 1, 2, · · · , Ndiff−1), this adjusted phase can be iteratively

obtained by minimizing a functional Fmod(φj
k) of the form

Fmod
n (φj

k,n) =
M∑

p=1,p6=j

‖Einc;DORT
new (rp)‖ − ‖Einc;DORT

new (rj)‖, (D.3)

Eq. (D.3) can be interpreted as the discrepancy between the modulus of the incident field on the
scatterer centred at rj and the sum of the modulus of the incident fields on the other scatterers
centred at rp, (p = 1, 2, · · · ,M, p 6= j). When Fmod(φj

k) is minimized until

‖Fmod
n

(
φj

k,n

)
− Fmod

n−1

(
φj

k,n−1

)
‖

‖Fmod
n−1 (φj

k,n−1)‖
< 10−6. (D.4)

The focusing field on scatterer j is assumed to be much stronger than that of the others. It means
that with this linear combination of the eigenvectors, we can generate a new backpropagated field
focusing exclusively on one scatterer.
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Appendix E

Backpropagation method to
generate an initial guess to the

inverse algorithm

We present here the backpropagation method to generate an initial guess that is used in the
inversion procedure described in Sec. 2.2.4.

First, for each illumination l, the initial estimate ψinit
l = χinitEinit

l inside the investigating
domain Ω can be obtained by backpropagating the measured scattered field fmes

l into Ω, in the
form of

ψinit
l = γlG

†fmes
l , (E.1)

where G† is the adjoint operator of G. The scalar weight γl can be obtained by minimizing the
cost function F(γl)

F(γl) = ‖fmes
l −Gψinit

l ‖2
Γ = ‖fmes

l − γlGG
†fmes

l ‖2
Γ. (E.2)

F(γl) describes the discrepancy between the measured scattered field fmes
l and that would be

obtained by ψinit
l . γl is derived under the necessary condition so that F(γl) is minimum, ∂F

∂γl
= 0,

γl =

〈
GG†fmes

l ,fmes
l

〉
Γ

‖GG†fmes
l ‖2

Γ

. (E.3)

Second, once the initial estimate ψinit
l is obtained, an estimation of the total field Einit

l inside Ω
can be deduced from Eq. (2.1),

Einit
l = Einc

l +Gψinit
l . (E.4)
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At last, from the initial estimate Einit
l and ψinit

l obtained above, we can derive the initial guess for
ξ0 and η0 inside Ω, respectively8,

ξ40(r ∈ Ω) =

N∑
l=1

{
Re
[
ψl(r)initĒ

init
l (r) + εb‖Einit

l (r)‖2 − ‖Einit
l (r)‖2

]}2

‖Einit
l (r)‖2

N∑
l=1

‖Einit
l (r)‖2

, (E.5)

η4
0(r ∈ Ω) =

N∑
l=1

{
Im
[
ψl(r)initĒ

init
l (r) + εb‖Einit

l (r)‖2
]}2

‖Einit
l (r)‖2

N∑
l=1

‖Einit
l (r)‖2

. (E.6)

Where Ēinit
l (r) denotes the complex conjugate matrix of Einit

l (r).



Appendix F

Synthetic aperture and resolution
in TDM

It has been proved that in far field and under the Born approximation, the field Esca scattered
along the wave vector k for an illuminating wave vector kinc is directly proportional to the 3D
Fourier transform of ∆ε taken at k − kinc

106,

Esca(k,kinc) ∝ ∆ε̃(k − kinc). (F.1)

For a given angle of illumination with wave vector kinc, according to Eq. (F.1), TDM permits to
detect the Fourier components of the object permittivity contrast on a cap of sphere of radius k0,
truncated by the numerical aperture (NA) of the objective used to collect the scattered field, and
centered on the extremity of wave vector −kinc. This cap of sphere is represented on Fig. F.1
for the case of NA = 1. To increase the amount of Fourier components that can be detected,
and therefore ameliorate the resolution of the object reconstruction, various angles of illumination
are used successively on the sample. Each of them provides different Fourier components, and
the merging of all the components is a process known as synthetic aperture generation. Indeed,
a synthetic aperture is built through the measurement, and permits to access spatial frequencies
of the object that are beyond those confined in sole the detection NA. This synthetic aperture is
described in the three-dimensional Fourier space by an Optical Transfer Function (OTF) that is
equal to one for a Fourier component that can be detected, and zero elsewhere. The permittivity
contrast of the object that is reconstructed through an inverse Fourier transform (FT−1) of the
detected field can thus be written as

∆ε(r)rec =
∫ +∞

−∞
(∆ε̃(K) × OTF)eiK·rd3K (F.2)

= ∆ε(r) ∗ FT−1(OTF) = ∆ε(r) ∗ PSF, (F.3)

where * denotes the convolution product. The projections of K give the three-dimensional spatial
frequencies of the object, and PSF is the point spread function which describes the response of
the imaging system to a point source. The PSF is given by the inverse Fourier transform of the
OTF. The reconstructed permittivity contrast of the object is therefore the actual one convoluted
with the PSF. Depending on the configuration for illumination and detection, TDM has access
to different Fourier components of the object, what modifies the OTF and the PSF. Hereafter
are presented the main configurations that can be used and the associated OTF and PSF. Note
that, for the sake of simplicity, an ideal numerical aperture equal to one is considered both for the
illumination and the detection.

To obtain the biggest amount of Fourier components, the ideal case would consist in illumi-
nating the object along all possible directions within 4π steradians, and performing the detection
also for all these directions. Therefore for a given illumination direction, the accessible Fourier
components lie on the surface of a sphere with radius k0 (the smaller dotted sphere) in Fig. F.2.
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Figure F.1 : Accessible 3D Fourier domain for one incidence.

Then, varying the illumination angle permits to fill the volume of a sphere with radius 2k0, the
larger solid sphere in Fig. F.2.

Figure F.2 : OTF for the complete configuration.

With this complete configuration, all the spatial frequencies given by k − kinc for any wave
vectors k and kinc are accessible. The Fourier coefficient of the permittivity can be measured
within the entire sphere of radius 2k0 depicted in Fig. F.2. This sphere is known as the Ewald
sphere.

In practice, the complete configuration is difficult to implement in a TDM setup, as most of
the microscopes work in a transmission or in a reflection configuration. In the transmission case,
the illumination is performed on one side of the sample along the optical axis, and the detection
on the other side. The OTF is then only a portion of the sphere of radius 2k0 of the complete
configuration. It is a torus with the z axis as symmetrical axis, and its cross section in a longitudinal
plane consists of two circles with radius k0, as shown in Fig. F.3 (a).
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(a) (b)

Figure F.3 : (a) OTF for the transmission configuration. (b) OTF for the
reflection configuration.

For the case of the reflection configuration, where the illumination and the detection are per-
formed on the same side of the sample, the OTF becomes the half of the complete sphere of radius
2k0, on one side of the transverse plane (x, y), as shown on Fig. F.3 (b).
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Discrete dipole approximation in time domain with Laplace transform
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We present a new form of the discrete dipole approximation for electromagnetic scattering compu-

tations in time domain. We show that the introduction of complex frequencies, through the Laplace

transform, significantly improves the computation time. We also show that the Laplace transform

and its inverse can be combined to extract the field inside a scatterer at a real resonance frequency.

PACS numbers: PACS numbers: 02.60.Cb, 41.20.Jb, 42.25.Fx

I. INTRODUCTION

Electromagnetic scattering by an arbitrary three-
dimensional structure, in time domain, is usually mod-
elled using the finite difference in time domain (FDTD)
method [1–3]. In the FDTD, one solves numerically the
differential form of Maxwell’s equations on a grid. A con-
straint of the FDTD is that the entire computational do-
main needs to be discretized [4]. By contrast, the discrete
dipole approximation (DDA), a scattering computation
method, requires that only the scatterer (or its imme-
diate neighbourhood) be discretized [5–8]. In the DDA
the outgoing wave condition is automatically satisfied by
using dyadic field susceptibility tensors to describe the
linear-response of the fields. However, in its traditional
formulation, the DDA is a frequency-domain method, re-
stricted to time-harmonic fields.

Recently we generalized the DDA to handle arbitrary,
non time-harmonic electromagnetic waves. The method,
detailed in Ref. [9], consists in solving the electromag-
netic scattering in frequency domain, and performing a
Fourier transform to generate the time evolution of elec-
tromagnetic quantities. Of course, with this approach,
one drawback of the DDA is that we must solve a large
system of linear equations to find the fields inside the
scatterer [4]. This can be prohibitive in terms of com-
puter memory requirements. A common way to circum-
vent this problem is to use an iterative method. How-
ever, such an approach requires us to calculate many
times a large matrix-vector product (MVP), and to do
so for all the frequencies required to accurately describe
the time evolution of the fields. Therefore, the main bot-
tleneck for the computation time is the total number of
MVP required in order to achieve the desired level of
convergence of the iterative method. One can decrease
the number of MVP by choosing an efficient iterative
method, for instance we use a combination of the gener-
alized product-type methods based on Biconjugate gra-
dient (GPBICG) [10], a good initial value [9] and a pre-
conditonner of Jacobi [11, 12], but nevertheless the con-
vergence is still slow.

In this article we present a general strategy to reduce
the number of MVP by introducing complex frequencies
into the problem via the Laplace transform. The out-

come is a reduction of the number of MVP, and hence
a speed-up of the computation. However, this is not the
only benefit. This new approach allows us to handle reso-
nant scatterers, for instance a plasmon resonance, in time
domain, something that the Fourier transform approach
of Ref. [9] cannot do.

In Sect. II we briefly present the DDA method in both
its time-harmonic and time domain versions, and then,
in Sect. III we present the results. Finally in Sect. IV we
present our conclusion.

II. THEORY

In this section we describe the computation of the
field scattered by an arbitrary object in frequency do-
main (electromagnetic fields written in upper case) and
in time domain (electromagnetic fields written in lower
case), using the DDA.

A. DDA in time-harmonic case

As the DDA is a well known frequency domain method,
we shall only describe it briefly here [6, 13]. Consider an
object with dielectric permittivity ε and arbitrary shape,
in free space. For each frequency ω the object is dis-
cretized into N polarizable elements. Each element j
located at rj has an electric polarizability α(rj , ω), given
by:

α(rj , ω) =
α0(rj , ω)

1− 2

3
ik3α0(rj , ω)

, (1)

α0(rj , ω) =
3d3

4π

ε(rj , ω)− 1

ε(rj , ω) + 2
, (2)

where d is the spacing of the DDA discretization lattice;
k = ω/c is the wavenumber. Then, the local fields at
subunit i can be written as:

E(ri, ω) = E0(ri, ω) +

N∑

j=1,i 6=j

T(ri, rj , ω)α(rj , ω)E(rj , ω).(3)
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T denotes the dyadic field-susceptibility tensor of free-
space, i.e.,

T(ri, rj , ω) = e(ikr)

[(

3
r ⊗ r

r2
− I

)(

1

r3
−

ik

r2

)

−

(

r ⊗ r

r2
− I

)

k2

r

]

(4)

with r = ri − rj and I the unit tensor. E0(ri, ω)
is the plane wave illuminating the object such that
‖E0(r, ω)‖ = E0. If we write Eq. (3) for all N sub-
units forming the object, we get a linear system of size
3N × 3N which can be written symbolically

AE = E0, (5)

where A is a matrix containing the dyadic field-
susceptibility tensor and the polarizabilities. Notice as
the sum in Eq. (3) is performed over i 6= j, A is a matrix
with ones on the main diagonal. The main objective of
the DDA is to solve as efficiently as possible the large
linear system of Eq. (5).

The linear system can be solved iteratively using a
number of methods similar to the conjugate gradient
method [11, 14, 15]. Irrespective of which iterative
method is used (not implying that the choice of the
method is unimportant, see Ref. [16]), at each step of
the iterative method, one needs to compute efficiently
the matrix vector product (MVP) AX where X is an es-
timate of the local field given by the iterative method.
The iterative process is stopped when

‖AXn − E0‖
2

‖E0‖2
< ǫ, (6)

where Xn is the n-th estimate of the local-field given by
the iterative method, and ǫ the desired accuracy. Once
the local field is obtained at each subunit position, the
scattered field can be computed as

Ed(r, ω) =

N
∑

j=1

T(r, rj , ω)α(rj , ω)E(rj , ω). (7)

To speed-up the computation of the MVP at each iter-
ation, the product is calculated via Fast Fourier trans-
form (FFT) as A can be written as a Toeplitz ma-
trix [17, 18]. FFT notwithstanding, the solution of
Eq. (5) is still the most time consuming part of the com-
putation. Therefore, any step toward reducing the num-
ber of MVPs in the algorithm would be a major progress
for this type of computation. This is particularly true for
time-domain computations which requires that the cor-
responding time-harmonic problem be solved for several
frequencies. We will get back to this problem in Sect. III.

B. DDA in time domain

In this section we consider the case where the incident
field is an electromagnetic pulse with a Gaussian envelop

f(t) and a spectrum centered on some frequency ω0:

f(t) = E0 exp

[

−16

(

t − t0
τ

)2
]

cos(ω0t), (8)

where τ is related to the width of the envelop of the
Gaussian pulse and t0 is chosen large enough to assume
that we have f(t) = 0, ∀t ≤ 0. We define F (s), the
Laplace transform of f(t) as [19]

F (s) = Lβ [f(t)] =

∫

∞

0

f(t)e−stdt, (9)

with s = β+iω. The inverse Laplace transform is defined
along a Bromwich contour as:

f(t) = L
−1
β [F (s)] =

1

2iπ

∫ β+i∞

β−i∞

F (s)estds (10)

=
eβt

2π

∫

∞

−∞

F (β + iω)eiωtdω. (11)

To get ed(r, t) the scattered field in time domain (or the
local field inside the object), one needs to compute the
inverse Laplace transform of F (s)Ed(r, s) where Ed(r, s)
is obtained through Eqs. (3) and (7) with a complex fre-
quency, i.e. in the expressions of the incident plane
wave, field-susceptibility tensor (FST) and polarizability,
iω is replaced with s. As β > 0 the eiωr/c dependence
of the FST becomes eiωr/ce−βr/c. In other words, the
complex frequency introduces an evanescent decay in the
FST.

Notice that Eq. (10) is the inverse Laplace transform
which can be expressed in the form of a inverse Fourier
transform, Eq. (11) [20]. At the cost of introducing
of manageable truncation and discretization errors, f(t)
can now be computed efficiently via inverse fast Fourier
transform (FFT). Let ∆ω be the discretization step in
the spectral domain, for an observation time span of
Tmax and with Ns being the number of the sample (i.e.
∆t = Tmax/Ns), we should choose our spectral step such
that ∆ω∆t = 2π/Ns or equivalently ∆ω = 2π/Tmax.
Notice that due to the finite bandwidth of our pulse
(Gaussian envelop), we suffer no truncation error in going
from Eq (11) to a FFT. However, there remains the dis-
cretization error. The larger β, the stronger the damping
in the FST, but due to the presence of the term eβt in
the inverse Laplace transform which amplify the numer-
ical error, parameter β cannot exceed a maximum value
βmax [21]. Finding this βmax is not easy and remains an
empirical process. Wilcox [20, 21] proposed the following
value

βmax = 2∆ω =
4π

Tmax
, (12)

and Wedepohl [20, 21] proposed

βmax =
log(N2)

Tmax
. (13)
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As we will show in Sect. III, to avoid any numerical error
in the range of observation [0, Tmax], the best value for
our configuration is:

βmax = ∆ω =
2π

Tmax

. (14)

Notice that the expression of the polarizability in
Eq. (1) introduces a set of triplets of poles given by the
solutions to the following equation:

ω3 = −2iπ
c3

d3

ε(ω) + 2

ε(ω) − 1
. (15)

If the scatterer has a frequency independent relative per-
mittivity we get a single triplet of poles. If the rela-
tive permittivity is given by a single Drude-Lorentz reso-
nance, one gets two triplets of poles, i.e. each new Drude-
Lorentz resonance leads to an additional triplet of poles.

In each triplet, the poles can be deduced from each
other by a 2π/3 rotation in the complex plane. It follows
that one or two poles within each triplet have a posi-
tive imaginary part. They can contribute to the Laplace
transform if they are located inside the integration path,
in the complex (frequencies) plane. In all the results
presented in this article, it has been checked that all
the poles are located outside the integration path, and
therefore, the poles make no contribution the integrals.
In the case where poles are located inside the integra-
tion path, their contribution can be determined using two
methods. The first one is based on the use of Cauchy’s
integral theorem, and on the evaluation of the dyadic
field-susceptibility at complex frequencies. The second
method is to use a formulation of the DDA which uses the
macroscopic field instead of the local field, thus avoiding
the poles associated with the polarizability. While both
formulations are strictly equivalent [13] it is usually more
convenient to use the local field to compute the cross sec-
tion [6] or optical forces for example [22–25].

Notice that if one is interested in the time evolution
of the macroscopic field inside the object, one needs to
store the electric field at all subunits for all the frequen-
cies, hence the memory requirement would be the usual
one for the DDA times the number of frequency. On
the other hand, if one only needs the scattered field at
one observation point, no extra cost in memory will be
incurred.

III. RESULTS

A. Dielectric sphere with Mie resonances

In this section we consider a homogeneous sphere of
radius a with relative permittivity ε. Notice that for this
geometry we use a modified prescription for the polar-
izability which accounts for local-field effects, and dra-
matically improves the accuracy of the DDA [26, 27].
The parameters of the incident pulse are f0 = 3.5 GHz
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FIG. 1: (a) Sketch of the geometry of the problem. (b) Com-
ponent x of the incident field versus time. (c) Spectrum of
the incident field, i.e. modulus of F (s) with β = 0.

(ω0 = 2πf0 and λ0 ≈ 85 mm) and τ = 1.5 ns and the
total observation time is Tmax = 8 ns. We use 40 dis-
crete frequencies across the spectrum of the pulse. The
incident field is a plane wave propagating along z and
polarized along x, see Fig. 1(a). Figure 1(b) shows the
incident field versus time and Fig. 1(c) its spectrum.
The iterative method used is GPBICG with the criterion
ǫ = 10−6 [10, 16]. Notice that as we need to compute
the local field at each subunit position for each frequen-
cies for a plane wave illumination, we can deduce from
this intermediary result the scattering cross section of the
sphere versus the frequency in the complex plane with:

Cext(s) =
4πk

E2

0

N∑

j=1

Im [E∗

0
(rj , s)α(rj , s)E(rj , s)] . (16)

Notice that when β = 0, Cext is computed along the real
axis which can also be evaluated with Mie theory. We
also point out that the solution of Eq. (5) is faster if one
uses a good initial estimate of the local field. Usually, for
single frequency problems one use the incident field, but
as we are “frequency hopping”, we use a linear combina-
tion of the local field obtained for the previous frequency
as described in Ref. [9]. In the appendix we present some
of the details of this procedure, and give the number of
MVP for different iterative methods, for both dielectric
spheres used in this section.

1. Dielectric sphere with weak resonances

Consider a sphere of radius a = λ0/3 with ε = 4.
Figure 2(a) shows the extinction cross section, Cext ver-
sus frequency. In dotted line we have the prediction of
Mie theory and in dashed line the DDA with β = 0,
i.e. along the real axis. Notice that the convergence
of the DDA is very good as the difference between the
two results is very small. The dot dashed line is com-
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FIG. 2: (a) Extinction cross section with Mie calculation (dot-
ted line), DDA with β = 0 (dashed line) and DDA with
β = βmax (plain line). (b) Number of product AX for the
iterative method to reach the convergence. (c) Spectrum of
the scattered field. (d) Scattered field versus the time.

puted with the value β = βmax = 2π/Tmax. One can
see that the scattering cross section computed with the
damping term βmax presents weaker resonances, this is
due to the fact that we compute Cext far from the real
axis, hence far from the resonance localized on the real
axis. In Fig. 2(b) the number MVP required by the itera-
tive method to achieve convergence (ǫ = 10−6) is plotted
versus frequency. When the DDA is used with β = βmax

(solid line), the number of MVP is overall smaller than
when β = 0. The effect is more pronounced around the
weak resonances between 4 and 5 GHz.

Figure 2(d) shows the x component of the scattered
field, ed(r, t) estimated at z = a + λ0/2 along the z
axis, see Fig. 1(a). Its spectrum is given in Fig. 2(c).
In time domain, we obtain the same magnitude of the
field irrespective of the value of β as demonstrated by
the fact that both curves in Fig. 2(d) are superimposed.
Of course, the spectra on (β = 0) and off (β = βmax)
the real axis are different. When β = βmax the spectrum
has the same spectral support but is damped (by a factor
4) and smoother. This is the very reason with this new
formulation of the DDA allows us to compute the fields
in time domain with fewer matrix-vector products. Ob-
viously a lower value of β yields a less smooth spectrum
and increases the number of MVP required to achieve a
given level of convergence.

Note that we checked that broadening the frequency
domain does not change ed(r, t), meaning that we have
no noticeable truncation error associated to the fact a
true Gaussian envelop has an unbounded support.
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2. Dielectric sphere with large Mie resonances

We now consider a sphere with radius a = λ0/2 and
ε = 4. In Fig. 3(a) the extinction cross section, Cext,
is plotted versus the frequency on the real axis and off
the real axis. Compared to the example in the previous
section, as the radius of the sphere has increased, the res-
onances on the real axis are sharper and more numerous
(see the solid line in Fig. 3(a)). In dashed line we plot
Cext computed with the DDA for β = 0. The compari-
son with Mie shows that the DDA calculation has a suit-
able level of convergence. With β = βmax the extinction
cross section plot is strongly smoothed as no resonance
appears at high frequencies, hence we can see the strong
damping effect associated with the introduction of a com-
plex frequency. The consequence, shown in Fig. 3(b), is
a strong decrease of the number MVP needed by the
iterative method to achieve the desired level of conver-
gence when β = βmax. The decrease factor for the higher
frequencies is about 3 compared to the case β = 0 (no
damping). Notice also that when β = βmax the number
of MVP increases monotonically with the frequency, i.e.

with the presence of slight resonances, contrary to β = 0.
This can be understood from Fig. 3(c) where the spec-
trum of the scattered field is plotted for both values of β.
When β = βmax (solid line) compared to β = 0 (dashed
line) the spectrum is clearly smoothed and dampened by
a factor 4. In Fig. 3(d) one can see that once again, in
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the time domain, the computed scattered fields agree for
both values of β.

If we look more closely at the time-domain plot, we no-
tice that at the end of our observation time the scattered
field still exhibits small oscillations. Therefore, if we want
to study the fields over a longer period of time, for in-
stance up to when these oscillations have died out, our
time interval needs to be expanded by increasing Tmax

which was 8 ns. For example we can choose a new interval
of observation [0, T ′

max
] where T ′

max
= 2Tmax = 16 ns. As

we use an inverse FFT we need to compute twice as many
frequencies with β′

max
= 2π/T ′

max
= βmax/2 (dashed line

in Fig. 3(e)) lest the numerical error be magnified by the
factor eβmaxt at large times. This means that to get a
longer observation timespan, one needs a dense sampling
in the complex frequency domain. This is illustrated in
Fig. 3(e) in solid line. Obviously, this means that the
computation time will be larger for this configuration
as there are more frequencies to consider as well as, for
each frequency, more steps in the iterative solution of
Eq. (5) as β has a lower value. Notice that the numerical
error with βmax (solid line) becomes noticeable around
t = 10 ns hence just after Tmax = 8 ns. We have tested
that the values used by Widepohl and Wilcox are too
high and would introduce significant errors on the time
evolution of the fields for times earlier than Tmax.

We emphasize that if the point of observation (where
the fields are computed) is at a distance r from the scat-
terer, one does not need to increase the observation time
window, but should merely perform the inverse Laplace
transform with the function esr/cF (s) instead of F (s) to
perform a translation in time and keep the same time
window.

B. Sphere with a plasmon resonance

In this section we consider a particle supporting a plas-
mon resonance. We first present a model for the illumi-
nation configuration of in Fig. 1. Then we study a more
realistic configuration with a gold particle illuminated by
a pulse whose spectrum lies in the visible range and con-
tains the plasmon resonance.

1. Sphere with a plasmon resonance weakly damped

Consider a sphere smaller than the wavelength of illu-
mination, with a relative permittivity given by a Drude
model:

ε(ω) = 1 −

ω2

p

ω2 + iωΓ
, (17)

where ωp denotes the plasmon frequency and Γ the damp-
ing. The sphere has a radius a = λ0/10 and supports a

plasmon resonance at frequency ωp =
√

3ω0. Figure 4
shows the results obtained with Γ = 0.1ωp (left column)
and Γ = 0.03ωp (right column). With strong damping
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the iterative method to reach the convergence. (c) Scattered
field versus the time. (d)-(f) Γ = 0.03ωp: (d) Extinction
cross section with Mie calculation (dotted line), DDA with
β = βmax (plain line). The dashed line represents the ex-
tinction cross section obtained from the local field computed
with Eq. (18). (e) Number of MVP for the iterative method
to reach the convergence. (f) Scattered field versus the time.

i.e. Γ = 0.1ωp, Figs. 4(a)-(c), at the resonance the ratio
of the number of MVP for β = 0 and β = βmax is at least
3. When Γ = 0.03ωp, Figs. 4(d)-(f), the resonance is par-
ticularly sharp (dotted line) and it is strongly dampened
when β = βmax (solid line). Notice that the DDA with
β = 0 fails to converge, however with β = βmax the num-
ber of iteration required to achieve convergence is still
reasonable. The plot of the scattered field versus time
shows that, due to the large resonance, an oscillation at
wavelength λ0 remains after the pulse has died out.

One of the problem of the DDA in the frequency do-
main is to handle resonances as the iterative method do
not converge. We can use the method developed in this
article to circumvent this problem. First we compute the
local field E(ri, s) with β = βmax at each subunit posi-
tion. Then, we get e(ri, t) through the inverse Laplace
transform of F (s)E(ri, s). Now with a simple Fourier
transform we can get F (ω)E(ri, ω). Then the local field
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at each subunit position can be obtained with:

E(ri, ω) =
1

F (ω)
Lβ=0

{

L
−1

β=βmax

[F (s)E(ri, s)]
}

. (18)

Obviously when F (ω) is small, i.e the frequency is far
from the central frequency of the spectrum, the numer-
ical error is large. However, this a not really a problem
because, in that case, we are far from the resonance and
the conventional DDA method works well. In Fig. 4(d),
in dashed line, we plot the extinction cross section calcu-
lated from the local field obtained with Eq. (18). Note
that the curve is only plotted in the range [2, 5] GHz to
avoid the numerical errors associated with small values
of F (ω). As we can see, the extinction cross section com-
puted using the DDA with Eq. (18) is in good agreement
with Mie theory near the plasmon resonance.

2. Gold particle

We now consider the scattering of light by a gold par-
ticle illuminated by a pulse with f0 = 6.5 × 1014 Hz and
τ = 2.5 × 10−14 (i.e. in the visible range). The relative
permittivity of gold is represented by a Drude model,
modified to account for the two interband transitions at
λ ≈ 470 nm and 330 nm:

ε(ω) = ε∞ −

ω2

p

ω2 + iΓω
+ G1(ω) + G2(ω) (19)

where constants ωp, Γ, ε∞, and functions G1(ω), G2(ω)
are given in Ref. [28].

a. Spherical gold particle We first study a gold
sphere with radius a = λ0/10, illuminated by a plane
wave. In Figs. 5(a) and 5(b) we plot the incident field
versus time and its spectrum. Due to the strong varia-
tions of the relative permittivity of the gold in the visible
range, we use a finer discretization than in the previ-
ous case, i.e. 80 discrete frequencies across the spectrum
of the pulse which leads to Tmax = 26 × 10−14 s. Fig-
ure 5(c) shows the scattered field versus time for β = 0
(solid line) and β = 2π/Tmax (crosses). The two plots
are in excellent agreement. To assess the accuracy of
the Laplace method introduced in this article, we plot in
Fig. 5(d) the relative error on the extinction cross sec-
tion computed using Eq. (18) with β = 0 (plain line)
and βm = 2π/Tmax (crosses), compared to Mie theory.
We see that the two curves are perfectly superimposed.
Indeed, the integrand is an analytic function in the con-
sidered domain of complex frequencies, and thus its inte-
gration, between two points in the complex plane, does
not depend on the path between the points. Notice that
given the spherical shape of the object, as we previously
indicated, we use a modified prescription for the polar-
izability which accounts for local-field effects[27]. To il-
lustrate the ability of our method to compute the field
in time domain using the Laplace transform irrespective
of the form of the polarizability, we plot in Figs. 5(c)
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FIG. 5: (a) x component of the incident field versus time. (b)
Spectrum of the incident field, i.e. modulus of F (s) with β =
0. (c) Scattered field at z = a + λ0/2 versus time, for β = 0
and β = βmax, for two prescriptions of the polarizability of
the subunits: Clausius-Mossotti with radiative reaction term
and local-field corrected formulation. (d) Relative error on the
extinction cross section compared to Mie series of the Laplace
transform technique with Eq. (18) for β = 0 and β = βmax

for the two polarizability prescriptions. The number of MVP
required to solve the linear system represented by Eq. (3) is
given between brackets.

and 5(d) the same results (dashed line for β = 0 and ×

for β = βm) for the Clausius-Mossotti model with ra-
diative reaction term, i.e. Eqs. (1) and (2). As we can
see, the accuracy of the extinction cross section compu-
tation is slightly lowered at low frequencies due to the
large value of the relative permittivity. However, in the
time domain, the field computation suffers no ill effect as
the weight of the low frequency components of the field
is weak in the overall spectrum. In Fig. 5(d) we also
see that the number of MVP, given in brackets, increases
with the modified prescription for polarizability which
accounts for local-field effects.

b. Cubic gold particle illuminated by a radiating

dipole In this section we study a cube with side a =
λ0/2, illuminated by a dipole located at z = −2a−λ0/2,
oriented along the x axis, see Fig. 6(a). We use the
Clausius Mossotti model with radiative reaction term for
our polarizabilities [6]. The incident pulse is shown in
Figs. 5(a) and 5(b), and is discretized using the same
80 frequencies as previously. In Fig. 6(b) we plot the
scattered field at the observation point when the gold
cube is illuminated by a dipole for different values of
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FIG. 6: (a) Geometry of the problem. A cubic gold target is
illuminated by a radiating dipole oriented along the x axis.
(b) Scattered field at z = 2a + λ0/2 versus time for β = 0
(plain line), β = βmax (dashed line) and β = 6βmax (dot-
dashed line). (c) Number of MVP to compute all the 80
frequencies of the pulse versus the value of β.

β, with βmax = 2π/Tmax. As the plasmon resonance of
the particle is damped by the imaginary part of mate-
rial losses, we do not need to observe the fields up to
time Tmax, hence the value of β can be increased beyond
βmax. Since the observed scattered pulse finished before
t = 5×10−14 ≈ Tmax/6, we can increase β to β = 6βmax.
We see that all the different values of β gives exactly the
same results. In Fig. 6(c) the evolution of the number
of MVP versus the values of β is plotted. Obviously, the
larger β, the fewer MVP.

IV. CONCLUSION

We presented a novel formulation of the discrete dipole
approximation (DDA) for time-domain scattering com-
putations. We used Laplace transform techniques to effi-
ciently solve for the fields scattered by an object, includ-
ing for pathological cases, such as a scatterer exhibiting
resonances (e.g., plasmon resonance, Mie resonance, . . . ).
Because our approach is built on the same general prin-
ciples as the conventional DDA, it is not restricted to
light-scattering by dielectric objects. For instance, our
new approach can be used to compute, in the time do-
main, optical forces [29, 30], or the scattering of an elec-
tromagnetic wave by a magnetodielectric object [31–34].
Moreover, the techniques developed in this article make

K 0 1 2 3 4

a = λ/3 (β = 0) 2166 2064 2074 2124 2146

a = λ/3 (β = βmax) 1874 1832 1814 1814 1798

a = λ/2 (β = 0) 10538 9706 9632 9808 10002

a = λ/2 (β = βmax) 5158 4740 4700 4732 4730

TABLE I: Number of MVP to achieve convergence (ǫ = 10−6)
versus K, for the two different dielectric spheres studied in
Sect. III A, for different values of β. The numbers correspond
to the total MVP across all frequencies.

it possible to compute, in the frequency regime, internal
fields associated with real resonance frequency. Thus,
in the time harmonic domain, our approach should be
useful for the study of optical forces on resonant metal
nanoparticles [35].

Note that our method can be improved by using higher
value of β, however, in that case one needs to use more
sophisticated Laplace transform techniques to decrease
truncature and discretization error [36, 37].

APPENDIX A: SOLUTION OF THE LINEAR

SYSTEM

In the approach introduced in this article, the crucial
point is to reduce the number of MVP required to solve
iteratively the linear equation of Eq. (5). For large sys-
tems, using a good initial estimate of the fields will ac-
celerate the convergence of the method. Accordingly, we
use the solution obtained at frequency m−1 as the initial
estimate for the computation at frequency m. In fact the
initial estimate for the conjugate gradient method can be
refined further by using several frequencies as described
in Ref. [9]:

Eest(ωm) =

K<m∑

k=1

akEsolution(ωm−k). (A1)

For the mth frequency, the initial estimate is taken as a
linear combination of the K previous frequencies, where
the coefficients ak are found by minimizing:

C[Eest(ωm)] = ‖A(ωm)Eest(ωm) − E0(ωm)‖2. (A2)

The minimization procedure leads to a linear system of
size K × K where the coefficients ak are the unknowns.
In Table I we show the influence of K on the number of
MVP in the frequency range used for the spheres studied
in Sect. III A. The case K = 0 correspond to the incident
field being used as the initial estimate, i.e. Eest(ωm) =
E0(ωm). We can conclude that K = 2 or K = 3 are
reasonable choices in our case, particularly for the larger
sphere.

Depending on the geometry of the scattering problem,
some iterative methods may perform better than oth-
ers. In Table II we present the number of MVP for sev-
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Iterative method GPBICG QMRCGSTAB CG BICG

a = λ/3 (β = 0) 2124 2684 × (10) × (5)

a = λ/3 (β = βmax) 1814 2176 × (14) × (5)

a = λ/2 (β = 0) 9808 × (27) × (8) × (3)

a = λ/2 (β = βmax) 4732 × (39) × (9) × (5)

TABLE II: Number of MVP to achieve convergence (ǫ =
10−6) versus the iterative method for both spheres studied
in Sect. III A, for different values of β to compute all the fre-
quencies. A “ × ” means that the iterative method failed to
converge. In that case the number frequencies at which the
iterative method failed is given in brackets. (40 frequencies
are used to describe the pulse).

eral common iterative methods, for K = 3. We con-
sider the conjugate gradient (CG) and a stabilized ver-
sion of the bi conjugate gradient (BICG) corresponding
to the algorithms given in Ref. [14]. We also consider a
quasi-minimal residual variants of the Bi-CGSTAB algo-
rithm called QMRCGSTAB [38] and a method labeled
GPBICG which is a refinement of the biconjugate gradi-
ent method [10].

For the cases considered here, GPBICG is the only
iterative method to always converge, irrespective of the
size of the sphere, which confirms the robustness of this
method for the DDA [16]. Notice that we do not intro-
duce any preconditioner, however, since the matrix as-

sociated with our linear system has ones on the main
diagonal, we have by default a Jacobi preconditioner,
which is a good preconditioner for the DDA as discussed
in Ref. [11]. One might decrease further the number of
MVP using a more refined preconditioner but this is out-
side of the scope of this article.

Notice that we use a special prescription for the po-
larizability for a sphere which accounts for local-field ef-
fects [27]. This form of the polarizability actually in-
creases the number of MVP needed to satisfy the con-
vergence criterion (taking local-field effects into account
transforms the scalar polarizability into a space depen-
dent tensor) but the resulting increased accuracy on the
electric field inside the sphere is essential when deal-
ing with plasmon or Mie resonances. For instance, in
Sect. III B 1 for Γ = 0.1ωp [Γ = 0.03ωp] the relative error
(compared to Mie) on the extinction cross section com-
puted with DDA, using Clausius Mossotti and radiative
reaction correction, reaches more than 15% [150%] at low
frequencies due to a large permittivity, while it is less
than 5% [9%] with our modified polarizability. This is
important because with the Laplace transform approach
a large error at one frequency will affect the overall time
domain computation. The same effect can be seen for
the gold particle, but owing to the damping associated
to a plasmon resonance, the error at low frequency can
be neglected, see Figs. 5(c) and 5(d).
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Résumé

L’objectif de ce travail de thèse est de détecter et de caractériser des cibles tridimension-
nelles dans un milieu désordonné. Ce domaine de recherche est d’intérêt pour de nombreuses
applications, telles que le sondage du sous-sol, l’imagerie médicale, la détection non-destructive
et l’exploration géophysique, etc. Afin de distinguer les cibles des hétérogénéités du milieu, nous
proposons d’utiliser l’une des techniques de retournement temporel, à savoir la méthode DORT (Dé-
composition de l’Opérateur de Retournement Temporel). La méthode DORT permet de générer
des ondes focalisant sélectivement sur chaque cible présente dans un environnement fortement
hétérogène. Par ailleurs, la richesse de ces ondes focalisantes est combinée avec un algorithme
d’inversion non-linéaire. Ceci nous permet non seulement de localiser, mais aussi de caractériser
les cibles (forme et permittivité). La résolution obtenue à l’aide de cette approche est bien meilleure
que celles obtenues avec la méthode DORT ou la méthode d’inversion seules, en particulier dans
la direction d’illumination. Cette résolution est d’autant meilleure que les données utilisées sont
vectorielles. Dans le cas spécifique d’une configuration d’objets enfouis impliquant deux semi-
espaces infinis, la caractérisation s’avère problématique. Une solution est apportée en appliquant
l’approche de marche récurrente en fréquences. Ces développements théoriques sont également con-
frontés aux données expérimentales mesurées dans le domaine optique. Une nouvelle Microscopie
Tomographique par Diffraction (MTD) est mise en œuvre dans le cadre de cette thèse en tenant
compte du caractère vectoriel de la lumière. Ce faisant, une résolution d’environ un quart de la
longueur d’onde a été obtenue sur des échantillons en résine déposés sur un substrat de silicium.
De plus, nous avons aussi appliqué avec succès la méthode DORT à la MTD afin de focaliser et
caractériser de manière sélective plusieurs diffuseurs de tailles différentes.

Lors de ce travail de thèse nous avons également développé des méthodes de caractérisation
en régime transitoire. Les différentes méthodes d’inversion élaborées dans ce cadre ont été validées
sur des données synthétiques et expérimentales dans le domaine des radio-fréquences.

Mots clés: Retournement temporel; focalisation sélective; résolution; microscopie optique;
multi-fréquences; régime transitoire; algorithmes d’inversion; diffraction; diffraction inverse; opti-
misation.



Abstract

The objective of this thesis work is to detect and to characterize three-dimensional targets in
a disordered medium, using electromagnetic excitations. This research domain is of great interest
in many applications, such as subsoil probing, medical imaging, non-destructive testing and geo-
physical exploration, etc. In order to extract the target information from the heterogeneities of the
medium, we propose to use one of the time reversal technique, namely the DORT method (French
acronym for Décomposition de l’Opérateur de Retournement Temporel). This method permits
us to generate different waves that focus selectively on each target in high noisy environment.
Moreover, this method is also combined with a non-linear inversion algorithm, which permits not
only to localize but also to characterize the targets. The reconstruction resolution appears to be
better than the ones obtained with the DORT or the inversion procedure alone, especially in the
illumination direction. It is also shown that using full-polarized data is indispensable for achieving
better performances rather than in scalar configuration. Moreover, in the half-space configuration,
it is mandatory to use the frequency-diversity data to get an accurate reconstruction. These the-
oretical developments are also confronted to experimental data measured in the optical domain.
A full-polarization Tomographic Diffractive Microscopy (TDM) is implemented and a resolution
about one-fourth of the wavelength is thus obtained. Furthermore, the DORT method is applied
in TDM to realize selective focalization and characterization. In the presence of multiple targets,
selective characterization of each scatterer is achieved.

This thesis work also deals with the characterization problem using transient data. Different
inversion algorithms are validated using synthetic and experimental hyper-frequency data.

Key words: Time reversal; selective focalization; resolution; optical microscopy; multiple
frequency; transient regime; inversion algorithms; scattering; inverse scattering; optimization.


