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vectoriellement. Les plots ont les caractéristiques géométriques suivantes: D =
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space, polarizers in ĥĥ mode. Samples diameter 200 nm, height 150 nm. (a) and
(e) θl = 55◦, φl = 0◦, TE polarization; (b) and (f) θl = 9◦, φl = 0◦, TE polarization;
(c) and (g) θl = 54◦, φl = 90◦, TM polarization; (d) and (h) θl = 10◦, φl = 90◦, TM
polarization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

C.3 Modulus and phases of the data set in the Fourier space, obtained by off-axis holog-
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1) Le mot du directeur de thèse

Une nouvelle règle a été établie par le conseil scientifique (CS) de l’université Aix-Marseille. Le
CS exige que pour les thèses écrites en anglais, au moins 10% de la thèse soit rédigée en Français.
M. Ruan étant chinois il était pour lui difficile de satisfaire cette lubie du CS (soit dit en passant
j’aimerais bien voir les membres du CS écrire 10 pages en chinois!). J’ai donc pris mon plus beau
clavier pour satisfaire les desiderata et délires schizo maniaco psychotiques du CS. Ce chapitre
est donc un résumé succinct de la thèse de M. Ruan et présente quelques résultats choisis de son
travail. Le lecteur a donc tout intérêt à passer ce chapitre très rapidement...

2) Généralités

Les progrès rapides de la science sur les structures de taille nanométrique, dans le domaine de
la biologie, des matériaux, de la microélectronique, ont provoqué un intérêt croissant pour les
techniques d’imagerie à haut pouvoir de résolution. La microscopie électronique, la microscopie à
force atomique produisent des images dont la résolution est inférieure à une dizaine de nanomètres.
Cependant, ce sont des techniques coûteuses, difficiles à mettre en œuvre et elles ne permettent
pas de faire, sans intrusion, une cartographie tridimensionnelle de l’objet. Or, de plus en plus,
les nano-structures manufacturées deviennent complexes selon les trois dimensions de l’espace. Le
besoin en techniques d’imagerie tridimensionnelle non intrusives ayant un pouvoir de résolution
inférieur à une centaine de nanomètres est donc patent, pour la caractérisation et le contrôle de
ces nouveaux composants, mais aussi, de manière générale, pour l’analyse des structures internes
d’objets semi-transparents. Les microscopes optiques traditionnels n’atteignent pas ce niveau de
résolution et ne permettent pas de restituer la carte de permittivité relative de l’objet en trois
dimensions.

xvii
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Le travail développé durant cette thèse portait sur l’utilisation des ondes électromagnétiques
dans le domaine optique pour détecter, localiser, caractériser des objets à distance. Les ondes
sont ainsi utilisées comme des sondes qui interagissent avec les objets et les milieux étudiés. Les
propriétés (répartition d’intensité, phase, polarisation, fréquence) des ondes renvoyées par les objets
sont ensuite analysées, grâce à différents modèles, pour remonter aux paramètres caractéristiques
tridimensionnelles décrivant les objets ou milieux étudiés.

Ce travail de thèse s’inscrivait donc dans une thématique majeure de l’équipe SEMO, celle-ci
ayant l’avantage de développer aussi bien le coté expérimental que théorique. Le travail de thèse
portait plus sur le développement expérimentale de la mesure des champs diffractés par l’objet
étudié, mais a quand même demandé une implication importante sur la partie théorique.

La diffusion d’une onde électromagnétique par un objet de permittivité relative et de forme
arbitraires est ce que nous définissons comme étant le problème direct, i.e., l’objet étant connu,
il faut calculer/mesurer en un ou plusieurs points d’observation donnés, le champ diffracté. Il est
alors possible de définir le problème inverse : connaissant le champ diffracté en différents points
d’observation, il s’agit de “trouver l’objet” qui a créé ce champ diffracté. Le terme “trouver l’objet”
est mis entre guillemets, car il peut avoir différentes significations suivant la problématique posée:

• détection: repérer le nombre de diffuseurs.

• localisation: connâıtre la position des diffuseurs.

• contour: déterminer la forme des objets inconnus.

• caractérisation: accéder à la forme et à la permittivité relative des diffuseurs.

Ce travail de thèse s’intéresse à la caractérisation des objets et à la résolution atteignable par le
montage expérimental.

3) Quelques mots sur la résolution

Avant d’aborder la microscopie optique à haute résolution, nous devons d’abord définir dans le do-
maine de la microscopie optique classique i ce qu’on entend par le terme de résolution (la résolution
étant le pouvoir séparateur de l’instrument d’optique considéré). La définition la plus commune
de la résolution se fait à travers le critère de Rayleigh: la résolution d’un instrument c’est l’écart
angulaire minimal entre deux objets lumineux ponctuels incohérents, pour que l’observateur puisse
les distinguer l’un de l’autre avec l’instrument considéré:ii

∆θ = 1.22
λ

a
, (1)

où λ est la longueur d’onde utilisée et a est le diamètre instrumental. L’Eq. (1), dans le cas d’un
microscope travaillant dans l’air, donne:

d =
1.22λ

2 sinα
⇒ dminimum = 0.61λ, (2)

iNotons que l’invention du microscope optique remonte à 1595. Le hollandais Zacharias Janssen
profite de ses compétences de fabriquant de lentilles pour inventer un système optique qui va
bouleverser la biologie : le microscope. Il est alors équipé de deux lentilles convexes dans un
ensemble de tubes coulissants. Grâce aux modifications apportées par Antoine van Leeuwenhoek
et Robert Hooke, le microscope permettra notamment à ce dernier d’aboutir à la découverte de la
cellule en 1665.

iiCela correspond au moment où le maximum de la tache de diffraction de la première source
cöıncide au premier minimum de la tache de diffraction pour la seconde source
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où d est la plus petite distance pour laquelle deux objets peuvent être séparés, et α l’angle de
collection de la lentille objectif. Au mieux α = π/2, soit un pouvoir de séparation de 0.61λ.
Dans le domaine du visible pour des microscopes optiques en transmission la résolution est donc
typiquement de 300 nm. Notons que dans le cadre d’un microscope en champ proche optique,
type PSTM par exemple, il est de coutume de dire que son pouvoir de résolution est largement
inférieur au critère de Rayleigh, vu que des objets séparés de quelques dizaines de nanomètres sont
discernables. Mais nous étudions alors des objets qui n’ont plus un caractère ponctuel, et qui de
plus sont fortement couplés de par la distance qui les sépare. Il est alors difficile dans ces conditions
de définir un critère de résolution, celle-ci variant suivant la diffusion multiple entre les objets.

4) Quelques mots sur la sphère d’Ewald

Dans le cas où le diffuseur est petit vis-à-vis de la longueur d’onde, par exemple une sphère de
diamètre λ/10, le champ diffracté par celle-ci peut s’écrire comme:

f(r) ∝ eikdr

r
E⊥

0 χ̃(kd − k0). (3)

Le champ diffracté par l’objet au point d’observation r est donc proportionnel à la transformée de
Fourier de la susceptibilité linéaire χ prise en kd−k0, E⊥

0 étant la composante du champ incident
perpendiculaire à la direction d’observation. En faisant varier la direction du champ incident et
la position d’observation, il est donc possible d’accéder à un certain domaine spectral de χ̃. Par
exemple, dans la configuration d’un microscope optique en transmission, quand l’angle d’incidence
est tel que θ0 ∈ [−90◦; 90◦] nous obtenons k0,x ∈ [−k0; k0] et k0,z ∈ [0; k0]. Quant au champ
diffracté, si les points d’observations sont tels que θd ∈ [−90◦; 90◦] nous obtenons kd,x ∈ [−k0; k0]
et kd,z ∈ [0; k0]. Le support spectral accessible pour χ̃ est alors de [−2k0; 2k0] suivant la direction
transversale et de [−k0; k0] dans la direction longitudinale.iii Normalement avec un tel domaine de
fréquence la résolution transverse est de 0.3λ, mais il convient de tempérer ce résultat. En effet,
avoir accès à un large domaine spectral n’assure en rien l’existence des hautes fréquences, ou de
leurs signatures plus élevées par rapport au bruit. Par exemple, pour un objet dipolaire déposé
sur un substrat plan, il est toujours possible de mettre un point d’observation à θd ≈ 90◦, mais il
n’y aura pas de champ diffracté. . .

5) La tomographie optique

a) Descriptif du montage

La technique d’imagerie que nous sommes en train de développer s’apparente à de la tomographie
par diffraction : l’échantillon étudié est éclairé par un faisceau laser sous différentes incidences
successives, et le champ diffracté est alors mesuré en différents points d’observation, c’est-à-dire
qu’il nous faut mesurer le module et la phase du champ diffracté. Notons que si la mesure de la
phase du champ diffracté dans le domaine des micro-ondes est chose facile à réaliser, dans le domaine
du visible les fréquences sont telles (≈ 1014 Hz) qu’un montage interférométrique est nécessaire
pour l’obtention de la phase. Contrairement à un microscope conventionnel, où l’image de l’objet
est construite analogiquement par l’action des lentilles sur le champ diffracté, nous utilisons des
algorithmes de résolution du problème inverse afin de remonter à la carte de permittivité relative
de l’objet. Figure 1 présente le schéma du montage utilisé pour mesurer les champs diffractés par
l’échantillon. Le principe de ce montage repose sur l’interférence entre une voie de référence dont
nous pouvons faire varier la phase de manière contrôlée et le champ diffracté par l’objet. Par une
combinaison linéaire des intensités mesurées pour différentes valeurs de phase de la voie de référence
nous pouvons en déduire le champ complexe (module et phase) diffracté par l’échantillon. D’autres

iiiSi l’incident et la position d’observation tournent tout autour de l’objet alors le domaine
spectral accessible est de [−2k0; 2k0] dans toutes les directions de l’espace.
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Figure 1 : Schéma du montage utilisé. Le laser émet à 633 nm; M miroir
ajustable; PL polariseur; L1 lentille objectif du microscope; L2,··· ,6 lentilles; fi,
f
′
i focales objet et image de la lentille Li; B1, B2, B3, séparateur de faisceaux;

BE1, BE2 systèmes afocaux; TM, pinhole ; PM , modulateur de phase; D1, D2,
diaphragmes.

types de montages ont été réalisés durant cette thèse, comme l’holographie numérique hors-axe ou
l’utilisation d’un analyseur de front d’onde. Une comparaison de ces trois méthodes a été réalisée
au cours de cette thèse.

b) Les premiers résultats

Les premières mesures ont été réalisées en supposant que les objets étaient suffisamment gros
(comparativement à la longueur d’onde) pour ne mesurer que la composante du vecteur champ
diffracté parallèle à la direction du champ électrique incident. L’éclairement est réalisé dans deux
plans d’incidence orthogonaux, (x, z) et (y, z), et cette configuration d’incidence sera valable pour
tous les résultats expérimentaux présentés dans ce chapitre. Pour l’instant la direction de la
polarisation du champ électrique incident est toujours la même, cela veut donc dire que pour un
des plans d’incidence l’éclairement est en polarisation TE et que l’autre plan est en polarisation
TM. Une fois le champ diffracté par l’échantillon mesuré, en utilisant un algorithme d’inversion
itératif de type gradient conjugué nous pouvons donc retrouver la carte de permittivité relative
tridimensionnelle de l’objet. iv Figures 2 et 3 présentent l’image des objets étudiés obtenues avec
un microscope électronique. Les cylindres sont de diamètre D de hauteur h de permittivité relative
ε = 2 déposés sur un substrat en silicium.

ivA noter quand dans l’algorithme d’inversion itératif nous rajouttons l’information a priori que
le matériau cherché est non absorbant et que sa permittivité relative est plus grande que 1.
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Figure 2 : Vue de dessus de
l’échantillon par un microscope élec-
tronique: les cylindres sont de di-
amètre D et séparés d’une distance
D.

Figure 3 : Profil de l’échantillon
par un microscope électronique. Les
cylindres sont de hauteur h.

Figures 4(a) et 4(b) présentent la reconstruction obtenue itérativement d’après les champs
mesurés pour les 4 plots cylindriques avec D = 1 µm et h = 150 nm. Nous pouvons noter une très
bonne reconstruction obtenue quant à la hauteur et au diamètre des cylindres retrouvés mais aussi
une bonne estimation quantitative pour la permittivité relative.
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Figure 4 : Image de reconstruction obtenue avec la méthode itérative. Les plots
ont les caractéristiques géométriques suivantes: D = 1 µm et h = 150 nm. (a)
Carte dans le plan (x, y) pour z = 125 nm. (b) Carte dans le plan (x, z) pour
y = 1 µm.

A titre de comparaison, Figs. 5(a) et 5(b) présentent les résultats obtenus quand l’inversion
utilisée est une simple transformée de Fourier inverse, voir Eq. (3). A noter que cette technique
d’imagerie implique que l’échantillon est considéré comme suffisamment petit et peu contrasté pour
que l’approximation de Born soit valide. Les images ainsi obtenues montrent une reconstruction
bruité des 4 plots et ceci est particulièrement vrai suivant la direction z. Ceci est a priori dû à
la présence du substrat réfléchissant interprété comme un objet miroir de l’objet initial. Les plots
d’une hauteur de 150 nm apparaissent alors comme des objets de 1 µm de hauteur. A noter bien
sûr que la carte obtenue par transformée de Fourier inverse ne peut pas nous donner une valeur
quantitative de la valeur de la permittivité relative de l’objet.
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Figure 5 : Image de reconstruction obtenue avec la transformée de Fourier 3D
inverse du champ diffracté mesuré. Les plots ont les caractéristiques géométriques
suivantes: D = 1 µm et h = 150 nm. (a) Carte dans le plan (x, y) pour z =
125 nm. (b) Carte dans le plan (x, z) pour y = 1 µm.

Figures 6(a) et 6(b) présentent la reconstruction obtenue d’après les champs mesurés pour
les 4 plots cylindriques avec D = 500 nm et h = 150 nm. Nous pouvons encore noter une très
bonne reconstruction obtenue quant à la hauteur et au diamètre des cylindres retrouvés et aussi
une bonne estimation quantitative pour la permittivité relative.
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Figure 6 : Image de reconstruction obtenue avec la méthode itérative. Les plots
ont les caractéristiques géométriques suivantes: D = 1 µm et h = 150 nm. (a)
Carte dans le plan (x, y) pour z = 125 nm. (b) Carte dans le plan (x, z) pour
y = 500 nm.

Notons que pour les deux précédents cas étudiés les cylindres sont séparés centre à centre de
2 µm et 1 µm. Le critère de Rayleigh au vue de l’ouverture utilisée est d’environ 400 nm. Nous
sommes donc pour l’instant largement au dessus de la résolution limite de notre instrument. A
noter que la bonne reconstruction quantitative de la permittivité relative des objets n’a pu être
obtenue que grâce à une procédure de normalisation rigoureuse (module et phase) au niveau des
champs électromagnétiques mesurés. Cette procédure est bien sûr détaillée au sein de cette thèse.
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c) Résolution sous le critère de Rayleigh

Dans le cas d’objets petits, i.e. des objets d’une taille inférieure à la longueur d’onde, nous avons
décidé de mesurer toutes les composantes du vecteur champ électrique diffracté. Cette décision
vient du fait que les hautes fréquences spatiales, déterminantes pour caractériser un objet de petite
taille, seront sur les bords de l’ouverture numérique, cas où le vecteur champ électrique diffracté
ne pourra plus être considéré comme parallèle au vecteur champ électrique incident. Cette mesure
vectorielle du champ électrique a nécessité un changement au niveau du montage sur l’orientation
des polariseurs un peu plus compliqué qu’il n’y parâıt, plus une procédure de renormalisation
fortement complexifiée. Ce nouveau montage permet d’accéder au champ diffracté vectoriel pour
un éclairement incident en polarisation TE ou TM. A notre connaissance dans la littérature actuelle
il n’existe pour l’instant pas de montage mesurant et utilisant dans les algorithmes d’inversion la
nature vectorielle du champ électrique.
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Figure 7 : Image de reconstruction obtenue avec la méthode itérative. Nous
faisons l’hypothèse que le champ diffracté est parallèle au champ électrique incident
et que le champ électrique incident est toujours suivant la même direction. Les
plots ont les caractéristiques géométriques suivantes: D = 150 nm et h = 150 nm.
(a) Carte dans le plan (x, y) pour z = 125 nm. (b) Carte dans le plan (x, z).

Pour étudier l’apport de la mesure vectorielle du champ diffracté nous commençons par présen-
ter sur les Figs 7(a) et 7(b) les reconstructions obtenues quand les mesures sont effectuées comme
précédemment, i.e. seul le champ diffracté parallèle à l’orientation du champ incident est mesuré,
avec le champ incident toujours orienté selon la même direction quelque soit son angle d’incidence.
Il est clair que la carte de permittivité relative reconstruite montre une anisotropie quant à la
résolution obtenue car les plots ne sont pas séparés suivant la direction y. Ceci est dû au fait que
le champ incident est toujours orienté suivant une seule direction. Quand la manipulation est dans
une configuration purement scalaire il est clair que la résolution au dessous du critère de Rayleigh
n’est pas atteinte.
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Figure 8 : Image de reconstruction obtenue avec la méthode itérative. Nous
faisons l’hypothèse que le champ diffracté est parallèle au champ électrique incident
par contre le champ électrique incident possède deux orientations orthogonales.
Les plots ont les caractéristiques géométriques suivantes: D = 150 nm et h =
150 nm. (a) Carte dans le plan (x, y) pour z = 125 nm. (b) Carte dans le plan
(x, z).

Figures 8(a) et 8(b) montrent les reconstructions quand le vecteur champ électrique incident
est orienté successivement suivant deux directions orthogonales avec toujours la mesure du champ
diffracté parallèle à l’orientation du champ incident (le nombre de mesures dans ce cas est donc
doublé). Dans cette configuration l’aspect vectoriel est introduit pour l’éclairement et le champ
diffracté mesuré reste quant à lui suivant la direction utilisée pour cet éclairement. Dans ce cas les
reconstructions obtenues sont isotropes et nous obtenons la séparation des 4 plots. Néanmoins la
valeur de la permittivité relative reconstruite est très en dessous de sa valeur.
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Figure 9 : Image de reconstruction obtenue avec la méthode itérative. Le champ
électrique incident possède deux orientations orthogonales et le champ diffracté est
mesuré vectoriellement. Les plots ont les caractéristiques géométriques suivantes:
D = 150 nm et h = 150 nm. (a) Carte dans le plan (x, y) pour z = 125 nm. (b)
Carte dans le plan (x, z).

Figures 9(a) et 9(b) montrent les reconstructions quand le vecteur champ électrique incident est
orienté successivement suivant deux directions orthogonales et que le champ diffracté est mesuré
vectoriellement. Dans ce cas là nous observons une très bonne séparation des plots avec une
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permittivité relative trouvée très proche de sa vraie valeur. L’apport d’un champ incident vectoriel
(c’est à dire avec plusieurs orientations) et la mesure vectorielle du champ diffracté nous permet
d’obtenir de la super résolution quantitative.
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Figure 10 : Image de reconstruction obtenue avec la méthode itérative. Le champ
électrique incident est en polarisation TE et le champ diffracté est mesuré vecto-
riellement. Les plots ont les caractéristiques géométriques suivantes: D = 150 nm
et h = 150 nm. (a) Carte dans le plan (x, y) pour z = 125 nm. (b) Carte dans le
plan (x, z).

A noter que dans les cas précédents le champ incident comprend les deux polarisations TE
et TM dans chacun des plans d’incidence (x, z) et (y, z). Figures 10(a) et 10(b) montrent les
reconstructions obtenues quand seule l’illumination TE est utilisée avec une mesure du champ
diffracté vectorielle. Il est clair que les reconstructions sont mauvaises car les 4 plots ne sont
absolument pas retrouvés.
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Figure 11 : Image de reconstruction obtenue avec la méthode itérative. Le champ
électrique incident est en polarisation TM et le champ diffracté est mesuré vecto-
riellement. Les plots ont les caractéristiques géométriques suivantes: D = 150 nm
et h = 150 nm. (a) Carte dans le plan (x, y) pour z = 125 nm. (b) Carte dans le
plan (x, z).

Les Figs 11(a) et 11(b) quant à elles présentent les reconstructions obtenues quand l’illumination
est faite en polarisation TM. Il est clair que dans ce cas présent les 4 plots sont bien retrouvés et
que le résultat est proche de la configuration complète même si le résultat est un choüıa moins bon.
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Des différentes reconstructions données pour les 4 plots de diamètre D =150 nm et h =150 nm,
nous pouvons déduire que si la résolution est bonne dans une direction donnée dans le cas scalaire
c’est parce que une des direction est éclairée en TE et la direction orthogonale en TM. Une des pistes
pour expliquer pourquoi la polarisation incidente polarisée TM est meilleure est que le substrat est
très réfléchissant et donc pour les grands angles, ceux qui nous apportent la résolution, le champ
juste au dessus du substrat est très faible en polarisation TE (donc images de champ diffracté plus
bruitées et poids des angles grands affaibli par rapport aux faibles incidences) et fort en polarisation
TM.

On peut se poser la question pourquoi la configuration complète donne une reconstruction
un peu meilleure que la configuration en polarisation TM uniquement. A priori, même si les
champs diffractés en polarisation TE sont très bruités aux grands angles d’incidence, la redondance
d’information pour les faibles angles d’incidence apportée par la polarisation TE aide à stabiliser
l’inversion itérative.



General introduction

This PhD thesis was carried out in the SEMO team (Sondage ElectroMagnétique et Optique) of
the Institut Fresnel, and mainly concerns experimental work with a quite recent optical imaging
technique : tomographic diffractive microscopy (TDM). It consists in illuminating the sample
with coherent collimated light under different successive incidence angles, and detecting both in
amplitude and phase its scattered field imaged through a microscope set-up. As a result, the
three-dimensional permittivity map of the probed sample can be reconstructed with an increased
resolution compared to conventional wide-field microscopy. TDM has until now been applied
successfully to three-dimensional samples only in the case of weak refractive index contrasts (usually
below 5.10−2) where linear approximations to calculate the scattered field are valid. As a result,
an important field of applications is still out of reach of this new imaging tool. To go beyond these
limitations, we present in this manuscript the results obtained by coupling a TDM set-up to a
sophisticated inversion algorithm based on a rigorous modelling of the wave-sample interaction.

The first chapter of this manuscript firstly describes what is the place of TDM compared to
other microscopy modalities. It then details its principles in the case of linear approximations to
calculate the scattered field, and presents the main results obtained so far in this framework.

The second chapter firstly describes the TDM set-up developed during this PhD, and more
especially the three modalities that have used to perform amplitude and phase measurements :
phase-shifting interferometry, off-axis holography and wavefront sensing by quadri-wave lateral
shearing interferometry. Then, the principles of the rigorous non-linear inversion algorithm devel-
oped in the SEMO team to tackle the 3D case are presented.

The third chapter at first presents the data treatment procedure that has to be applied to the
measurements so that they become compatible with the modelling hypotheses underlying the non-
linear inversion algorithm. The 3D reconstructions obtained with this approach are then presented
in the case of small resin objects deposited on a silicon substrate, with diameters ranging from 1
µm to 150 nm.

The fourth chapter presents an improved configuration of the set-up where both the polarization
of the illuminating beam and that of the detected field are modified. The aim is to retrieve the
full vectorial field scattered by the object, and not just a projection, for any polarization state
of the illumination. It is shown that such an approach permits to improve the resolution of the
reconstructions, what is illustrated for a case clearly beyond the Rayleigh limit.
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Chapter 1

Principles of tomographic
diffractive microscopy (TDM)
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1.1 Introduction

T
he optical microscope and its associated technology have became more and more popu-

lar, due to the development of lasers and data acquisition technology. Indeed, although
more sophisticated imaging tools, such as scanning tunneling microscopes1–3, scanning

near field optical microscopes4–7, atomic force microscopes8–11 or electronic microscopes exist, opti-
cal microscopes are still essential for many applications because of their readiness of utilization and
their non-invasive properties. Because of their advanced modalities allowing to image specimens
in three dimensions, they can be widely used as an invaluable tool for biology and nanotechnology
or others industrial fields. Improving the resolution of optical microscopes has therefore been an
important and urgent field of research recently.

In this aspect, a lot of a work has been performed to conceive and realize microscope objectives
with high numerical apertures. However, the room for improvement is now very small and limited
by the accessible refractive indices of media that are compatible with immersion objectives. In
fluorescence microscopy, non linear interactions between the illumination and the sample are used
to reach nanometric resolutions (for instance in PALM, STORM and STED microscopies)12–17.
But these spectacular improvements are only possible if the sample can be tagged with specific
fluorescent molecules, that is mainly for biological applications.

When photobleaching and phototoxicity play a limiting role in biology, or when other ap-
plication fields are considered, such as the characterization of components in nanotechnology, a

3



4 1.2 Principles of conventional wide-field optical microscopy

label-free microscopy technique is preferable. In its conventional form, the optical microscope
provides images where the contrast is due to the scattering of light by the permittivity distribu-
tion of the sample. However, this conventional wide-field microscopy does not permit to retrieve
quantitatively the permittivity from the measured intensity images. Indeed, reconstructing a 3D
permittivity distribution from measurements of scattered fields, i.e. solving the inverse scattering
problem, requires that both the amplitude and phase of the field are known18. The scattered fields
are uniquely related to the structure of the object, but a given intensity may be produced by many
fields.

With the development of digital holographic microscopy19,20, the phase measurement in optics
became more and more reliable, and quite recently a technique called optical diffraction tomogra-
phy, or tomographic diffractive microscopy (TDM), emerged to provide such 3D quantitative recon-
structions of the object21. TDM generally consists in illuminating the sample from many different
directions with coherent collimated light and collecting the complex diffracted field under many
scattered angles22. TDM relies entirely on a numerical inversion procedure for reconstructing the
map of permittivity of the sample from the scattered field. This technique can be useful to charac-
terize a biological samples23–25, the aberrations introduced by the optical index variations23, or the
different elements of a microelectronic components, etc. Although some reconstruction algorithms
using intensity data only have been proposed26, most inversion procedures require amplitude and
phase measurements. Thus, different interferometric set-ups, such as phase-shifting holography,
have been developed for measuring the phase and amplitude together. The hologram is obtained
by the interference of a reference field with the field scattered by the observed object.

On the other hand, most inversion procedures used in TDM are based on a linear link between
the diffracted field and the parameter of interest of the object, usually by assuming that the Born
approximation is valid, i.e. the field inside the object under study is the incident field. Such a
linear inversion permits to combine the information obtained with several successive illumination
angles through a process known as synthetic aperture generation 22,27,43,53. This ameliorates the
resolution compared to conventional wide-field microscopy and enables a 3D reconstruction of
the object. Although many experimental configurations have been proposed to implement this
idea21,28–30, such an approximation limits the field of application of TDM to a weak-scattering
case, where the object permittivity contrast with the surrounding medium (air, water, oil . . .) is
low. For samples with high permittivity contrasts, the Born approximation is no longer valid, and
it is necessary to consider a rigorous modelling of the scattering process. To deal with this general
case, an original non-linear inversion algorithm has been developed at the Institut Fresnel31–34.

In this first chapter, the principles of the conventional wide-field microscopy are firstly briefly
presented, and also the resolution limits of this technique. Then, the TDM linear approach under
the Born approximation is developed : the link between the object permittivity and the scattered
field is detailed, as well as the synthetic aperture generation and the corresponding linear inversion
procedure. At last, an overview of the main results obtained so far with this approach is presented.

1.2 Principles of conventional wide-field optical

microscopy

The most commonly encountered optical microscopes are wide-field microscopes, where the illu-
mination system is equivalent to illuminating the object simultaneously by a sum of plane waves
spatially incoherent with each other. Each plane wave propagates with a different illumination
angle, so that the object is globally illuminated simultaneously with all possible angles within a
given numerical aperture noted NAinc. More precisely, NAinc is the sine of the maximum illumina-
tion angle with respect to the optical axis of the microscope. Usually in wide-field microscopy the
illumination is also temporally incoherent by using white light produced by conventional halogen
bulbs.

For the detection, the presently most commonly used architecture consists in placing the object
in the vicinity (usually just before) of the object focal plane of an objective lens, called hereafter
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objective. A second lens, the tube lens, then forms a magnified real image in its image focal plane.
This is an image of the field in the object focal plane of the objective, that is detected in intensity
on a detector like a CCD camera, or transmitted through an ocular lens for direct vision by the
user. The system diagram of WFM is shown in the Fig. 1.1,

Figure 1.1 : The schematic diagram of wide-field microscopy

The intensity image provided by such a microscope cannot easily be related quantitatively to
a physical parameter of the object like the permittivity, it gives merely an image of the intensity
variations of the field after propagation through the object. The transverse resolution ∆r within
an image is generally defined by the Rayleigh criterion, which states that the smallest separation
distance between two point sources that can be resolved is given by35,36:

∆r = 0.61
λ

NA
, (1.1)

where λ is the illumination wavelength or the average one when a large spectrum is used, and
NA is the numerical aperture of the objective, that is the sine of the maximum angle that can
propagate through the microscope. This criterion originates from the truncation of the spatial
frequencies of the field due to the numerical aperture : only the spatial frequencies below 2π

λ NA
are transmitted through the microscope. As a result, the intensity image of an ideal point source
is an Airy disk consisting of a central bright spot surrounded by a succession of dark and more
and more attenuated bright rings. The radial intensity profile of the Airy disk is proportional to(

J1(r)
r

)2

, where J1 is the first order Bessel function and r is the radial position. The central spot
of the Airy disk contains 84 percents of the intensity. The Rayleigh criterion is obtained when the
two point sources are separated by a distance equal to the radial position of the first zero of the
Airy disk. When the point sources are closer to each other, it is considered that the sum of the
two Airy disks does not allow to resolve their two maxima. Figure 1.2(a) illustrates a hypothetical
Airy disk containing a central maximum (typically termed a zeroth order maximum) surrounded
by concentric 1st, 2nd, 3rd, etc., order maxima of sequentially decreasing brightness that make up
the intensity distribution. Figure 1.2(b) shows two Airy disks and their intensity distributions in
a situation where the center-to-center distance between the zeroth order maxima is equal to the
Rayleigh criterion. Notice that there is several closely related values for the diffraction limit, the
Abbe, Rayleigh, Sparrow, ... criterion. The difference between them is based on the definition that
the different authors used in their derivation for what is meant by two objects being resolvable
from each other. In practical applications, this difference is small.

The axial resolution, i.e. along the optical axis, of wide-field microscopy can be defined in a
similar manner. Taking a point source in the object focal plane of the objective, it produces in
the image plane an Airy disk with a maximal intensity value in its center. If the point source is
moved away little by little along the optical axis, the intensity value at this pixel will more and
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Figure 1.2 : Intensity distributions of Airy disks. (a) is a hypothetical Airy disk,
(b) shows two Airy disks and their intensity distributions.

more decrease, until reaching zero when the point source has been displaced by a distance ∆z that
is considered as the axial resolution of the microscope. This distance is commonly given by40 :

∆z =
λ

1−
√

1−NA2
. (1.2)

It means in practice that if the object of interest is placed at a position within the range ±∆z/2
with respect to the object focal plane of the objective, its image will be in focus on the detector.
Beyond this range, the defocus will produce an image with strong blurring. That is why ∆z can
also be considered as the depth of field of the microscope.

1.3 Principles of tomographic diffractive micros-

copy under the Born approximation

1.3.1 Modelling of tomographic diffractive microscopy

1.3.1.1 Position of the problem

Tomographic diffractive microscopy (TDM) generally consists in illuminating the sample with
coherent collimated light under different successive incidence angles, and detecting the amplitude
and phase of the scattered field through a microscope with an interferometer set-up. The principle
diagram of tomographic diffractive microscopy is shown in Fig. 1.3, and the system diagram of
TDM is shown in the Fig. 1.4.

The TDM schematic diagram is very close to that the WFM in Figure.1.1, the main differences
are :

1. The measurement data are the amplitude and phase (not only the intensity like in WFM)

2. The illumination of the sample by different plane waves is successive (not simultaneous like
in WFM)

From this recorded scattered field for each illumination it is possible to reconstruct the unknown
object. Hence the knowledge of the interaction between an object and an illumination is the
cornerstone of tomographic diffractive microscopy.
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Figure 1.3 : The principle diagram of tomographic diffractive microscopy. Einc

denotes the incident field in the direction kinc, Ed denotes the incident field in
the direction kd, x, y, z is the orientation of the spatial coordinates.

Figure 1.4 : The schematic diagram of tomographic diffractive microscopy
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1.3.1.2 Electromagnetic scattering by an object of volume V and relative
permittivity ε(r)

In this section we study the electromagnetic scattering problem. An incident electromagnetic wave
[Einc(r),H inc(r)] interacts with an object that occupies a bounded region V in three dimensional
space and a relative permittivity ε(r) for r ∈ V , hence ε(r) = 1 for r /∈ V . Notice that both the
shape and the permittivity are arbitrary.

In the particular case of the harmonic regime and without the temporal term (i.e. e−iωt), the
total electromagnetic field (E,H) at position r is given by the Maxwell equations as follows i:

∇×H(r) = −iωD(r) + J(r) (1.3)
∇×E(r) = iωB(r) (1.4)
∇ ·D(r) = ρ(r) (1.5)
∇ ·B(r) = 0, (1.6)

ω is the pulsation of the electromagnetic field, J(r) the electric current density and ρ(r) the density
of charge. We assume that the object is illuminated by a plane wave, such that the source J(r)
is rejected at an infinite distance and therefore J(r) will be considered as equal to zero in the
following calculations. Assuming that there is no free charge in space, that the particle is non-
ferromagnetic, i.e. µ = 1, and that we study isotropic linear materials we can write the constitutive
relationship between the auxiliary fields D and H and E and B as :

H(r) = B(r)/µ0 (1.7)
D(r) = ε0ε(r)E(r), (1.8)

where ε0 and µ0 denote the permittivity and permeability of the vacuum, respectively. Then we
can write the Maxwell’s equation as:

∇×H(r) = −iωε0ε(r)E(r) (1.9)
∇×E(r) = iωµ0H(r) (1.10)
∇ ·D(r) = 0 (1.11)
∇ ·B(r) = 0. (1.12)

By combining Eqs. (1.9) and (1.10) one obtains the following equation :

∇×∇×E(r)− ε(r)k2
0E(r) = 0, (1.13)

where k0 = ω
c = 2π

λ is the wave number, with λ the wavelength in vacuum. Thus we can transform
Eq. (1.13) as:

∇×∇×E(r)− k2
0E(r) = k2

0[ε(r)− 1]E(r). (1.14)

Thus we get now an inhomogeneous differential equation with constant coefficients, which is easy
to solve. Notice that the right side of this equation represents the electric linear polarization:

P (r) = 0 if r /∈ V (1.15)
P = ε0[ε(r)− 1]E(r) = ε0∆ε(r)E(r) if r ∈ V, (1.16)

A standard solution technique to solve Eq. (1.14) is to find the Green’s function, i.e. the solution
to the corresponding differential equation with a Dirac-delta-inhomogeneity:

∇×∇×G(r, r′)− k2
0G(r, r′) = Iδ(r − r′), (1.17)

where I is the identity matrix. The solution of Eq. (1.17) is known analytically and is given by
(see Appendix A):

G(r, r′) =
[
I +

1
k2
0

∇∇
]

eik0|r−r′|

4π|r − r′| . (1.18)

i∇· is the divergence operator and ∇× the curl operator.



1.3 Principles of TDM under the Born approximation 9

This Green’s function is known as the free-space dyadic Green’s function. With the free-space
dyadic Green’s function, the solution to Eq. (1.14) can be written as:

E(r) = Eref(r) + k2
0

∫

V

G(r, r′)[ε(r′)− 1]E(r′)dV, (1.19)

where the reference field Eref is a special solution to the homogeneous equation obtained by setting
ε(r) to the homogeneous background i.e. ε(r) = 1, it consists of the field in the absence of the
object under study. Then we define the scattered field as the difference between the total field and
the reference field:

Es(r) = E(r)−Eref(r) = k2
0

∫

V

G(r, r′)∆ε(r′)E(r′)dV. (1.20)

Then one can notice that the integration defined in Eq. (1.20) is only performed over the volume
V occupied by the object, where ∆ε is non zero. This equation means that once the total field
E is known inside V , Es(r) can be calculated at any location r. All the computations presented
is the paragraph are done without approximation. Equation (1.19) is a self consistent equation
which can be solved numerically. This resolution can take a lot of time, and one can use some
approximations, such as the Born approximation, to solve it quickly.

1.3.1.3 TDM in the case of the Born approximation

The conventional tomographic diffractive microscopy approach neglects the polarization effects
induced by the object and the set-up, so that a scalar approximation is used for the field and
Eq. (1.20) can be rewritten as a scalar propagation equation in an inhomogeneous medium :

Es(r) = k2
0

∫

V

G(r, r′)∆ε(r′)E(r′)dV . (1.21)

The Born approximation is the most commonly encountered to calculate Es(r) in the frame of
tomographic diffractive microscopy. It consists in stating that if the object is weakly scattering
enough, the amplitude of the scattered field is very small compared to that of the reference field,
so that E can be replaced by Eref . This approximation is usually verified for object with small
permittivity contrasts, typically below 0.1.

Thanks to it, the expression of Es(r) can be expressed in a very interesting way in the far
field, that is for a position r sufficiently far away from the object. The scalar Green function can
be approximated in far field in the direction given by the wave vector k as (see Appendix B):

G(r, r′) =
eik0r

4πr
e−ik·r′ , (1.22)

where k = k0
r
r and r = |r|. Taking for Eref a plane wave with incident wave vector kinc, Eq. (1.21)

then reads :

Es(r) = k2
0

eik0r

4πr

∫

V

∆ε(r′)e−i(k−kinc)·r′dV . (1.23)

It means that in far field and under the Born approximation, the field Es scattered along the wave
vector k for an illuminating wave vector kinc is directly proportional to the 3D Fourier transform
of ∆ε taken at k − kinc :

Es(k, kinc) ∝ ∆ε̃(k − kinc). (1.24)

Therefore, the relative permittivity map of the object can be retrieved via a simple inverse Fourier
transform of the scattered field detected in far field. The resolution of TDM under the Born
approximation is then given by the accessible Fourier domain that depends on the configuration of
illumination and detection.
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1.3.2 Synthetic aperture

For a given angle of illumination with wave vector kinc, according to Eq. (1.24), TDM permits
to detect the Fourier components of the object permittivity contrast on a cap of sphere of radius
k0, truncated by the numerical aperture (NA) of the objective used to collect the scattered field,
and centered on the extremity of wave vector −kinc. This cap of sphere is represented on Fig. 1.5
for the case of NA = 1. To increase the amount of Fourier components that can be detected,
and therefore ameliorate the resolution of the object reconstruction, various angles of illumination
are used successively on the sample. Each of them provides different Fourier components, and
the merging of all the components is a process known as synthetic aperture generation. Indeed,
a synthetic aperture is built through the measurement, and permits to access spatial frequencies
of the object that are beyond those confined in sole the detection NA. This synthetic aperture is
described in the three-dimensional Fourier space by an Optical Transfer Function (OTF) that is
equal to one for a Fourier component that can be detected, and zero elsewhere. The permittivity
contrast of the object that is reconstructed through an inverse Fourier transform (FT−1) of the
detected field can thus be written as :

∆ε(r)rec =
∫ +∞

−∞
(∆ε̃(K)×OTF)eiK·rd3K (1.25)

= ∆ε(r) ∗ FT−1(OTF) = ∆ε(r) ∗ PSF, (1.26)

where * denotes the convolution product. The projections of K give the three-dimensional spatial
frequencies of the object, and PSF is the point spread function which describes the response of
the imaging system to a point source. The PSF is given by the inverse Fourier transform of the
OTF. The reconstructed permittivity contrast of the object is therefore the actual one convoluted
with the PSF. Depending on the configuration for illumination and detection, TDM has access

Figure 1.5 : Accessible 3D Fourier domain for one incidence

to different Fourier components of the object, what modifies the OTF and the PSF. Hereafter
are presented the main configurations that can be used and the associated OTF and PSF. Note
that, for the sake of simplicity, an ideal numerical aperture equal to one is considered both for the
illumination and the detection.

1.3.2.1 One normal incidence working in transmission: kinc;z = k0 and
kz > 0

Here the object is only illuminated by one incidence at normal incidence, and the scattered field is
detected in transmission with NA = 1. In this case, the OTF is equal to one at the surface of the
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half sphere with radius k0 represented on Figure 1.6. The corresponding PSF has been calculated

Figure 1.6 : Optical transfer function (OTF) for one normal incidence in trans-
mission

and is presented on Figs. 1.7 and 1.8. Note that within this manuscript, the spatial coordinate
z is the one along the optical axis of the microscope, and x and y are the transverse coordinates
perpendicular to this axis. The PSF is shown inside a cubic domain centered on the spatial origin
and with a side equal to twice the wavelength of illumination : a transverse cut on Fig. 1.7 and a
longitudinal one on Fig. 1.8. Only the real part of the PSF is shown here.

x/λ

y/
λ

 

 

−1 0 1

−1

0

1 −0.2

0

0.2

0.4

0.6

0.8

Figure 1.7 : Transverse cut at z =
0 of the PSF for one normal inci-
dence in transmission and scattered
field detected in transmission with
NA = 1.
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Figure 1.8 : Longitudinal cut at
y = 0 of the PSF for one normal
incidence in transmission and scat-
tered field detected in transmission
with NA = 1.

With such a configuration, it can be seen that the resolution of the reconstruction will be
mostly deteriorated along the z axis, because of the strong negative rebounds present on the PSF
along this axis.
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1.3.2.2 The complete configuration

To obtain the biggest amount of Fourier components, the ideal case would consist in illuminating
the object along all possible directions within 4π steradians, and performing the detection also for
all these directions. Therefore for a given illumination direction, the accessible Fourier components
lie on the surface of a sphere with radius k0 (the smaller dotted sphere) in Figure 1.9. Then,
varying the illumination angle permits to fill the volume of a sphere with radius 2k0, the larger
solid sphere in Fig. 1.9.

Figure 1.9 : OTF for the complete configuration

With this complete configuration, all the spatial frequencies given by k − kinc for any wave
vectors k and kinc are accessible. The corresponding PSF is presented with a transverse cut and
a longitudinal one on Figures 1.10 and 1.11, respectively.
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Figure 1.10 : Transverse cut of the
complete configuration PSF at z = 0
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Figure 1.11 : Longitudinal cut of
the complete configuration PSF at
y = 0

Both cuts are identical, and such a PSF therefore permits to obtain an isotropic resolution. It
can be evaluated by the position of the first zero of the PSF along any radial direction, and is close
to 0.35λ. Such a resolution is nearly twice better than what is obtained in the transverse plane by
a conventional wide field microscope with NA= 1, and three times better along the optical axis.
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1.3.2.3 The transmission configuration: kinc;z > 0 and kz > 0

In practice, the complete configuration is difficult to implement in a TDM set-up, as most of the
microscopes work in a transmission or in a reflection configuration. In the transmission case, the
illumination is performed on one side of the sample along the optical axis, and the detection on the
other side. The OTF is then only a portion of the sphere of radius 2k0 of the complete configuration.
It is a torus with the z axis as symmetrical axis, and its cross section in a longitudinal plane consists
of two circles with radius k0, as shown in Fig. 1.12.

Figure 1.12 : OTF for the transmission configuration
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Figure 1.13 : Transverse cut of the
transmission PSF at z = 0
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Figure 1.14 : Longitudinal cut of
the transmission PSF at y = 0

Transverse and longitudinal cuts of the PSF are presented on Figs. 1.13 and 1.14, respectively.
The PSF is elongated along the z axis, which strongly deteriorates the axial resolution compared
to the complete configuration.

1.3.2.4 The reflection configuration: kinc;z < 0 and kz > 0

For the case of the reflection configuration, where the illumination and the detection are performed
on the same side of the sample, the OTF becomes the half of the complete sphere of radius 2k0,
on one side of the transverse plane (x, y), as shown on Fig. 1.15. Contrarily to the complete and
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transmission configurations, the PSF is this time a complex function since the OTF has no longer
a center of symmetry. The real part of this PSF is equal to the PSF of the complete case.

Figure 1.15 : OTF for the reflection configuration
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Figure 1.16 : Longitudinal cut of
the real part of the reflection PSF at
y = 0
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Figure 1.17 : Longitudinal cut of
the imaginary part of the reflection
PSF at y = 0

Figures 1.16 and 1.17 are longitudinal cuts of the real part and the imaginary part of the
PSF, respectively. For objects with purely real permittivity contrast (phase objects), it means the
resolution can be the same as in the complete configuration. But if the permittivity contrast is
a complex number, that is for absorbing objects, Eq. (1.26) implies that the real and imaginary
parts of the reconstructed permittivity contrast mingle in an unpredictable way. Note however that
Mudry et al.37 have introduced a mirror-assisted configuration for TDM to restore the isotropic
resolution in the presence of absorption, by placing the sample in front of a perfect mirror.

1.3.3 Linear inversion with an inverse Fourier transform

Under the Born approximation, as described in the previous section with Eq. (1.26), the permit-
tivity contrast of the sample is reconstructed by applying a 3D inverse Fourier transform to the
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measured scattered field once the synthetic aperture has been generated. This quite simple ap-
proach has however several requirements to be successful. Firstly, when generating the synthetic
aperture in the Fourier space, the Fourier components that are redundant between several illumi-
nation angles have to be averaged. Moreover, it is necessary to use a lot of different illuminations
to fill the whole accessible Fourier domain with fine enough discretization steps for the FT−1 to be
accurate. Every missing Fourier component is considered as zero in the FT−1 and therefore cor-
rupts the PSF and the reconstruction. In practice several hundreds of illumination angles are used,
and as they are set successively this is usually a limitation for the speed of the acquisition22,52,53,55

. Lastly, the FT−1 is only valid if the illumination field can be considered as a plane wave and if
the sample is placed in an homogeneous surrounding. Under these conditions, the reference field
Eref can be assimilated to a plane wave and the scattered field can be expressed as Eq. (1.24).

We present here the results of this linear inversion when some of the requirements are not
fulfilled. We use as test samples cylindrical resin blocks deposited on a silicon substrate. They were
fabricated by Anne Talneau in the Laboratoire de Photonique et Nanostructures in Marcoussis,
with a resin provided by Dow Corning Corporation (XR 1541-6). The schematic of these samples is
presented on Fig. 1.18, where h is the height of the cylinders and D their diameter and side to side
distance. The orientation of the spatial coordinates x, y, z has also been indicated. The refractive
index of the resin in the visible range remains close to 1.41 and the cylinders are considered as
pure phase objects, neglecting the absorption of the resin.

Figure 1.18 : The sample geometry : resin blocks deposited on a silicon substrate.
h is the height of the cylinders and D their diameter and side to side distance.
The configuration used is the reflection configuration.

For such samples, the relative permittivity contrast in the air is about 1, which is larger
than the ones usually encountered under the Born approximation, generally below 0.1. Moreover,
the objects are deposited on a reflective substrate, so that Eref is the interference between the
illumination field, that is a plane wave, and its specular reflection on the substrate. As a result,
Eq. (1.24) is no longer valid in such a case, and the linear FT−1 inversion will in particular produce
a mirror image of the object symmetrically to the reflective substrate. Lastly, to be able to decrease
considerably the acquisition time, we will use a restricted amount of illumination angles and test
the linear inversion in such a case.

The set-up used for measuring the field scattered by these objects will be presented in the
first part of next chapter. Both the illumination and the detection take place above the substrate
(reflection configuration). For the sample tested here, D = 1µm and h = 120nm. Figure 1.19
and 1.20 are electron microscope images of this sample.



16 1.3 Principles of TDM under the Born approximation

Figure 1.19 : Overview of the sam-
ple imaged by electron microscopy

Figure 1.20 : Profile of the sample
imaged by electron microscopy

12 illuminations angles have been chosen : 6 in the plane of incidence (x, z) with the electric
field orthogonal to the plane of incidence (polarization TE), and 6 in the plane of incidence (y, z)
with the electric field parallel to the plane of incidence (polarization TM). The incidence angles
with respect to the normal to the substrate are 10◦, 20◦ and 31◦ for the four cases of azimuthal
angle φ = 0, φ = 90◦, φ = 180◦ and φ = 270◦, as shown on Fig. 1.21.

Figure 1.21 : Diagram for the different illumination angles used with four az-
imuthal angles φ.

Figure 1.22 shows the modulus of the scattered field for the four extreme illumination angles
at 31◦.
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Figure 1.22 : Modulus of the field scattered by the sample for an illumination
angle of 31◦ and the four possible azimuthal angles: (a)φ = 0◦, (b)φ = 90◦,
(c)φ = 180◦, (d)φ = 270◦; kx and ky are the spatial frequencies of the field.

They are presented in the Fourier space, that is in the far field, with coordinates kx and ky

that are the spatial frequencies of the field. The edges of the Fourier domain correspond to the
spatial frequency 0.95k0, since the numerical aperture of the objective used for the measurement
is NA=0.95. The missing circle appearing in black in each data image corresponds to the domain
where the field scattered by the sample is masked by the specular reflection on the substrate, which
is far stronger. Moreover, only about 2000 scattering angles centered on the specular reflection
have been kept, as for the present object the modulus of the scattered field becomes negligible
further away in the far-field.

Once the synthetic aperture has been generated, the linear FT−1 inversion has been applied to
the data set and produces a reconstruction with a 53 nm meshing. Figure 1.23 is a transverse cut
(x, y) of the reconstruction at a height z = 53 nm above the substrate and Fig. 1.24 is a longitudinal
cut (y, z) in the middle of two of the cylinders. Note that on these figures the modulus of the 3D
FT−1 of the data set has been displayed. It has indeed been found that the modulus is less
disturbed than the real and imaginary parts when the Born approximation is not strictly valid21,
an this is also what was observed on the present samples.
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Figure 1.23 : Transverse cut of the
modulus of the reconstruction at a
height z = 53 nm under Born ap-
proximation, the tested sample with
diameter 1 µm.
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Figure 1.24 : Longitudinal cut of
the modulus of the reconstructions at
y = 1 µm under Born approxima-
tion, the tested sample with diameter
1 µm.

On the reconstruction, the dimensions of the cylinders are correctly retrieved in the transverse
cut, since their diameter and side to side distance are equal to 1 µm and are thus well above the
Rayleigh criterion of 400 nm (calculated with Eq. (1.1) and NA=0.95). However, some noise can be
clearly seen around the cylinders. On the longitudinal cut, in addition to the noise, the cylinders
are strongly distorted and the actual height of 120 nm cannot be retrieved. These features can be
explained by the presence of the reflective substrate that in not taken into account in the linear
inversion, and by the limited number of illumination angles, since the FT−1 is very sensitive to the
missing points in the Fourier space.

With this quite simple sample, that is studied in a specific configuration (presence of the sub-
strate, few illumination angles), the linear FT−1 inversion clearly shows some limitations. There-
fore, an original non-linear inversion algorithm has been developed during this PhD and will be
presented in the next chapter. It performs a rigorous modelling of the scattering process and can
thus take into account the presence of the substrate as well as the possible multiple scattering
phenomenon that occurs out of the validity domain of Born approximation. As will be shown in
Chapter 3, it is also less sensitive to using a restricted amount of illumination angles to increase
the acquisition speed.

1.4 State-of-the-art results obtained by TDM un-

der linear approximations

Synthetic aperture techniques are particularly attractive to improve the resolution of microscopes
on unstained samples, but not so many research teams have actually implemented it experimentally
for the reconstruction of three-dimensional objects. The synthetic aperture is indeed more easily
generated on bi-dimensional objects28–30. As tomography aims at reconstructing 3D objects from
2D data sets (usually obtained on a CCD camera), we therefore focus here on such achievements.

Most of the work has been done on samples with low permittivity contrasts, usually biological
ones, with microscopes in transmission configuration. As a result the axial resolution is not as
good as the transverse one. The first demonstration of 3D reconstruction with TDM and resolution
improvement compared to wide-field microscopy was performed by V. Lauer21. An optimized set-
up based on the same configuration was then developed in Olivier Haeberlé’s research team in
Mulhouse27,43 and pushed forward the resolution performances close to the theoretical synthetic
aperture limit54. This team has also shown that a reflection configuration set-up improves the
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sectioning capabilities along the optical axis52. In all this work, the synthetic aperture is generated
from multiple measurements where the illumination angle on the sample is changed thanks to
a motorized mirror. This approach is the most encountered one23,44–46, but another technique
consists in using a fixed illumination at normal incidence and rotating the sample about an axis
in the transverse plane39,47,49. It permits to enlarge the accessible domain of spatial frequencies,
with only a reduced missing Fourier domain along the rotation axis of the specimen. The main
drawback is that performing a precise rotation of the sample at the microscopic scale within an
interferometric set-up is experimentally challenging, so that in practice keeping the specimen static
is usually the preferred solution.

Most of the 3D experimental reconstructions are obtained with the 3D FT−1 inversion based
on the Born approximation21,27,43,45,46,50,51,54. However a more crude approach has also been used,
based on the Radon transform, that neglects diffraction and refraction23,39,49. Light is considered
as propagating in straight lines through the specimen with a phase shift that varies from one
illumination angle to another. This can be valid if the permittivity contrast is very low and if the
specimen is not structured at the scale of the wavelength. Hence it provides reconstructions that
have poorer resolution performances47.

On the other hand, another linear approximation different from the Born approximation has
also been used, namely the Rytov approximation48. In the case of the Born approximation, the
field scattered by the object has to be sufficiently weak so that the total field inside of it can be
assimilated to the reference field Eref . This condition is generally interpreted as having a small
enough refractive index contrast of the object. However this can be misleading, as even a very small
refractive index contrast can produce a non negligible phase delay if the object is large enough.
The Rytov approximation is on the contrary not sensitive to the size of the sample or to the total
phase delay, but rather to the gradient of the refractive index. Its validity condition can be stated
as :

[∇(φ(r)− φinc(r))]2 ¿ k2
0∆n(r), (1.27)

where φ and φinc are the phase of the total field and of the illumination field, respectively, and ∆n is
the refractive index contrast of the object. As to a first approximation∇(φ(r)−φinc(r)) ' k0∆n(r)
for a weakly scattering object, the validity condition of the Rytov approximation simply be-
comes ∆n(r) ¿ 1 and does not make any assumption on the object size. Similarly to the
Born approximation, it can be shown that when the Rytov approximation is valid, the object
permittivity contrast can be retrieved linearly by a 3D FT−1 applied this time in far field on
Einc(kinc) ln[E(k, kinc)/Einc(kinc)]. This approach has recently provided undistorted reconstruc-
tions on 10 µm large objects producing a total phase delay close to π, contrarily to the Born
approximation44.

One drawback of TDM in all the previous approaches is that the data acquisition time can
be a limiting factor, as several hundreds of illumination angles are usually required to reconstruct
accurately the object. A different set-up configuration has thus been recently proposed, where
the sample is simultaneously illuminated by a sum of incoherent plane waves with the same polar
angle but with all possible azimuthal angles50,51. This illumination cone technique necessitates to
perform multiple measurements by scanning the sample along the optical axis so that 3D recon-
structions are possible. The common path interferometer configuration of the set-up has also been
optimized to limit the sensitivity to external perturbations. The 3D reconstruction capabilities
of this technique have been validated, but so far no resolution improvement beyond the Rayleigh
criterion has been shown.

Another limitation of TDM concerns the difficulty to obtain an isotropic resolution, as would
be given by illuminating the object and detecting its scattered field along all possible angles in
4π steradians. New illumination schemes have been proposed to make it possible experimentally
: placing the sample in the vicinity of a flat mirror and using a reflection scheme set-up37, or
combining the rotation of the sample about a transverse axis with the rotation of the illumination
through a transmission scheme set-up38.
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2.1 Description of the tomographic diffractive mi-

croscopy set-up

The TDM set-up has two main objectives : detecting the field scattered by the probed object both
in phase and in amplitude, and illuminating this object with a collimated coherent beam with a
controlled angle of incidence. As will be detailed hereafter, different modalities have been tested
to detect the phase of the field. They are generally based on an interferometric arrangement.
The TDM set-up has been developed horizontally on a stabilized optical table and is presented on
Fig. 2.1.

The light is emitted at wavelength 633 nm by a 10 mW Helium-Neon laser and is linearly
polarized. It is divided into two beams by beamsplitter B1 : a reference beam and a beam directed
towards the sample. A rotating mirror (M) mounted on two stepping motors (Newport NSA12)
permits to control the deflection of this latter beam. Then a beam expander (BE1) and diaphragm
D1 generate a wide collimated beam with near homogeneous power density. This beam illuminates
the sample after transmission through the microscope objective (L1) and the associated tube lens

21
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Figure 2.1 : Sketch of the experimental TDM set-up, laser source emitting at
633 nm; M , adjustable mirror; PL, polarizer; L1, microscope objective; L2,··· ,6,
lenses; fi, f

′
i , object and image focal planes of lens Li; B1, B2, B3, beam split-

ters; BE1, BE2 beam expanders; P , pinhole; PM , phase modulator; D1, D2,
diaphragms.

(L2). It can be locally assimilated to a plane wave since the dimensions of the object are small
compared to the width of the beam. The center of the mirror is conjugated through the beam
expander with diaphragm D1, which is itself conjugated with the center of the sample through
the tube lens and the microscope objective. Thus, rotating the mirror varies the incidence angle
without shifting laterally the illumination beam on the object and with an illumination field defined
by D1. The polar angle of the illumination can be varied over the whole NA of the objective.

The field scattered by the object is collected by the microscope objective (Zeiss Epiplan-
Apochromat 50×, NA = 0.95) and imaged on a CCD camera (Kappa PS4-1020) after passing
through relay lenses L3 and L4 to obtain a global magnification of about 290. This is therefore
a reflection configuration microscope, where the same high NA objective is used both for the
illumination and the detection. The diaphragm D2 is placed in an intermediate conjugated plane
of the object, and permits to adjust the field of view on the camera. The reference field extracted
by B1 firstly passes through an electro-optic phase modulator (PM), that is used to perform phase-
shifting interferometry and detect the phase of the scattered field, as will be explained hereafter.
The beam is then enlarged by beam expander BE2, focused on pinhole P for spatial filtering and
collimated by lens L6. In the end, it is coherently superimposed on the imaged scattered field thanks
to beam splitter B3. Figures 2.2 and 2.3 show the images of diaphragm D1 and diaphragm D2 on
the camera. They are good indicators that the set-up is optically well adjusted, since in this case
they should be obtained simultaneously in focus on the camera. Indeed, if the object is correctly
placed in the object focal plane of the objective and if it is deposited on a reflective substrate, the
diaphragm D1 will be optically conjugated with the plane of the camera after reflection on the
substrate.

Note that the field scattered by the object is detected in the image space, that is in a plane
conjugated with the object focal plane of the objective where the object is located. However, it
was described in the previous chapter that the linear inversion with a 3D FT−1 under the Born
approximation must be applied to the scattered field detected in far-field. It will also be the
case for the non-linear inversion algorithm that has been developed during this PhD, and will be
described in the last section of this chapter. In fact, the scattered field in far-field can be obtained
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by applying a simple 2D FT−1 to the field in the image space. The Fourier space, i.e. the space
of the spatial frequencies of the imaged field, can indeed be assimilated to the far-field space56–61.

The interest of placing the camera in the image space rather than in the Fourier space is
twofold. It firstly permits to adjust easily the position of the sample in the object focal plane
of the objective, so that it appears in focus on the camera. Second, it is more adapted to the
observation of small objects in terms of signal to noise ratio. Indeed, the flux scattered by a
small object will spread over the whole NA of the objective in the Fourier space, while in the
image space it will focus to form an image. Moreover the part of the illumination that has not
been scattered by the object will focus in the Fourier space (that is usually the case for TDM in
transmission configuration, and also in reflection configuration when the object is deposited on a
reflective substrate). This signal is far stronger than the scattered field in the case of small objects.
The dynamic range of the detector would therefore not be sufficient to detect both this strong
focus and the scattered field in the Fourier space, whereas in the image space the non scattered
field is a plane wave that produces a background illumination. Note that it is important to have
access to the non scattered field in far-field, since its amplitude and phase are used to normalize
the data detected for each illumination angle, and get rid of the amplitude and phase fluctuations
of the illuminating field during the measurement. This normalization procedure will be detailed
below in the Chapter 3.

Figure 2.2 : The image of di-
aphragm D1 obtained on the CCD
camera when a reflective substrate is
placed in the vicinity of the object fo-
cal plane of L1. This kind of setting
is usually accurate enough.

Figure 2.3 : The image of di-
aphragm D2, optically conjugated
with the CCD camera.

2.2 The phase measurement techniques

For each illumination angle on the sample, the field has to be detected both in phase and in am-
plitude. Three different techniques have been applied for this purpose and are presented hereafter.
The two first ones rely on the interference of the field scattered by the object with a reference
beam, and the last one aims at simplifying the set-up thanks to the use of a wavefront sensor.
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2.2.1 Phase shifting interferometry

2.2.1.1 Principle of the method

Based on the experimental set-up illustrated in Fig. 2.1, phase shifting interferometry was described
by Carre et al.69 in 1966 and by Bruning et al.70 in 1974, and was then further developed in the
eighties and later on19,58. It is a highly efficient and accurate phase measuring method that has
been applied to 3D62, color63,64, polarization62, synthetic aperture65, low-coherence66, surface
shape67 and microscopic68 imaging. It is based on the recording of several interference patterns
between the field scattered by the object and the reference wave. The optical path of the reference
wave can be controlled accurately, typically thanks to a mirror mounted on a piezoelectric support
or a phase modulator where the refractive index of an electro-optic crystal can be varied by applying
a voltage. Each interference pattern is obtained with a different additional phase shift inserted in
the reference wave. In our set-up, four phase retardations are introduced by the phase modulator
(New Focus 4002) to retrieve the complex scattered field : −π

2 , 0, π
2 , π. The corresponding intensity

patterns detected on the camera are called S1, S2, S3 and S4, respectively, and can be written as :

S1 = Iobj + Iref + 2
√

IobjIrefcos
(
ϕ +

π

2

)
(2.1)

S2 = Iobj + Iref + 2
√

IobjIrefcosϕ (2.2)

S3 = Iobj + Iref + 2
√

IobjIrefcos
(
ϕ− π

2

)
(2.3)

S4 = Iobj + Iref + 2
√

IobjIrefcos (ϕ− π) , (2.4)

where Iobj and Iref are the intensities of the object field and of the reference field, respectively,
and ϕ is the phase difference between the object field and the reference one. Note that the object
field Eobj is the sum of the field scattered by the object Es with the remaining non scattered
illuminating field Eill :

Eobj = Es + Eill. (2.5)

Eill is in our case due to the specular reflection of the illumination on the reflective substrate where
the objects are deposited. The object field can then be obtained from the following calculation :

(S2 − S4) + i(S3 − S1)
4
√

Iref

=
√

Iobjexp(iϕ) = Eobj. (2.6)

As can be seen from this equation, it is necessary to measure separately the intensity of the
reference wave to retrieve the complex object field Eobj. Moreover, to assimilate the argument of
this calculation to the phase of the object field, the reference wave must have a plane wavefront
propagating along the optical axis of the microscope, and thus arriving at normal incidence on the
camera. Such a configuration is usually called an on-axis (or inline) interferometric arrangement.
Performing phase-shifting interferometry requires a very accurate phase shift between consecutive
images, since the useful information are obtained by making image subtractions. In practice, to
improve the signal to noise ratio of the result, several cycles of the four phase retardation are
applied and the retrieved complex fields for each cycle are averaged.

2.2.1.2 Calibration of the phase-stepper

The phase shift introduced by the phase modulator can be considered with a good approximation
as proportional to the voltage applied to the electro-optic crystal. The most common residual error
to deal with in this case is when there is a slight discrepancy τ ¿ 1 between the desired phase
shift and the actual one. With the linear link between the voltage and the phase shift, the four
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intensity patterns are modified the following way :

S1 = Iobj + Iref + 2
√

IobjIrefcos(ϕ +
π

2
+ τ) (2.7)

S2 = Iobj + Iref + 2
√

IobjIrefcosϕ (2.8)

S3 = Iobj + Iref + 2
√

IobjIrefcos(ϕ− π

2
− τ) (2.9)

S4 = Iobj + Iref + 2
√

IobjIrefcos(ϕ− π − 2τ). (2.10)

Applying Eq. (2.6) to this data set produces a corrupted object field E′
obj that can be expressed,

assuming that τ ¿ 1, as :

E′
obj =

√
Iobj(cos ϕ + τ sin ϕ + i sin ϕ) = Re(Eobj) + i(1− iτ)Im(Eobj), (2.11)

where Re and Im denote the real and imaginary parts of the field, respectively. This equation can
be reformulated as :

E′
obj =

(
1− i

τ

2

)
Eobj + i

τ

2
E∗

obj, (2.12)

where E∗
obj is the complex conjugate of Eobj.

Therefore, when E′
obj is transferred to the Fourier space with a 2D FT−1, E∗

obj produces what
is called a ghost signal, whose modulus is symmetrical with respect to the spatial frequency origin
to that produced by Eobj. It can therefore considerably corrupt the measurement. Several methods
are possible to correct the residual phase shift error τ . For instance, it is possible to compare the
modulus of the signal in the Fourier space due to the two contributions Eobj and E∗

obj. This can
be done more easily at the focus of the non scattered fields Eill and E∗

ill, and an estimation of τ
can be extracted from the ratio of these two signals.

2.2.1.3 Limitations of phase-shifting interferometry

If the phase steps are carefully set, phase-shifting interferometry produces a highly accurate phase
signal. However, even with perfect phase steps, the measurement can be disturbed by phase
fluctuations due to thermal and/or mechanical drifts during the acquisition. The interferometric
detection is indeed very sensitive to external perturbations between the reference optical path and
the one for illumination and detection. That is why a cycle of phase steps has to be run as quickly
as possible, and an average on several cycles can also be done. Common path interferometer
geometries50,71 have been recently proposed to lower the sensitivity to external phase fluctuations,
but the necessity to perform several phase steps remains time consuming, especially if a large
number of illumination angles have to be applied successively.

To diminish the constraints imposed by external perturbations and accelerate the acquisition
time, another phase measurement technique has been tested during this PhD : off-axis holography.

2.2.2 Off-axis holography

Off-axis holography81 is the oldest and the simplest configuration adapted to digital hologra-
phy82–86. The main difference compared to phase-shifting interferometry is that the reference
wave propagates with a carefully chosen angle with respect to the set-up optical axis, and therefore
illuminates the camera with a phase ramp. The phase modulator is in this case no longer necessary
: the phase and the amplitude of the object field can be obtained with a single-shot measurement.
Off-axis holography has been applied recently to particle87 , polarization88, phase contrast89, syn-
thetic aperture90 and microscopic imaging91,92. If the reference wave can be assimilated to a plane
wave, its field on the camera can be written as Eref = ei(αx+βy), with x and y the transverse
coordinates with respect to the optical axis along coordinate z. To simplify the explanation, we
consider β = 0. The intensity I detected on the camera is :

I = Iref + Iobj + e−iαxEobj + eiαxE∗
obj. (2.13)
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Figure 2.4 : Sketch of the TDM set-up in off-axis configuration. The phase
modulator has been suppressed and the reference wave propagates with an angle
with respect to the optical axis.

By performing the 2D FT−1 of I, one obtains the Fourier space intensity Ĩ :

Ĩ = Ĩref + Ĩobj + δ−α ∗ Ẽobj + δα ∗ Ẽ∗
obj, (2.14)

where δα is the Dirac function placed at the spatial frequency coordinates (α, 0). In this equation,
Ĩref and Ĩobj are centered at the spatial frequency origin and have a cut-off frequency that is twice
that of the NA of the objective, whereas Ẽobj and Ẽ∗

obj are both confined within this NA. Thanks
to the convolution with the Dirac function, these two terms are shifted in the Fourier space and
become centered on spatial frequencies (α, 0) and (−α, 0), respectively. If the off-axis angle of the
reference wave is large enough, they will not overlap with the intensity terms Ĩref and Ĩobj. It is
then possible to filter Ẽobj and have a direct access to the complex field Eobj in the Fourier space.
Note that in practice the modulus of the reference wave is not equal to unity, so it is necessary to
measure Iref separately and divide Eq. (2.13) by

√
Iref prior to performing the 2D FT−1. In this

way both the modulus and the phase of Ẽref can be extracted through the procedure.
The single shot nature of the measurement dramatically decreases the sensitivity to external

fluctuations, but this is done at the expense of the available number of pixels of the camera : only a
fraction of the total number can be used with the constraint of separating the different interference
terms in the Fourier space. Additionally, another discretization constraint is imposed by the fact
that it is necessary to resolve on the camera the interference fringes between the reference wave
and any propagating plane wave transmitted by the microscope objective. For a plane wave at the
edge of the objective NA and propagating with an angle of opposite sign compared to that of the
reference wave, the period of the fringes will be particularly small. There is therefore a minimal
off-axis angle to separate the terms in the Fourier space, but also a maximal one to discretize
successfully the interference fringes.

2.2.3 Phase measurement with a wavefront sensor

2.2.3.1 Choice of the wavefront sensor

In contrast to the two previous methods based on an interferometric microscope, it is possible to
suppress the reference wave and detect the phase by replacing the CCD camera with a wavefront
sensor. This permits to greatly simplify the set-up architecture and gives the opportunity to use
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light sources with lower temporal coherence, such as laser diodes. Interferometric microscopy
indeed usually requires light sources with high temporal coherence, and is therefore plagued by
the speckle noise stemming from the parasitic reflections and diffraction along the light path.
As wavefront sensors perform the measurement of the amplitude and the phase of the field in a
single shot manner, they moreover offer the advantages of rapidity and insensitivity to external
perturbations.

Wavefront sensors (WFS) are generally used to estimate relatively slow phase variations like
those produced by lenses aberrations or weakly scattering biological samples, or in the field of
adaptive optics. For the study of the aberrations of light beams, only the lower-order aberrations
(like spherical aberration or coma) are usually considered, because they are sufficient to consid-
erably improve the beam quality18,74. Thus, a few thousands of phase measurement points are
sufficient to analyze the beam wavefront and subsequently compensate low order aberrations, and
this is easily performed by Shack-Hartmann wavefront sensors (SHWFS)75,76. However, for high
resolution microscopy applications, more pixels are necessary. We have therefore used another type
of wavefront sensor, based on quadri-wave lateral shearing interferometry (QWLSI)75,78. This type
of sensor is based on lateral shearing interferometry, that permits to measure the phase gradient
of a wavefront along one direction of the image. It consists in replicating the incident wavefront
into two identical but tilted wavefronts, and recording after propagation their mutual interference
pattern on a CCD camera. Primot and Sogno73 have extended this principle to more than one
gradient direction with multiwave interferometry (typically, QWLSI) to recover a full two dimen-
sional phase-field. It has the potential to sample intensity and phase images with a higher lateral
resolution compared to Shack-Hartmann WFS77. Four replicas are created by a specific 2D diffrac-
tion grating (a modified Hartmann mask, see Fig. 2.5), and two gradients along two perpendicular
directions are measured and then integrated to determine the field intensity and phase78.

Figure 2.5 : Principle of quadri-wave lateral shearing interferometry.

The wavefront sensor based on this technique that we use is the SID4-HR model of the Pha-
sics company, that samples the imaged field on a 300x400 matrix, with a pixel size of about 30
µm. Integrated in the set-up, it replaces the CCD camera and the reference beam is completely
suppressed, as shown on in Fig. 2.6.

2.2.3.2 Principle of lateral shearing interferometry

To better illustrate the working modalities of the wavefront sensor, lateral shearing interferometry
is detailed in this section. For this one dimensional case, the x coordinate is the direction along
which the phase gradient will be retrieved, and the z coordinate is along the optical axis, that is
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Figure 2.6 : Sketch of the experimental setup using wavefront sensor SID4-
HR. M , adjustable mirror; PL, polarizer; L1, L2, L3, L4, lenses; fi, f

′
i , object

and image focal planes of lenses; B1, beam splitters; BE1, beam expander; D1,
diaphragms.

perpendicular to the wavefront sensor and the modified Hartmann mask (MHM). In this case, the
transmission coefficient in amplitude t(x) of a perfect modified Hartmann mask is:

t(x) = cos
(

πx

p

)
, (2.15)

where 2p is the period of the MHM. In the following equations, proportionality factors are omitted
as a matter of clarity, and the origin of the z coordinate is taken on the plane of the MHM. If
Eobj(x, z = 0) is the object field incident on the MHM of the wavefront sensor, it can be written
as :

Eobj(x, z = 0) ∝
∫

Ẽobj(α)eiαxdα, (2.16)

where Ẽobj(α) is its one dimensional Fourier transform. The field Et(x, z = 0) that is transmitted
by the MHM can also be written as a Fourier expansion :

Et(x, z = 0) = cos
(

πx

p

)
Eobj(x, z = 0) ∝

∫ [
Ẽobj

(
α− π

p

)
+ Ẽobj

(
α +

π

p

)]
eiαxdα. (2.17)

When the transmitted field propagates from the MHM to the sensor plane, its plane wave decom-
position can thus be written as :

Et(x, z) ∝
∫ [

Ẽobj

(
α− π

p

)
+ Ẽobj

(
α +

π

p

)]
eiαx+iγ(α)zdα, (2.18)

where γ(α) =
√

k2
0 − α2 is the axial component of the wave vector. The diffraction orders -1

and +1 created by the MHM are visible in this equation. If we focus on the diffraction order +1
Et,+1(x, z), it can be reformulated with a change of variable as :

Et,+1(x, z) ∝
∫

Ẽobj(α′)ei(α′+ π
p )x+iγ(α′+ π

p )zdα′. (2.19)
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Lateral shearing interferometry is then based on the fact that the spatial frequencies of the object
field are very small compared to that of the MHM : α′ ¿ π

p . In this case, as described on Fig. 2.7,
the following approximation can be done :

γ

(
α′ +

π

p

)
' γ

(
π

p

)
− α′ tan θ1, (2.20)

where θ1 = sin−1
(

π
pk0

)
is the propagation angle of the first diffraction angle with respect to the

optical axis. In the end Et,+1(x, z) can be approximated as :

Et,+1(x, z) ∝ ei[π
p x+γ( π

p )z]
∫

Ẽobj(α′)e−iα′z tan θ1eiα′xdα′

= Eobj(x− z tan θ1)ei[π
p x+γ( π

p )z]. (2.21)

The object field can be expressed as Eobj(x, z = 0) = Aobj(x)eiφobj(x) and Et(x, z) = Et,+1(x, z)+

Figure 2.7 : Schematic used to evaluate the axial component of a wave vector
for a small perturbation α′ of its transverse wave vector around π

p .

Et,−1(x, z) then reads :

Et(x, z) ∝ Aobj(x− z tan θ1)ei[π
p x+γ( π

p )z+φobj(x−z tan θ1)]

+ Aobj(x + z tan θ1)ei[−π
p x+γ(−π

p )z+φobj(x+z tan θ1)]. (2.22)

The intensity It(x, z) ∝ ‖Et(x, z)‖2 detected by the CCD camera of the wavefront sensor is then :

It(x, z) ∝ A2
obj(x− z tan θ1) + A2

obj(x + z tan θ1)

+ 2Aobj(x− z tan θ1)Aobj(x + z tan θ1) cos
(

2π

p
x− 2

∂φobj(x)
∂x

tan θ1z

)
, (2.23)

with z = 1.5 mm in practice. One can see that It(x, z) is an interferogram that gives access to the
phase gradient component along the x direction. This interferogram is interpreted as a non-uniform
phase gradient function, frequency-modulating a perfect sinusoidal pattern of period p. The phase is
recovered by applying a Fourier transform to the interferogram, that is then demodulated around its
specific carrier frequency to extract the phase gradient, before performing an integration. Because
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the phase information is coded in the interferogram by a frequency modulation, the phase and the
intensity are independently determined. The intensity image is recovered by applying a low pass
filter on the interferogram to just keep the first two terms of Eq. (2.23).

Note that the CCD camera has a pixel pitch of p/4 to sample the interferogram, and the final
image of the phase and the intensity of the field has a pitch of p once the Fourier analysis has been
performed. The wavefront sensor is calibrated so that z tan θ1 is small compared to p, and therefore
the shift of the intensity image in the first two terms of Eq. (2.23) is negligible. Moreover, in the
TDM set-up, the condition α′ ¿ π

p is verified thanks to the high magnification (about 290) of
the field imaged on the wavefront sensor. The highest spatial frequency α′max of this field is given
through the Abbe relation by α′max = k0NA/290 = 32.5 nm−1, to be compared to π

p = 106 nm−1,
with p = 29.6 µm.

2.3 Rigorous nonlinear inversion procedures in 3D

The nonlinear numerical inversion procedures reconstruct the sample permittivity map according
to the diffracted field for many scattered angles and under illuminating the sample with different
directions. This algorithm has already been applied with success to the imaging of highly contrasted
two-dimensional sample32,79,80.

2.3.1 The direct problem

The scattering of an electromagnetic wave by an arbitrary, three dimensional scatterer is a complex
problem of central importance in optics and photonics. Aside from a few particular systems, the
interaction of electromagnetic waves with an arbitrary object induces an analytical representation
and numerical methods are needed. Many such methods have been developed93, in this thesis,
we have considered a volume integral method named the coupled dipole method (CDM). This
approach was introduced by Purcell and Pennypacker in 197394 to study the scattering light by
non-spherical dielectric grains in free space. The theoretical foundation of the CDM depends on
the fact that when an object interacts with an electromagnetic field, it develops a polarization and
gives rise to a system of linear equations. If one considers a small enough volume inside the object,
the induced polarization is uniform within this volume, and hence any object can be discretized as
a collection of dipolar subunits34.

2.3.1.1 Computation of the scattered field: the coupled dipole method

To compute the scattered field by an arbitrary object with a volume integral method, one needs
to solve Eq. (1.19) established in chapter 1:

E(r) = Eref(r) + k2
0

∫

V

G(r, r′)[ε(r′)− 1]E(r′)dV, (2.24)

where Eref(r) is the electromagnetic field in the absence of the object under study: it could be
the incident field in homogeneous space or the incident field plus its reflected field if the object
is in presence of a substrate. A straightforward method for numerically solving Eq. (2.24) is the
coupled dipole method or equivalently the method of moments (MoM) which is based on replacing
the volume integral by a discrete sum over finite volume elements. We show the case of a cubical
grid in Fig. 2.8. If the volume elements are sufficiently small compared to the wavelength of
illumination or the variation of the field inside the object, we can assume that ε(r) and E(r) are
uniform in each cell.

In using the cubic discretization Eq. (2.24) can be rewritten as:

E(r) = Eref(r) + k2
0

N∑

j=1

∫

Vj

G(r, r′)[ε(r′)− 1]E(r′)dV. (2.25)
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Figure 2.8 : Discretization diagram for direct problem. The permittivity of sam-
ple is ε(r) and volume V , the object under study is discretized into small cubic
units.

where N denotes the number of cubic subunits to represent the object and Vj the volume of the
j-th element of discretization with Vj = V = d3 where d is the mesh size of the lattice. Then we
use the hypothesis that the field and the permittivity are uniform and equal to their value at the
center of the subunit:

E(r) = Eref(r) + k2
0

N∑

j=1

[∫

Vj

G(r, r′)dV

]
[ε(rj)− 1]E(rj). (2.26)

Afterwards, Eq. (2.26) can be transformed into a system of linear equations if the total field is
evaluated inside the object under study at the position of a subunit:

E(ri) = Eref(ri) + k2
0

N∑

j=1

[∫

Vj

G(ri, r
′)dV

]
[ε(rj)− 1]E(rj). (2.27)

with i = 1, · · · , N .
At this stage one can notice that the free-space dyadic Green’s function has a singularity when

we need to evaluate
∫

Vi
G(ri, r

′) with r′ ∈ Vi. We have in the literature different approximations
of this self term. The most cruder approximation consists in computing the self term assuming
that the volume Vi approaches zero, i.e. as Vi shrinks down around the point ri

95,96:
∫

Vi

G(ri, r
′)dV = − I

3k2
0

. (2.28)

The problem with this formulation is that if one computes the cross section or optical forces one
gets an incorrect result. This is due to the fact that the optical theorem is not satisfied. This is
due to the approximation to assume that the volume Vi approaches zero. The evaluation of this
integral can be accomplished numerically for regions of different shape, but it is difficult and time
consuming to perform the integration without any approximation on the cubic cell. Hence the
region Vi is often assumed to be a spherical cell with a radius a such that 4π

3 a3 = d3, i.e. the same
volume between the spherical cell and cubic cell 97–100. Then in that case we get

∫

Vi

G(ri, r
′)dV ≈ − I

3k2
0

+ i
2
3
I

d3

4π
k0 := d3G(ri, ri). (2.29)
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Notice that when we evaluate
∫

Vj
G(ri, r

′) with i 6= j we also assume the Green’s function to be
constant versus r′ so that we get:

∫

Vj

G(ri, r
′)dV ' d3G(ri, rj). (2.30)

Then the linear system can be written as:

E(ri) = Eref(ri) + k2
0d

3
N∑

j=1

G(ri, rj)[ε(rj)− 1]E(rj). (2.31)

with i = 1, · · · , N . Once the linear system represented by Eq. (2.31) is solved, the total field inside
the object is perfectly known and the scattered field in the far-field zone, Es(r) can be computed
at an arbitrary position r with

Es(r) = k2
0d

3
N∑

j=1

G(r, rj)[ε(rj)− 1]E(rj). (2.32)

The self-consistent Eq. (2.31) and the far-field Eq. (2.32) assuming that the scattered field is
computed at M points of observation, can be rewritten in a more condensed form as:

E = Eref + AχE (2.33)
Es = BχE, (2.34)

where A is a square matrix of size (3N × 3N) and contains all the tensors G(ri, rj). We have

E = [Ex(r1), Ey(r1), Ez(r1), · · · , Ez(rN )] (2.35)
Eref = [Ex,ref(r1), Ey,ref(r1), Ez,ref(r1), · · · , Ez,ref(rN )] , (2.36)

B is a matrix of size (3M×3N). The matrix B contains the tensors, G(rk, rj), where rj denotes a
point in the discretized object, j = 1, · · · , N , while rk is an observation point, k = 1, · · · , M . Note
that B and A do not depend on the angle of incidence. χ is a diagonal matrix of size (3N × 3N)
which contains the contrast of permittivity. As the material is isotropic the diagonal of the matrix
can be written as Diag(χ) = [∆ε(r1), ∆ε(r1), ∆ε(r1), · · · , ∆ε(rN )].

2.3.1.2 Strengths and drawbacks of the coupled dipole method

Volume-integral equation methods have several advantages. They are applicable to arbitrarily
shaped, inhomogeneous and anisotropic particles. The radiation condition is automatically satisfied
through the dyadic Green’s function. The computation is confined to the volume of the scatterer,
which results in fewer unknowns as in many finite-difference methods. Notice that if the particle
under study is in presence of a substrate or multilayer or grating one needs only to compute the
new Green’s function to take into account the new complex environment101–104.

A disadvantage is that the computational accuracy is only improved slowly as the number of
cells is increased. In the configuration presented in this manuscript the spacing lattice used is
typically around d = λ/10. In fact, the main problem is the time of computation needed to solve
the large linear system represented by Eq. (2.31). Generally to perform this resolution quickly, we
use a conjugate gradient method with fast Fourier transform105–107

2.3.2 The nonlinear inversion algorithm for 3D imaging

The aim of inverse algorithm is stated as finding the relative permittivity ε of the object under
study from its measured scattered field . A numbers of accurate iterative techniques have been
developed to solve this inverse problem, for example, the linearized methods are developed based on
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Born type approximation by W. Chew, A. G. Tijhuis, K. Belkebir, etc108–111, a modified gradient
method is presented by R. E. Kleinman and P. M. Van Den Berg112,113 to find the permittivity by
a minimization procedure, under the condition of a unknown test domain Ω. However, almost all
these methods deal with two dimensional inverse problems, especially, in three dimensions, most
techniques use a linear inversion based on Born approximation or Rytov approximation44,50 and
are restricted to the scalar case. Therefore, a hybrid method with an iterative nonlinear inversion
algorithm based on a rigorous vectorial modeling of the wave-sample interaction, combing the two
main methods mentioned above, is developed to solve the 3D reconstruction problem105,114,115 in
our team. This algorithm has already been applied with success to the imaging of highly contrasted
two dimensional objects32,79,80,116.

In our TDM measurement the scattered electromagnetic field is detected in far field in M
observation points that are located on a surface Γ by L successive illuminations. This measured
field is noted f l with l = 1, · · · , L. Note that we assume that the unknown object is confined
in a known bounded box Ω (test domain or an investigation domain,see Fig. 2.9). Notice that in

Figure 2.9 : Sketch of the illumination and detection configuration of TDM, the
large discretized box is the investigation domain for the inverse problem, the blue
points are the observation points in far-field.

practice, as the dimensions of the object are a priori not known, it is necessary to find at a first
step a size for the domain that is large enough to contain the object. The transverse dimensions of
the domain can easily be determined from the image field of the object illuminated under normal
incidence. The axial dimension can be evaluated by observing this image field for different positions
of the object along the optical axis, or from the 3D reconstruction obtained with the conventional
3D inverse Fourier transform inversion. This point will be discussed in more details in chapter 3.

The Hybrid Method (HM) combines the advantage of conjugate gradient method and contrast
source inversion: χ and the internal field El are determined iteratively. The minimized cost
function of HM is the one used in the Modified Gradient Method112:

Fn(χn, El,n) = WΓ

L∑

l=1

‖h(1)
l,n‖2Γ + WΩ

L∑

l=1

‖h(2)
l,n‖2Ω, (2.37)
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The subscripts Ω and Γ are included in the norm ‖.‖ to indicate the domain of integration. h(1)

and WΓ are the residual error in the observation equation and a weighting coefficient, respectively.

h
(1)
l,n = f l −BχEl and WΓ =

(
L∑

l=1

‖f l‖2Γ
)−1

, (2.38)

Physically,
∑L

l=1 ‖h(1)
l,n‖2Γ describes the discrepancy between the measured scattered far-field and

the simulated one associated to the best available estimate of the relative permittivity. h(2) and
WΩ are the residual error in the near field equation and a weighting coefficient, respectively:

h
(2)
l,n = El,ref −El,n + AχnEl,n and WΩ =

(
L∑

l=1

‖χn−1El,ref .‖2Ω
)−1

, (2.39)

where
∑L

l=1 ‖h(2)
l,n‖2Ω represents the discrepancy between the estimate El,n and its calculation fol-

lowing Maxwell’s equations using the estimated χn and Eref .
Two sequences related to the contrast χ and to the field El inside the investigating domain Ω

are built up according to the following recursive relations

χn = χn−1 + bndn (2.40)
El,n = El,n−1 + av

l,nvl,n + aw
l,nwl,n, (2.41)

where vl,n, wl,n and dn are updating directions with respect to the total field El and to the
contrast χ, respectively. The scalar coefficients av

l,n, aw
l,n and bl,n are weights that are determined

at each iteration step n such that they minimize the normalized cost functional given in Eq. (2.37).
The minimization is accomplished using the Polak-Ribière conjugate gradient procedure119. The
originality of HM lays in the introduction of two search directions for the total field, wl,n, and
vl,n which stem from the conjugate gradient method and contrast source inversion, respectively.
Basically, wl,n fastens the retrieval of the internal field (especially if the data are not too noisy and
the target is not too contrasted) as in conjugate gradient method while vl,n brings the robustness
to noise and the stability when handling strongly diffracting targets as in contrast source inversion.
They are written asi,

vl,n = gl,n;E + γl,n;Evl,n−1 with γl,n;E =

〈
gl,n;E , gl,n;E − gl,n−1;E

〉
Ω

‖gl,n−1;E‖2Ω
(2.42)

wl,n = Ẽl −El,n−1 with Ẽl = (I −Aχn−1)−1El,ref , (2.43)

where gl,n;E is the gradient of the cost functional Fn(χn, El,n) with respect to El, assuming
ξ = ξn−1 and η = ηn−1. Note that, similarly to conjugate gradient method, one forward problem
has to be solved at each iteration.

To ameliorate the reconstruction, we incorporate a priori information stating that both real
and imaginary parts of the electrical susceptibility χ are non negative. Instead of retrieving a
complex valued function χn, two real auxiliary functions ξn and ηn are reconstructed such that
χn = 1 + ξ2

n + iη2
n − εb, with εb the relative permittivity of the background. The real and the

imaginary parts of the relative complex permittivity distribution are, herein, forced to be greater
than unity and non-negative, respectively. The recursive relation with respect to the complex
contrast function χn is refined as

ξn = ξn−1 + bn;ξdn;ξ and ηn = ηn−1 + bn;ηdn;η. (2.44)

The updating directions dn;ξ and dn;η are taken to be the standard Polak-Ribière conjugate gradient
direction

dn;ξ = gn;ξ + γn;ξdn−1;ξ with γn;ξ =
〈gn;ξ, gn;ξ − gn−1;ξ〉Ω

‖gn−1;ξ‖2Ω
(2.45)

dn;η = gn;η + γn;ηdn−1;η with γn;η =
〈gn;η, gn;η − gn−1;η〉Ω

‖gn−1;η‖2Ω
, (2.46)

iWe use the following notation: 〈u|v〉Ω =
∑

Ω u∗.v where * denotes the complex conjugate
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where gn;ξ and gn;η are the gradients of the cost functional Fn(χn, El,n) with respect to ξ (respec-
tively η), evaluated at the n-th step assuming that the total field inside the test domain does not
change.

The gradients used in the HM are the gradients of the functional:

Fn(ξn, ηn,El,n) = WΓ

L∑

l=1

‖f l −B(1 + ξ2
n + iη2

n − εb)El,n‖2Γ

+ WΩ

L∑

l=1

‖El,ref −El,n + A(1 + ξ2
n + iη2

n − εb)El,n‖2Ω. (2.47)

Notice that to define the gradient of a functional, one needs first the definition of the directional
derivative. If x is the unknown we call DxF(u) the directional derivative of F along the direction
u and write it as:

DxF(u) = lim
t→0

F(x + tu)−F(x)
t

. (2.48)

Then the gradient of F is defined as the direction where the directional derivative is the highest.
Notice that, as shown in Eqs. (2.40) and (2.41), since the gradient is always multiplied by a
constant that is optimised we do not care of the norm of the gradient, only of its direction. Then
the gradients according to ξn and ηn are given by:

gn;ξ = 2ξn−1Re

[
WΩ

L∑

l=1

E∗
l,n−1.A

†h(2)
l,n−1 −WΓ

L∑

l=1

E∗
l,n−1.B

†h(1)
l,n−1

]
, (2.49)

gn;η = 2ηn−1Im

[
WΩ

L∑

l=1

E∗
l,n−1.A

†h(2)
l,n−1 −WΓ

L∑

l=1

E∗
l,n−1.B

†h(1)
l,n−1

]
. (2.50)

The gradient according to El,n is given by:

gl,n;E = WΩ

[
χ∗n−1A

†h(2)
l,n−1 − h

(2)
l,n−1

]
−WΓχ∗n−1B

†h(1)
l,n−1. (2.51)

In these three equations, the symbol * denotes the complex conjugate, and M † is the adjoint
operator of the operator M . With the values of the gradient then one needs to minimize the cost
function with respect to the coefficient bn, +av

l,n and aw
l,n. This minimization is done numerically.
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with non-linear inversion
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3.1 Data treatment procedures to apply before

performing the numerical inversion

In order to obtain a quantitative reconstruction of the optogeometrical parameters of the sample, a
normalization procedure has to be applied to the experimental data before applying the inversion
procedure to the diffracted fields obtained for the different illumination incidences.

3.1.1 Angular calibration

The inversion of experimental data necessitates a precise knowledge of the illumination angles
involved during the measurement and also of the scattering angles within the numerical aperture
of the objective. The angular calibration is done with a reference object of known dimensions.
As the measurements are performed in the image space, it is possible to determine precisely the
discretization pitch of the image of this object. Then the discrete FT−1 used to transfer the data to
the Fourier space gives the discretization pitch in the Fourier space. This pitch permits to address

37
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a scattering angle to every pixel inside the objective NA, knowing that scattering angle zero is
at the center of the Fourier space. Every illumination angle can thus also be evaluated thanks to
the position of the pixel corresponding to the focus of the specular reflection, as the objects are
deposited on a reflective substrate.
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Figure 3.1 : Intensity image of a grating (1200 grooves per mm) used as reference
object

The reference object used is a diffraction grating with 1200 grooves/mm, its intensity image is
shown on Fig. 3.1. We found that on this image 933 pixels correspond to 29 periods of the grating,
what gives a pitch ∆x of 25.9 nm per pixel. The pitch ∆kx in the Fourier space is related to ∆x
thanks to the discrete FT through the equation :

N∆x∆kx = 2π, (3.1)

where N = 1004 is the number of pixels along the x direction on the CCD camera. The same
equation is valid along the y direction since the CCD sensor is a square. The distance of any pixel
in the Fourier space with respect to the origin can be written as

√
k2

x + k2
y = k0 sin θ, where θ is the

polar scattering angle in spherical coordinates. Thus, knowing the pitch ∆kx permits to retrieve θ
at any position in the Fourier space.

3.1.2 Normalization procedure of the measurements

To retrieve a quantitative 3D permittivity map of the sample, it is necessary to apply a normaliza-
tion procedure to the amplitude and the phase of the measured scattered field prior to performing
the non-linear inversion. Such a normalization aims at adapting the measurements to the mod-
elling hypotheses underlying the inversion algorithm. It uses as reference the measured specular
reflection on the substrate, ensuring that it matches both in amplitude and phase the specular
reflection as calculated by the forward scattering model. This implies that the specular reflection
has to be far stronger than the field scattered in the same direction by the sample, what is verified
for small objects.

Note that the scattered field measured in the image space for illumination number l is called
f̃ l, to distinguish with the data f l once transferred in the Fourier space and used by the non-linear
inversion algorithm.

3.1.2.1 Amplitude normalization

The non-linear inversion assumes that the object is illuminated for each angle of incidence by a
plane wave with a unity amplitude. The measured amplitudes ‖f̃ l‖ have therefore to be normalized
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according to this hypothesis so that a correct estimation of the permittivity can be retrieved. The
amplitude normalization is moreover useful to correct the intensity fluctuations of the illuminating
beam that can occur from one illumination angle to another. It is performed for each illumination
l by multiplying f̃ l by the factor Ml :

Ml =
|γl||rl|S

2π〈‖f̃ l‖〉S
, (3.2)

where γl = −k0 cos θl is the projection of the illumination wave vector on the optical axis of the
microscope (the minus sign is due to the reflection configuration), rl is the Fresnel amplitude
reflection coefficient on the substrate, and S the surface of the field of view that can be imaged on
the CCD sensor. 〈‖f̃ l‖〉S is the mean field modulus averaged over the field of view: as the object is
small on the CCD image, it can be considered as the mean field modulus reflected by the substrate.
The multiplication by Ml ensures that the maximal value of ‖f l‖ in far field, which corresponds
to the specular reflection, is equal to that scattered by a portion of substrate of surface S when
illuminated by a plane wave with unity amplitude, as calculated by the forward scattering model.

F Fresnel reflection coefficient rl

The Fresnel amplitude reflection coefficient rl on the substrate depends on the polarization of
the illumination. If the illumination is a TE-polarized plane wave, which means its electric field is
in the plane of the interface, rl is given by :

rl =
(k2

0 − α2
l )

1/2 − (n2
sk

2
0 − α2

l )
1/2

(k2
0 − α2

l )1/2 + (n2
sk

2
0 − α2

l )1/2
, (3.3)

where αl = k0 sin θl is the projection of the illumination wave vector on the interface and ns =
3.882 + 0.019i is the refractive index of the silicon substrate. Note that the imaginary part of ns

is neglected to calculate rl. For the case of a TM-polarized plane wave, where the elecric field is
in the plane of incidence, rl becomes :

rl =
−n2

s(k
2
0 − α2

l )
1/2 − (n2

sk
2
0 − α2

l )
1/2

n2
s(k2

0 − α2
l )1/2 + (n2

sk
2
0 − α2

l )1/2
. (3.4)
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Figure 3.2 : Fresnel amplitude reflection coefficient as a function of the illumi-
nation angle : TE case in blue and TM case in red.

The modulus of rl is shown as a function of the illumination angle θl on Fig. 3.2 for the TE
and TM cases. While it increases with θl in the TE case, it decreases to reach zero at the Brewster
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angle in the TM case, before increasing towards 1. Note however that the objective NA cut all
angles above 72◦, and therefore the Brewster incidence of 78◦ cannot be reached experimentally.

F Validation of the amplitude normalization
The multiplication of the measured field by factor Ml aims at normalizing to one the maximal

value of ‖f l‖, and then multiply it by the maximal value of the modulus of the field scattered by a
portion of substrate that has the size of the field of view imaged on the camera. This value is the
specular reflection peak as calculated by the forward scattering model. To verify that it is given by
|γl||rl|S/(2π), as stated in the expression of factor Ml, a reference object with a simple geometry
has been used to calculate the scattered field with the Coupled Dipole Method (CDM).

Figure 3.3 : Sketch of the reference object used to test the validity of the amplitude
normalization factor : a transparent parallelepiped of refractive index ns = 1.01
and dimensions 2 µm × 2 µm × 25 nm.

This object has been chosen as a very thin parallelepiped made of two squares of sides 2 µm,
separated by e = 25 nm, with the inside filled with a material of very low refractive index ns = 1.01
(see Fig. 3.3). When a plane wave illuminates one of the square faces with an angle of incidence θl,
two reflections will be produced from each square face, neglecting multiple reflections due to the
very low refractive index contrast with air. These two reflections will interfere in far-field, with a
phase shift ∆ϕ = π +2nse cos(θr

l ), where θr
l is the refraction angle inside the parallelepiped. Thus,

the specular reflection peak in far-field can be calculated by |γl||rl|S(1 + ei∆ϕ)/(2π), where S is
the surface of the square.
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Figure 3.4 : Modulus of the far field scattered by the reference object depicted
on Figure 3.3 for different polar and azimuthal illumination angles θl and φl,
respectively. (a) θl = 55◦, φl = 0◦; (b) θ = 9◦, φl = 0◦; (c) θl = 57◦, φl = 90◦;
(d) θl = 9◦, φl = 90◦

The far field scattered by this object is calculated by the CDM with a meshing of 25 nm
for different polar and azimuthal illumination angles θl and φl, respectively. The modulus of the
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scattered field inside of the objective NA is shown on Fig. 3.4 for : (a) θl = 55◦, φl = 0◦, TE
polarization; (b) θ = 9◦, φl = 0◦, TE polarization; (c) θl = 55◦, φl = 90◦, TM polarization; (d)
θl = 9◦, φl = 90◦, TM polarization. The peak values computed with the CDM are respectively of
0.1618× 10−7, 0.1617× 10−7, 0.0741× 10−7 and 0.1537× 10−7, whereas the ones calculated with
the aforementioned expression are 0.1570× 10−7, 0.1560× 10−7, 0.0562× 10−7 and 0.1483× 10−7.
Such a good agreement was also found for other couples of values for θl and φl. It shows that
the factor Ml can effectively normalize the amplitude of the measured field so that the specular
reflection peak reaches the value that would have been calculated by the CDM. The scattered field
has then the adapted signal level for the inversion procedure to retrieve the right value for the
sample permittivity.

3.1.2.2 Phase normalization

The nonlinear inversion is usually set so that the spatial origin for the phase is placed on the
substrate and in the middle of the transverse dimensions of the investigation domain Ω. It implies
that whatever the illumination l, the phase of the illuminating plane wave is zero at this location.
Experimentally however, the phase of the illuminating beam is never exactly the same when reach-
ing the sample, since thermal and/or mechanical drifts can occur or simply because the optical
path of the beam can vary from one illumination angle to another. Moreover, the experimental
spatial origin for the phase is usually different from the one assumed in the model, what modifies
the measured phase compared to that calculated with the forward model.

Figure 3.5 : Positions of the theoretical and experimental phase origins with
respect to the object, and indication of the additional phase shifts due to the shift
of the phase origin from the theoretical position to the experimental one.

Calling d the position of the experimental phase origin with respect to the theoretical one, the
experimental phase ϕd of the scattered far-field is linked to the theoretical one ϕ0 by the following
equation :

ϕd(k,kl) = ϕ0(k,kl) + (k − kl) · d, (3.5)

where kl is the illumination wave vector and k the one along which the field is scattered. Figure 3.5
shows the positions of the theoretical and experimental phase origins with respect to the position
of the sample, and the additional phase shifts due to the shift of the phase origin at position d.
A first additional phase shift (−kl · d) is due to the propagation of the illumination field from
the experimental phase origin to the theoretical one, where the sample has to be located for the
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inversion. A second one (k · d) stems from the propagation of the scattered field along direction k
from the theoretical phase origin to the experimental one, before propagating to the far field.

As the scattered field f̃ l is measured in a plane conjugated with the object, the phase origin can
be chosen visually at the object center in this plane when performing the 2D FT−1 to generate the
far-field data f l. The transverse components of the phase origin mismatch d can then be neglected
and the object reconstructed at the center of the transverse extent of Ω. However the imaging plane
is never perfectly conjugated with the substrate plane, so that an axial component is remaining for
d. Dedicated methods have been developed to retrieve this component dz, they are presented in
the following section. Once dz is determined, it is corrected on the data set using Eq. (3.5). Then,
the phase for each illumination is shifted so that the phase at the specular reflection is equal to the
argument of the theoretical Fresnel reflection coefficient on the substrate, for a phase origin taken
on the substrate. In this way, the data set is normalized to the case where the illumination beam
has a phase equal to zero at the spatial origin for each incidence angle.

3.1.3 Determination of the phase origin mismatch

A first method to retrieve the remaining axial component dz of the phase origin mismatch consists
in applying a 3D FT−1 to the data set f l, as if the Born approximation was valid. It generates an
approximate reconstruction of the object, that is sufficient to locate accurately the axial position
of the object center with respect to the center of the reconstruction domain, which is actually the
dz value we are looking for. Indeed, within the Born approximation and using Eqs. (1.24) and
(3.5), the inverse Fourier transform of the data set corrupted by a mismatch d reads :

∫
∆ε̃(k − kl)ei(k−kl)·(r−d)d3(k − kl) ∝ ∆ε(r − d). (3.6)

The reconstruction is thus shifted by d compared to the one obtained without phase origin mis-
match. Note that the inverse Fourier transform is performed with a normalized data set as described
in the previous section. However the phase normalization is not perfectly achieved, since when the
phase origin is not located on the substrate the term 2|γl|dz has to be added to the argument of the
Fresnel reflection coefficient, as will be mentioned hereafter. As dz has not yet been determined, it
is considered as equal to zero for the phase normalization. This approximation can at worst distort
the object reconstruction, but not change its localisation within the reconstruction domain, so it
does not compromise the method. Moreover, dz can be set below 500 nm experimentally (it is the
remaining defocus of the image on the camera), and such low values were not seen to deteriorate
the coarse reconstruction given by the FT−1.

A second method is derived from the one already implemented in 2D in previous work of the
team32. Calling f ′l the data set where dz has been corrected, it is given by :

f ′l = f lexp(−i[γ − γl]dz), (3.7)

where γ is the projection of k on the optical axis. The problem is stated as finding dz so that
the backpropagation118 of the associated scattered field f ′l provides the best initial guess for the
inversion scheme. This is accomplished by minimizing the following cost function G :

G =
L∑

l=1

‖f ′l − βBB†f ′l‖2Γ, (3.8)

where β is a complex scalar weight and B† the complex conjugate transpose of matrix B. The
minimization of the cost function G depends on three unknowns i.e. dz and the complex β. But
there is an analytical relation between dz and β. If dz is given then to find β one needs to minimize
G which can be written as:

G =
L∑

l=1

[
‖f ′l‖2Γ − 2βrRe

〈
f ′l|BB†f ′l

〉
Γ
− 2βiIm

〈
f ′l|BB†f ′l

〉
Γ

+ (β2
r + β2

i )‖BB†f ′l‖Γ
]

(3.9)
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where β = βr + iβi. Then with dz given we derive G with respect to βr and βi as:

∂G
∂βr

=
L∑

l=1

[
−2Re

〈
f ′l|BB†f ′l

〉
Γ

+ 2βr‖BB†f ′l‖2Γ
]

(3.10)

∂G
∂βi

=
L∑

l=1

[
−2Im

〈
f ′l|BB†f ′l

〉
Γ

+ 2βi‖BB†f ′l‖2Γ
]
. (3.11)

Th value of β is found with ∂G
∂βr

= ∂G
∂βi

= 0, then:

β =

∑L
l=1 Re

〈
f ′l|BB†f ′l

〉
Γ∑L

l=1 ‖BB†f ′l‖2Γ
+ i

∑L
l=1 Im

〈
f ′l|BB†f ′l

〉
Γ∑L

l=1 ‖BB†f ′l‖2Γ
=

∑L
l=1 Re

〈
f ′l|BB†f ′l

〉
Γ∑L

l=1 ‖BB†f ′l‖2Γ
(3.12)

as
〈
f ′l|BB†f ′l

〉
Γ

=
〈
B†f ′l|B†f ′l

〉
Γ
∈ R. Then one needs to find one unknown dz thanks to a

simplex method. This second approach is more precise than the first one to estimate dz, but it is
more time consuming, especially for large investigation domains due to the product BB†f ′l.

When the configuration used is the reflection case we get

f ′l = f lexp(−ik0[cos θ + cos θl]dz). (3.13)

This equation corrects the phase origin mismatch, but one has also to correct the phase fluctuations
of the incident field from one illumination angle to another. This is done by replacing the phase
of the specular reflection measured in the Fourier space, ϕspec, by the argument of the Fresnel
reflection coefficient. Note that this argument has to take into account the fact that the phase
origin is shifted from the substrate by dz when the measurements are performed. It provides an
additional phase shift 2|γl|dz = 2k0 cos θldz to the reflection coefficient, compared to rl as given by
Eq. (3.3) and Eq. (3.4), that are valid when the phase origin is by default taken on the substrate.
By taking into account all this, G should then be minimized with :

f ′l = f lexp(−ik0[cos θ − cos θl]dz)e−iϕspec
rl

|rl| . (3.14)

Notice that this expression holds in the case where the incident field is in p or s polarization.

3.2 Experimental results

In this section, we present the experimental 3D reconstructions obtained with the non-linear inver-
sion procedure on the type of objects that were described in section 1.1.3 of chapter 1. They consist
in resin cylinders deposited on a silicon substrate, and were all fabricated by Anne Talneau at the
Laboratoire de Photonique et Nanostructures de Marcoussis. Different heights were realized for the
cylinders : 100 nm, 125 nm or 150 nm. They are deposited so that their axes are at the corners of
a square. The diameter of the cylinders and the side by side distance of two neighbouring cylinders
are equal in a given square. Squares with different cylinder diameters were realized: 1 µm, 500
nm, 200 nm, 150 nm and 100 nm. Such structures are well adapted for testing the resolution of
our TDM approach.

As mentioned at the beginning of this chapter, the sample is imaged on the CCD camera so
that one pixel corresponds to 25.9 nm thanks to a strong magnification. As a result, when the
data are transferred to the Fourier space with a 2D discrete FT−1, since the accessible range of
spatial frequencies is given by Eq. (3.1), it is very large and the domain occupied by the numerical
aperture of the objective is only a small fraction of it. The width of the NA is typically of 80
pixels. The discretization in far-field of this NA is shown on Figure 3.6. The color level indicates
the polar angle in degrees inside of the NA. Such a quite low discretization is not detrimental
to the non-linear inversion algorithm, and it is moreover particularly adapted to perform off-axis
holography, as will be shown hereafter.
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Figure 3.6 : Polar angle distribution within the discretized numerical aperture
in the Fourier space.

3.2.1 Resin cylinders with diameter 1 µm.

For this sample, 6 illumination angles are used in the plane (x, z) with the electric field orthogonal
to the plane of incidence (TE polarization), and other 6 incidences in the plane (y, z) with the
electric field parallel to the plane of incidence (TM polarization), with polar angles varying in the
[−30, 30] degrees range.

3.2.1.1 Comparison of the measurement by phase-shifting interferome-
try and the simulated scattered field

The scattered fields obtained by phase shifting interferometry (PSI) in the image space are pre-
sented in Fig. 3.7 for certain illumination angles. The upper line is the modulus of the fields and the
second one the corresponding phase. For each illumination angle, the measured field is averaged
over 30 phase shifting cycles to increase the signal to noise ratio, since PSI can be very sensitive
to external perturbations.



3.2 Experimental results 45

 

 

200 400 600

100

200

300

400

500 1

1.5

2

2.5

3

3.5

4

 

 

200 400 600

100

200

300

400

500
2

2.5

3

3.5

4

 

 

200 400 600

100

200

300

400

500 1.5

2

2.5

3

3.5

 

 

200 400 600

100

200

300

400

500
2

2.5

3

3.5

4

(a) (b) (c) (d)

 

 

200 400 600

100

200

300

400

500
−3

−2

−1

0

1

2

3

 

 

200 400 600

100

200

300

400

500
−3

−2

−1

0

1

2

3

 

 

200 400 600

100

200

300

400

500
−3

−2

−1

0

1

2

3

 

 

200 400 600

100

200

300

400

500
−3

−2

−1

0

1

2

3

(e) (f) (g) (h)

Figure 3.7 : Modulus (first line) and phases (second line) of the field in the
image space obtained by PSI on resin cylinders with diameter 1 µm and height
125 nm. (a) and (e) θl = 32◦, φl = 0◦, TE polarization; (b) and (f) θl = 10◦,
φl = 0◦, TE polarization; (c) and (g) θl = 31◦, φl = 90◦, TM polarization; (d)
and (h) θl = 10◦, φl = 90◦, TM polarization.

This data set transferred in the Fourier space (in far field) is shown on Fig. 3.9. Notice that
the amplitude and phase normalization described in the previous section has been applied to the
data. Prior to the transfer in Fourier space, the data set has to be multiplied by a mask function
in the image space. Indeed, strong artefacts are created by the discrete 2D FT−1 if it is applied
to a domain where the signal is non zero on the edges. This mask function is equal to one in the
region where the sample is located, and zero elsewhere. A smooth transition in squared cosine
between these two values is implemented so that only low spatial frequencies in the vicinity of the
specular reflection are generated by this mask in the Fourier space. Figure 3.8 presents a typical
mask function. Thanks to it, the signal to noise ratio of the field scattered by the sample is also
improved, suppressing possible unwanted scatterers, like dust, placed around the sample.
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Figure 3.8 : Mask function applied to the data in the image space to isolate
the sample region and suppress artefacts created by the discrete 2D FT−1 for the
transfer to Fourier space.
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This data has been restricted to about two thousands scattering angles centered on the specular
reflection on the substrate. The missing circle in the data corresponds to the domain where the
field scattered by the sample is masked by this reflection. Indeed, the specular reflection is only
used as reference for the data normalization procedure, but it is suppressed for performing the
inversion since it does not correspond to the field scattered by the object.
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Figure 3.9 : Modulus (first line) and phases (second line) of the field in the
Fourier space obtained by PSI on resin cylinders with diameter 1 µm and height
125 nm. (a) and (e) θl = 32◦, φl = 0◦, TE polarization; (b) and (f) θl = 10◦,
φl = 0◦, TE polarization; (c) and (g) θl = 31◦, φl = 90◦, TM polarization; (d)
and (h) θl = 10◦, φl = 90◦, TM polarization.

To verify that this normalized data set in far field is able to recover a quantitative 3D recon-
struction of the object, we compare it with the theoretical scattered far field, computed with the
CDM for the same illumination angles and polarizations. It is shown on Fig. 3.10.
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Figure 3.10 : Modulus (first line) and phases (second line) of the theoretical far
field (Fourier space) scattered by resin cylinders with diameter 1 µm and height
125 nm. (a) and (e) θl = 32◦, φl = 0◦, TE polarization; (b) and (f) θl = 10◦,
φl = 0◦, TE polarization; (c) and (g) θl = 31◦, φl = 90◦, TM polarization; (d)
and (h) θl = 10◦, φl = 90◦, TM polarization.

A very good agreement has been obtained between the measured and the computed fields. As
the non-linear inversion procedure has permitted to reconstruct successfully the object with the
computed data set, the next step is to apply the inversion procedure to the measured data set.

3.2.1.2 Comparison of the data set measured by PSI and with a wave-
front sensor (WFS)

The PSI measurement technique suffers from a high sensitivity to external perturbations, which
is compensated in our set-up by averaging the data over several phase shift cycles, but it also
increases the duration of the measurement. A long acquisition time can be problematic since the
stability of the positioning of the object, particularly the axial one, cannot be guaranteed over
periods typically longer than 10 minutes due to mechanical drifts. To speed up the measurement
and increase its robustness, we have also performed the data acquisition with a wavefront sensor
(WFS) based on quadriwave lateral shearing interferometry, as described in section 2.2.3 of chapter
2. This approach also permits to simplify the set-up by suppressing the need for a reference wave,
and makes possible the use of cheaper and smaller light sources with lower temporal coherence,
such as laser diodes or spatially filtered LEDs. Such light sources would diminish the speckle noise
due to parasitic reflections and scattering along the light path.

The wavefront sensor used is the Phasics SID4-HR model. It measures the amplitude and
the phase of the incoming field on 400 × 300 matrix with a pixel size of 29.6 µm. With the
magnification of the set-up about 290 the discretization of the image is close to 100 nm per pixel.
The resolution of the set-up is therefore still limited by the Rayleigh criterion of 400 nm imposed by
the objective NA, and the inner spot of the point spread function is thus sampled with a sufficient
number of pixels : about 8. The wavefront sensor is able to detect a phase difference between two
adjacent pixels from 0.01 to 2.9 radians. The lower bound is essentially imposed by the sensitivity
of the camera, whereas the upper one originates from the interferograms of Eq. (3.15) that are
treated to retrieve the complex scattered fields. This equation is recalled hereafter for the sake of
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clarity :

It(x, z) ∝ A2
obj(x− z tan θ1) + A2

obj(x + z tan θ1)

+ 2Aobj(x− z tan θ1)Aobj(x + z tan θ1) cos
(

2π

p
x− 2 tan θ1z

∂φobj(x)
∂x

)
. (3.15)

The upper bound corresponds to a phase gradient that gives 2 tan θ1z
∂φobj(x)

∂x = π, which cannot be
distinguished between a negative or a positive phase gradient in the interferogram. The constraint
imposed by this upper bound is greatly relaxed by sampling the point spread function with about
8 pixels.

Figure 3.11 presents the scattered fields in the image space measured by the WFS for the
same illumination angles as for the PSI technique. The data acquisition treatment of the WFS
automatically suppresses the tilt of the incoming wavefront, thus no phase ramp appears on the
phase images. Note that a phase reference is measured on the bare substrate for each illumination
prior to imaging the sample to diminish the speckle noise. All the measurements are performed in
a single shot manner.
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Figure 3.11 : Modulus (first line) and phases (second line) of the field in the
image space measured with a WFS on resin cylinders with diameter 1 µm and
height 125 nm. (a) and (e) θl = 32◦, φl = 0◦, TE polarization; (b) and (f) θl =
10◦, φl = 0◦, TE polarization; (c) and (g) θl = 31◦, φl = 90◦, TM polarization;
(d) and (h) θl = 10◦, φl = 90◦, TM polarization.

The data set transferred in the Fourier space is shown on Fig. 3.12. The discretization in the
Fourier space is quite similar as in the PSI case, since the lower number of pixels of the WFS
is compensated by their larger extent, compared to the CCD camera. The two measurement
techniques provide very similar data sets, which proves the feasibility of employing a WFS to
simplify and improve the robustness of TDM.
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Figure 3.12 : Modulus (first line) and phases (second line) of the field in the
Fourier space measured with a WFS on resin cylinders with diameter 1 µm and
height 125 nm. (a) and (e) θl = 32◦, φl = 0◦, TE polarization; (b) and (f) θl =
10◦, φl = 0◦, TE polarization; (c) and (g) θl = 31◦, φl = 90◦, TM polarization;
(d) and (h) θl = 10◦, φl = 90◦, TM polarization.

3.2.1.3 Application of the non-linear inversion algorithm to the experi-
mental data for different sizes of investigation domain

The non-linear inversion algorithm is here applied to the WFS dataset. As stated in chapter 2,
the a priori information that the real part of the permittivity of the sample is positive is used.
Moreover the imaginary part of the permittivity of the resin is neglected, considering the samples
as pure phase objects. Our inversion procedure necessitates to choose a size for the investigation
domain Ω where the sample will be reconstructed. The usual approach is to choose a quite large
size for Ω with a coarse meshing at a first step, and then diminishing the size and refining the
meshing once the object dimensions have been evaluated. As the measurements are done in the
image space, it is easy to calibrate the transverse extent of Ω from the image of the object. The
axial dimension of the object can be estimated from the defocus of its image on the camera while
it is translated along the optical axis and from the knowledge of the depth of field of the objective
(below 1 µm for NA = 0.95). It can also be evaluated more precisely from the approximated
reconstruction obtained by applying a 3D TF−1 to the data set.

A first large investigation domain of 8×8×3.2 µm3 with a 200 nm meshing is used on Figs. 3.13
and 3.14. They show a transverse cut and a longitudinal cut of the resin cylinders, respectively.
The four resin pads can be located accurately, and Ω is then downsized to a box of 4× 4× 1.6 µm3

on Figs. 3.15 and 3.16.
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Figure 3.13 : Transverse cut at
z = 100 nm of the reconstruction
with 200 nm meshing of 1 µm large
resin cylinders with 125 nm height
(WFS data set)
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Figure 3.14 : Longitudinal cut at
y = 1µm of the reconstruction with
200 nm meshing of 1 µm large resin
cylinders with 125 nm height (WFS
data set)
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Figure 3.15 : Transverse cut at
z = 100 nm of the reconstruction
with 200 nm meshing of 1 µm large
resin cylinders with 125 nm height
(WFS data set)
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Figure 3.16 : Longitudinal cut at
y = 1µm of the reconstruction with
200 nm meshing of 1 µm large resin
cylinders with 125 nm height (WFS
data set)

We noticed that the spatial extent of the sample along the optical axis did not exceed 0.8 µm.
To ameliorate further the accuracy of the reconstruction, we downsized the box to 4× 4× 0.8 µm3

and tightened the mesh size to 100 nm : Figs. 3.17 and 3.18.
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Figure 3.17 : Transverse cut at
z = 150 nm of the reconstruction
with 100 nm meshing of 1 µm large
resin cylinders with 125 nm height
(WFS data set)
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Figure 3.18 : Longitudinal cut at
y = 1µm of the reconstruction with
100 nm meshing of 1 µm large resin
cylinders with 125 nm height (WFS
data set)

We then estimated that the height of the sample was below 400 nm. We thus finally diminished
the height of the domain to 400 nm and the mesh size to 50 nm : Figs. 3.19 and 3.20. The iterative
inversion procedure has therefore been applied successfully on the WFS data set to reconstruct
the sample. Only four iterations were needed for the convergence of the iterative process. To our
knowledge, this is the first time that such an approach is validated on 3D experimental data in
optics. The reconstructions obtained for the intermediate iterations will also be shown hereafter
as illustration.

Figure 3.19 : Transverse cut at
z = 125 nm of the reconstruction
with 50 nm meshing of 1 µm large
resin cylinders with 125 nm height
(WFS data set)
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Figure 3.20 : Longitudinal cut at
y = 1µm of the reconstruction with
50 nm meshing of 1 µm large resin
cylinders with 125 nm height (WFS
data set)
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3.2.1.4 Comparison of the non-linear inversions obtained with the WFS
and the PSI data sets

As expected from the high similarity of the WFS and the PSI data sets in the Fourier space, the
reconstructions obtained with the non-linear inversion procedure are in good agreement for the
two measurement techniques. For illustration, Figs. 3.21 and 3.22 show the final iteration obtained
with the PSI data set.

Figure 3.21 : Transverse cut at
z = 125 nm of the reconstruction
with 50 nm meshing of 1 µm large
resin cylinders with 125 nm height
(PSI data set)
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Figure 3.22 : Longitudinal cut at
y = 1µm of the reconstruction with
50 nm meshing of 1 µm large resin
cylinders with 125 nm height (PSI
data set)

As a result, it shows that TDM is compatible with the use of a wavefront sensor, which gives
a simpler set-up architecture, close to that of a standard wide-field microscope, with possible use
of low-cost weakly coherent sources. These results were recently published116.

3.2.1.5 Comparison of the reconstructions obtained with the non-linear
inversion procedure and the linear inversion valid for the Born
approximation

Figure 3.23 shows a comparison of the reconstructions obtained with the non-linear inversion
procedure and the 3D FT−1 valid under the Born approximation, for the case of the WFS data
set. The Fourier transform technique provides a noisy reconstruction particularly distorted along
the z axis, since the presence of the reflective surface is interpreted as a mirror object symmetrically
placed along this axis. Such a behaviour is also observed in the case of the PSI data set, shown on
Fig. 3.24.
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Figure 3.23 : Comparison of the reconstructions of the 1 µm large resin cylinders
with the non-linear inversion procedure and the 3D FT−1, applied on the WFS data
set.
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Figure 3.24 : Comparison of the reconstructions of the 1 µm large resin cylinders
with the non-linear inversion procedure and the 3D FT−1, applied on the PSI data
set.

The Fourier transform technique is in fact very sensitive to the missing points in the Fourier
space, due to the restricted amount of data with only 12 different illumination angles for the data
set. Usually, to have a good reconstruction with this technique, several hundreds of incidences are
required to fill the Fourier space adequately. As on the contrary, our non-linear inversion procedure
estimates accurately the sample dimensions, even with the coarse meshing in Figs. 3.15 and 3.16.
As a result, it seems particularly attractive to diminish the number of necessary illuminations :
an acquisition time gain of at least ten can therefore be expected. Note also that no quantitative
result on the permittivity can be obtained here with the 3D FT−1 because of the missing points
in the Fourier space. However with such an inversion, the permittivity is usually estimated thanks
to a reference object of known permittivity27.

3.2.1.6 Iterative process of the inversion algorithm applied on the WFS
data set

As written above, the non-linear inversion procedure has necessitated four iterations before con-
verging to the final reconstruction of the sample. They are shown on Figs. 3.25 and 3.26, 3.27 and
3.28, 3.29 and 3.30, 3.19 and 3.20, respectively.
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Figure 3.25 : The 1st iteration,
transverse cut at z = 125 nm of the
reconstruction with 50 nm meshing
of 1 µm large resin cylinders with
125 nm height (WFS data set)
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Figure 3.26 : The 1st iteration,
longitudinal cut at y = 1 µm of the
reconstruction with 50 nm meshing
of 1 µm large resin cylinders with
125 nm height (WFS data set)

Figure 3.27 : The 2nd iteration,
transverse cut at z = 125 nm of the
reconstruction with 50 nm meshing
of 1 µm large resin cylinders with
125 nm height (WFS data set)
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Figure 3.28 : The 2nd iteration,
longitudinal cut at y = 1µm of the
reconstruction with 50 nm meshing
of 1 µm large resin cylinders with
125 nm height (WFS data set)
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Figure 3.29 : The 3 rd iteration,
transverse cut at z = 125 nm of the
reconstruction with 50 nm meshing
of 1 µm large resin cylinders with
125 nm height (WFS data set)
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Figure 3.30 : The 3 rd iteration,
longitudinal cut at y = 1µm of the
reconstruction with 50 nm meshing
of 1 µm large resin cylinders with
125 nm height (WFS data set)

Figure 3.31 : The final iteration,
transverse cut at z = 125 nm of the
reconstruction with 50 nm meshing
of 1 µm large resin cylinders with
125 nm height (WFS data set)
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Figure 3.32 : The final iteration,
longitudinal cut at y = 1µm of the
reconstruction with 50 nm meshing
of 1 µm large resin cylinders with
125 nm height (WFS data set)

Note that compared to the Fourier transform technique, the computational time is significantly
increased as Eq. (2.37) has to be solved rigorously at each iteration. Yet this rigorous calculation of
the total field inside of Ω is necessary only if the sample supports multiple scattering. If the Born
approximation is valid, the total field can be replaced by the reference field, and the computation
time then remains comparable to that of the inverse Fourier transform.

3.2.2 Resin cylinders with diameter 500 nm

Measurements have been performed on resin cylinders with a smaller diameter of 500 nm : their
axes are placed at the corners of a square with 1 µm side. Different heights have been fabricated :
150 nm, 125 nm and 98 nm. The robustness of the non-linear inversion procedure can thus be tested
on such objects with smaller features. Note that to speed up the measurement acquisition time,
namely the movement of the motors to change the illumination angle and the cycles of phase steps
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for PSI measurements, the computer controlling the set-up has been changed and the operating
system has moved from Windows to Linux. As the acquisition software for the WFS is not directly
compatible with Linux, the WFS technique has been let aside temporarily for these measurements.
It has been replaced by another single shot technique presented in chapter 2 : off-axis holography.
With this technique, the measurement time is about four times shorter compared to PSI : for a
data set with 20 illumination angles, 15 minutes are required for PSI while less than five minutes
are needed for the off-axis case.

3.2.2.1 Comparison of the PSI data set with the theory

The used sample has a height of 125 nm, and as the diameter of the resin cylinders has diminished
the number of illumination angles has been increased compared to the previous sample to add
larger angles : 10 incidences are used in the plane (x, z) with the electric field orthogonal to the
plane of incidence (TE polarization), and 10 incidences in the plane (y, z) with the electric field
parallel to the plane of incidence (TM polarization), with polar angles varying in the [−60, 60]
degrees range. The fields in the image space are presented on Fig. 3.33 for different illumination
angles and polarizations.
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Figure 3.33 : Modulus (first line) and phases (second line) of the field in the
image space measured by PSI on resin cylinders with diameter 500 µm and height
125 nm. (a) and (e) θl = 55◦, φl = 0◦, TE polarization; (b) and (f) θl = 8.8◦,
φl = 0◦, TE polarization; (c) and (g) θl = 55◦, φl = 90◦, TM polarization; (d)
and (h) θl = 9◦, φl = 90◦, TM polarization.

After application of the normalization procedure, the data set is transferred in the Fourier space
and can be seen on Fig. 3.34. For comparison, the theoretical far field is presented on Fig. 3.35.
The agreement is globally good. As for the previous sample, the data has been restricted to about
two thousands scattering angles centered on the specular reflection on the substrate. The missing
circle in the data corresponds to the domain where the field scattered by the sample is masked by
this reflection.
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Figure 3.34 : Modulus (first line) and phases (second line) of the field in the
Fourier space measured by PSI on resin cylinders with diameter 500 µm and height
125 nm. (a) and (e) θl = 55◦, φl = 0◦, TE polarization; (b) and (f) θl = 8.8◦,
φl = 0◦, TE polarization; (c) and (g) θl = 55◦, φl = 90◦, TM polarization; (d)
and (h) θl = 9◦, φl = 90◦, TM polarization.
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Figure 3.35 : Modulus (first line) and phases (second line) of the theoretical field
in the Fourier space scattered by resin cylinders with diameter 500 µm and height
125 nm. (a) and (e) θl = 55◦, φl = 0◦, TE polarization; (b) and (f) θl = 8.8◦,
φl = 0◦, TE polarization; (c) and (g) θl = 55◦, φl = 90◦, TM polarization; (d)
and (h) θl = 10◦, φl = 90◦, TM polarization.

3.2.2.2 Measurement of the field by off-axis holography

Off-axis holography is an interesting method to measure the phase and the amplitude of the field in
a single shot manner, therefore diminishing the acquisition time and the sensitivity to experimental
perturbations. The main drawback is that only a fraction of the pixels of the detector can be used
to obtain the useful signal, as stated in section 2 of chapter 2. This is however not a limiting
factor in our procedure since the inversion algorithm does not necessitate a very high number of
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scattering angles : they are limited to about 2000. This technique is applied here on resin cylinders
with 500 nm diameter and 98 nm height. Approximately the same 20 illumination angles as those
for the previous PSI measurement are used. For each angle, 30 intensity patterns are averaged
to improve the signal to noise ratio. The resulting intensity measurements obtained in the image
space for some of these angles are presented on Fig. 3.36. The interference fringes between the
off-axis reference wave and the specular reflection on the substrate are visible on these images.
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Figure 3.36 : Intensity of the field in the image space measured by off-axis
holography on resin cylinders with diameter 500 µm and height 98 nm. (a) θl =
58◦, φl = 0◦, TE polarization; (b) θl = 10◦, φl = 0◦, TE polarization; (c) θl = 57◦,
φl = 90◦, TM polarization; (d) θl = 9◦, φl = 90◦, TM polarization.

By applying a 2D FT−1 to this data, the scattered field in phase and amplitude can be retrieved
in the Fourier space. It is shown on Fig. 3.37. The three interference terms are clearly separated,
the one due to the intensity of the scattered field in the middle, and the ones due to the scattered
field and its complex conjugate on the two sides.
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Figure 3.37 : Modulus of the far field propagation of the intensity images mea-
sured by off-axis holography on resin cylinders with diameter 500 µm and height
98 nm. (a) θl = 58◦, φl = 0◦, TE polarization; (b) θl = 9◦, φl = 0◦, TE polar-
ization; (c) θl = 58◦, φl = 90◦, TM polarization; (d) θl = 10◦, φl = 90◦, TM
polarization.

It is possible to retrieve the modulus and the phase of the field in the image space from the
data in the Fourier space, and thus obtain the same kind of measurements as PSI. For this only
one interference term on the side is kept, as shown on Fig. 3.38.
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Figure 3.38 : The kept term modulus of the far field propagation of the intensity
images measured by off-axis holography on resin cylinders with diameter 500 µm
and height 98 nm. (a) θl = 58◦, φl = 0◦, TE polarization; (b) θl = 9◦, φl = 0◦,
TE polarization; (c) θl = 58◦, φl = 90◦, TM polarization; (d) θl = 10◦, φl = 90◦,
TM polarization.

A 2D FT generates these field into the image space. The modulus and the phase of this
retrieved field are presented on Fig. 3.39. The attenuation on the edges of the modulus image is
due to the mask function initially applied to the data set before transfer to the Fourier space. The
image space data can then be used to locate the spatial origin for the phase at the center of the
object, as it cannot always be clearly seen on the raw off-axis intensity measurement because of
the interference fringes. Moreover the factor 〈‖f̃ l‖〉S in Eq. (3.2) can be calculated inside of the
mask for the amplitude normalization.
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Figure 3.39 : Modulus and phase of the field in the image space retrieved from
the off-axis data set on resin cylinders with diameter 500 µm and height 98 nm.
(a) and (e) θl = 58◦, φl = 0◦, TE polarization; (b) and (f) θl = 9◦, φl = 0◦,
TE polarization; (c) and (g) θl = 58◦, φl = 90◦, TM polarization; (d) and (h)
θl = 10◦, φl = 90◦, TM polarization.

The modulus and the phase of the data set transferred to the Fourier space are shown on
Fig. 3.40. They present a similar far field profile compared to that of the PSI measurement and
the theory, which validate the use of off-axis holography for our set-up.
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Figure 3.40 : Modulus (first line) and phases (second line) of the field in the
Fourier space measured by off-axis holography on resin cylinders with diameter
500 µm and height 98 nm. (a) and (e) θl = 58◦, φl = 0◦, TE polarization; (b)
and (f) θl = 9◦, φl = 0◦, TE polarization; (c) and (g) θl = 58◦, φl = 90◦, TM
polarization; (d) and (h) θl = 10◦, φl = 90◦, TM polarization.

3.2.2.3 Application of the non-linear inversion algorithm to the PSI data
set for different sizes of investigation domain

The normalized PSI data set is injected in the inversion procedure for different sizes of investigation
domain, with the same approach as what was presented above for the resin cylinders with 1 µm
diameter. At first, the investigation domain is a rectangular box with dimensions 2× 2× 1.6 µm3

and a mesh size of 200 nm. The sample permittivity contrast has again been considered as a
real number, neglecting the absorption of the resin. The permittivity map reconstructed with our
iterative inversion procedure is displayed in Figs. 3.41 and 3.42. They show a transverse cut (x, y)
at a height of 200 nm above the substrate and a longitudinal cut (x, z) in the middle of two of the
cylinders, respectively.
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Figure 3.41 : Transverse cut at
z = 200 nm of the reconstruction
with 200 nm meshing of 500 nm large
resin cylinders with 125 nm height
(PSI data set)
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Figure 3.42 : Longitudinal cut at
y =500 nm of the reconstruction with
200 nm meshing of 500 nm large
resin cylinders with 125 nm height
(PSI data set)

The domain is then reduced to a rectangular box with dimensions 2 × 2 × 0.8 µm3 and a
mesh size of 100 nm. The results are shown on Figs. 3.43 and 3.44. Lastly, a rectangular box
with dimensions 2 × 2 × 0.4 µm3 is chosen and a mesh size of 50 nm is adopted to have a better
discretization. The object is successfully reconstructed as can be seen on Figs. 3.45 and 3.46. The
convergence of the iterative process was obtained after seven iterations.
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Figure 3.43 : Transverse cut at
z = 100 nm of the reconstruction
with 100 nm meshing of 500 nm large
resin cylinders with 125 nm height
(PSI data set)
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Figure 3.44 : Longitudinal cut at
y =500 nm of the reconstruction with
100 nm meshing of 500 nm large
resin cylinders with 125 nm height
(PSI data set)



3.2 Experimental results 63

−500 0 500

−500

0

500

X (nm)

Y
 (

nm
)

 

 

1.2

1.4

1.6

1.8

2

2.2

Figure 3.45 : Transverse cut at
z = 125 nm of the reconstruction
with 50 nm meshing of 500 nm large
resin cylinders with 125 nm height
(PSI data set)
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Figure 3.46 : Longitudinal cut at
y =500 nm of the reconstruction with
50 nm meshing of 500 nm large resin
cylinders with 125 nm height (PSI
data set)

3.2.2.4 Application of the non-linear inversion algorithm to the off-axis
data set

The data set recorded with off-axis holography has roughly the same illumination angles as the PSI
one, but it is obtained on samples with a height of 98 nm instead of 125 nm. After the same size
adjustment steps for the investigation domain, the reconstruction obtained with an investigation
box of 2× 2× 0.4 µm3 and a mesh size of 50 nm is presented on Figs. 3.47 and 3.48.
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Figure 3.47 : Transverse cut at z =
75 nm of the reconstruction with 50
nm meshing of 500 nm large resin
cylinders with 98 nm height (Off-axis
data set)
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Figure 3.48 : Longitudinal cut at
y =500 nm of the reconstruction with
50 nm meshing of 500 nm large resin
cylinders with 98 nm height (Off-axis
data set)

The result is again satisfactory, which validates the use of off-axis holography to speed up the
acquisition time. There is however no clear evidence that the inversion procedure is sensitive to the
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27 nm height difference of the samples between the PSI and the off-axis data sets. The question
of the axial sensitivity of our approach will be studied in more details hereafter.

3.2.2.5 Reconstructions obtained with the linear inversion valid under
the Born approximation

Here, the 3D FT−1 linear inversion valid under the Born approximation is applied on the PSI and
off-axis data sets. Both data sets use 20 illumination angles and the meshing of the reconstruction
is about 53 nm. Figures 3.49 and 3.50 show the case of the PSI data set, whereas Figs. 3.51
and 3.52 present the off-axis holography case.

Figure 3.49 : Transverse cut at
z = 53 nm of the reconstruction un-
der Born approximation with 53 nm
meshing of 500 nm large resin cylin-
ders with 125 nm height (PSI data
set)

Figure 3.50 : Longitudinal cut at
y =500 nm of the reconstruction un-
der Born approximation with 53 nm
meshing of 500 nm large resin cylin-
ders with 125 nm height (PSI data
set)
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Figure 3.51 : Transverse cut at
z = 53 nm of the reconstruction un-
der Born approximation with 53 nm
meshing of 500 nm large resin cylin-
ders with 98 nm height (Off-axis data
set)

Figure 3.52 : Longitudinal cut at
y =500 nm of the reconstruction un-
der Born approximation with 53 nm
meshing of 500 nm large resin cylin-
ders with 98 nm height (Off-axis data
set)

Again, these reconstructions with the conventional linear inversion scheme present more noise
than the ones with the non-linear procedure, and remain particularly distorted along the optical
axis, due to the presence of the reflective substrate and the limited amount of data in the Fourier
space. The four resin pads can be however clearly resolved in the transverse plane, but this is due
to the fact that the center to center distance of 1 µm between two cylinders remains well above
the Rayleigh criterion, which is of 400 nm in our set-up.

3.2.2.6 Influence of the number of illumination angles on the reconstruc-
tions

As we known, the classic Born approximation is very sensitive to the number of incidences, more
accessible Fourier domain means better resolution. To clarify the dependence of our non-linear
inversion procedure on the number of illumination angles, a measurement with 40 incidences has
been carried out with the PSI technique on a sample with 150 nm height. This sample height
change will also be used hereafter for the study of the axial sensitivity. To obtain the 40 angles,
we keep the same 20 angles as previously and add a new one in the middle of the range between
each two successive angles.
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Figure 3.53 : Transverse cut at z =
125 nm of the reconstruction with 50
nm meshing of 500 nm large resin
cylinders with 150 nm height (Off-
axis data set, double incidences)

−500 0 500

100

200

300

X (nm)

Z
 (

nm
)

 

 

1.5

2

2.5

Figure 3.54 : Longitudinal cut at
y =500 nm of the reconstruction with
50 nm meshing of 500 nm large resin
cylinders with 150 nm height (PSI
data set, 40 incidences)

Figures 3.53 and 3.54 show the reconstruction obtained with the 40 illumination angles in a
2 × 2 × 0.4 µm3 investigation box with 50 nm meshing. On the other hand, Figs. 3.55 and 3.56
depict a reconstruction obtained with only 10 incidences in TE polarization, whereas Figs. 3.57
and 3.58 is the case for 10 incidences in TM polarization. It is shown that even with a lower
number of incidences the geometry of the reconstruction remains satisfactory. It thus confirms the
ability of our approach to diminish the number of necessary illumination angles to reconstruct in
3D a sample, compared to the conventional linear inversions. It can therefore be used to increase
the speed of the data acquisition.

Figure 3.55 : Transverse cut at
z = 125 nm of the reconstruction
with 50 nm meshing of 500 nm large
resin cylinders with 150 nm height
(PSI data set, 10 incidences in TE
polarization)
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Figure 3.56 : Longitudinal cut at
y =500 nm of the reconstruction with
50 nm meshing of 500 nm large resin
cylinders with 150 nm height (PSI
data set, 10 incidences in TE polar-
ization)
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Figure 3.57 : Transverse cut at
z = 125 nm of the reconstruction
with 50 nm meshing of 500 nm large
resin cylinders with 150 nm height
(PSI data set, 10 incidences in TM
polarization)
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Figure 3.58 : Longitudinal cut at
y =500 nm of the reconstruction with
50 nm meshing of 500 nm large resin
cylinders with 150 nm height (PSI
data set, 10 incidences in TM polar-
ization)

3.2.2.7 Spatial filtering of the scattered field for the selective reconstruc-
tion of objects

Thanks to the detection in the image space of the field scattered by the object, it is possible to
select the part of the image that is of interest to reconstruct only a fraction of the objects imaged
on the sensor. When filtering the scattered field in the image space that produces the object of
interest, its transfer to the Fourier space also provides the far field scattered by this very object,
without interferences with the other parts of the sample. Here we want to show that it is possible
to reconstruct only a part of the four cylinders that form a square. In this way, if we are able to
reconstruct only one of the cylinders, the investigation domain can become smaller to be adapted
to one single cylinder, and the meshing can get denser without requiring a too large memory
performance of the computer. In this way a meshing smaller than 50 nm could be used to see if
the inversion procedure is sensitive enough to distinguish a resin cylinder with height 98 nm or 150
nm. Note that the spatial filtering in the image space is only possible if the different objects can
be resolved and thus spaced by distances above the Rayleigh criterion.

To test if the cylinders can be reconstructed selectively, the PSI data set with 40 illumination
angles of the cylinders with diameter 500 nm and height 150 nm is used, but only 20 incidences
are conserved. The filtering of the cylinders of interest is performed the following way. The field in
the image space is multiplied by a mask function that is equal to one inside of squares where the
cylinders of interest are located, and zero outside. These squares are taken large enough so that
their edges lie on the substrate where the intensity is almost uniform. Outside of these squares,
a uniform complex value is then set. Its modulus and phase are the average modulus and phase
along the edges of the squares, respectively. To obtain the average phase, it is at first necessary
to correct for the phase ramp due to the tilted illumination so that the phase is uniform on the
substrate. Once the complex value has been inserted into the mask, the initial illumination tilt is
reintroduced. As a result, the initial scattered field is conserved inside of the squares, and outside
has been created an equivalent uniform field reflected by the sample. To decrease the sharpness of
the transition between the inside and outside of the square, a convolution by a gaussian function is
performed on this global equivalent field, by paying attention to let unchanged the scattered field
inside of the squares. The resulting global field can then be multiplied by the same kind of mask
function as previously to be transferred in the Fourier space.
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For the case of selecting just one cylinder among the four, the filtered scattered field amplitude
and phase after processing is presented in Fig. 3.59 for different illumination angles. (a) to (d) and
(e) to (h) show the modulus and the phases in the image space, respectively, whereas (i) to (l) and
(m) to (p) the modulus and the phases in the Fourier space, respectively.
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Figure 3.59 : The upper two rows are the modulus and phases of the field scat-
tered by one cylinder detected on the CCD camera, the lowers are the modulus
and phases of the field scattered by one cylinder in Fourier domain, respectively.
Data set obtained by PSI. (a, e, i, m) θl = 55◦, φl = 0◦, TE polarization; (b, f,
j, n) θl = 8.8◦, φl = 0◦, TE polarization; (c, g, k, o) θl = 55◦, φl = 90◦, TM
polarization; (d, h, l, p) θl = 9◦, φl = 90◦, TM polarization.

The same treatment steps could be applied for selecting the field scattered by two diagonal
cylinders. Similarly to Fig. 3.59, Fig. 3.60 displays for this case the resulting field in the image
space and in the Fourier space.



3.2 Experimental results 69

 

 

200 400 600 800

100

200

300

400

500

600 0

20

40

60

80

100

 

 

200 400 600 800

100

200

300

400

500

600

10

20

30

40

50

60

70

 

 

200 400 600 800

100

200

300

400

500

600 0

10

20

30

40

50

60

 

 

200 400 600 800

100

200

300

400

500

600 0

20

40

60

80

(a) (b) (c) (d)

 

 

200 400 600 800

100

200

300

400

500

600 −3

−2

−1

0

1

2

3

 

 

200 400 600 800

100

200

300

400

500

600 −3

−2

−1

0

1

2

3

 

 

200 400 600 800

100

200

300

400

500

600 −3

−2

−1

0

1

2

3

 

 

200 400 600 800

100

200

300

400

500

600 −3

−2

−1

0

1

2

3

(e) (f) (g) (h)

k
y
/k

0

k x/k
0

 

 

−0.95 −0.5 0 0.5 0.95

−0.95

−0.5

0

0.5

0.95

5

10

15

x 10
−8

k
y
/k

0

k x/k
0

 

 

−0.95 −0.5 0 0.5 0.95

−0.95

−0.5

0

0.5

0.95

1

2

3

4

5

6

x 10
−7

k
y
/k

0

k x/k
0

 

 

−0.95 −0.5 0 0.5 0.95

−0.95

−0.5

0

0.5

0.95 0

0.5

1

1.5

2

2.5

x 10
−7

k
y
/k

0

k x/k
0

 

 

−0.95 −0.5 0 0.5 0.95

−0.95

−0.5

0

0.5

0.95 0

1

2

3

4

x 10
−7

(i) (j) (k) (l)

k
y
/k

0

k x/k
0

 

 

−0.95 −0.5 0 0.5 0.95

−0.95

−0.5

0

0.5

0.95 −3

−2

−1

0

1

2

3

k
y
/k

0

k x/k
0

 

 

−0.95 −0.5 0 0.5 0.95

−0.95

−0.5

0

0.5

0.95 −3

−2

−1

0

1

2

3

k
y
/k

0

k x/k
0

 

 

−0.95 −0.5 0 0.5 0.95

−0.95

−0.5

0

0.5

0.95 −3

−2

−1

0

1

2

3

k
y
/k

0

k x/k
0

 

 

−0.95 −0.5 0 0.5 0.95

−0.95

−0.5

0

0.5

0.95 −3

−2

−1

0

1

2

3

(m) (n) (o) (p)

Figure 3.60 : The upper two rows are the modulus and phases of the field scat-
tered by two diagonal cylinders detected on the CCD camera, the lowers are the
modulus and phases of the field scattered by two diagonal cylinders in Fourier do-
main, respectively. Data set obtained by PSI. (a, e, i, m) θl = 55◦, φl = 0◦, TE
polarization; (b, f, j, n) θl = 8.8◦, φl = 0◦, TE polarization; (c, g, k, o) θl = 55◦,
φl = 90◦, TM polarization; (d, h, l, p) θl = 9◦, φl = 90◦, TM polarization.

To obtain the reconstructions through the non-linear inversion, note that the data in the Fourier
space has been again restricted to about two thousands scattering angles centered on the specular
reflection on the substrate. The case of the single cylinder is presented on Figs. 3.61 and 3.62, in
a 2 µm×2 µm×400 nm investigation domain with 50 nm meshing. The reconstruction for the two
diagonal cylinders is displayed on Figs. 3.63 and 3.64.
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Figure 3.61 : Transverse cut at z =
125 nm of the reconstruction with
50 nm meshing of one 500 nm large
resin cylinders with 150 nm height
(PSI data set)
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Figure 3.62 : Longitudinal cut at
y =-500 nm of the reconstruction
with 50 nm meshing of one 500 nm
large resin cylinders with 150 nm
height (PSI data set)
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Figure 3.63 : Transverse cut at z =
125 nm of the reconstruction with
50 nm meshing of two 500 nm large
resin cylinders with 150 nm height
(PSI data set)

−500 0 500

100

200

300

X (nm)

Z
 (

nm
)

 

 

1.2
1.4
1.6
1.8
2
2.2
2.4

Figure 3.64 : Longitudinal cut at
y =-500 nm of the reconstruction
with 50 nm meshing of two 500 nm
large resin cylinders with 150 nm
height (PSI data set)

From these figures, it can be seen that the selective reconstruction of objects can be obtained
successfully. It will be used in the next section to focus on the height of one cylinder in a smaller
investigation domain.

3.2.2.8 Comparison of different sample heights

To figure out if the non-linear inversion procedure is able to detect a height difference of 52 nm
between the cylinders with heights of 98 nm and 150 nm, reconstructions are generated here
selectively on a single resin cylinder for both height cases. The chosen investigation domain size
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to contain one cylinder is 750×750× 300 nm3. This smaller volume can be discretized with a tight
meshing of 10 nm without requiring too much memory and computation time for the calculations.

The reconstruction obtained for the 150 nm height case is presented on Figs. 3.65 and 3.66,
whereas the 98 nm height case is displayed on Figs. 3.67 and 3.68.
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Figure 3.65 : Transverse cut at
z = 120 nm of the reconstruction
with 10 nm meshing of 500 nm large
resin cylinders with 150 nm height
(PSI data set)
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Figure 3.66 : Longitudinal cut at
y =0 nm of the reconstruction with
10 nm meshing of one 500 nm large
resin cylinders with 150 nm height
(PSI data set)
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Figure 3.67 : Transverse cut at z =
80 nm of the reconstruction with 10
nm meshing of 500 nm large resin
cylinders with 98 nm height (Off-axis
data set)
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Figure 3.68 : Longitudinal cut at
y =-30 nm of the reconstruction with
10 nm meshing of one 500 nm large
resin cylinders with 98 nm height
(Off-axis data set)

To better estimate if a height difference can be detected on the reconstructions, the permittivity
profile along the z direction in the middle of the cylinder is presented for the height cases of 98
nm and 150 nm on Figs. 3.70 and 3.69, respectively. The full width at half maximum on these
profiles are 116 nm and 139 nm, respectively. A higher value is clearly retrieved for the higher
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height case, but the height difference of 52 nm is not quantitatively determined. The non-linear
inversion procedure has therefore a high axial sensitivity but more a priori information on the
object, like a lower and a higher boundaries for the permittivity, would be certainly necessary to
improve quantitatively the height estimation in the nanometric range.
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Figure 3.69 : A line cut map along
z with 150nm height sample at x =
0nm
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Figure 3.70 : A line cut map along
z with 98nm height sample at x =
50nm

3.2.3 Resin cylinders with diameter 200 nm

Until now, successful reconstructions have been obtained on samples with transverse features above
the Rayleigh criterion of 400 nm of our set-up. Here, we deal with resin cylinders of diameter 200
nm and height 150 nm that have a center to center distance that is equal to the Rayleigh criterion.

3.2.3.1 Comparison of the data set measured by PSI with the theory

20 illuminations angles are used in the measurement similarly to the case of the samples with 500
nm diameter. Figure 3.71 shows the detected image field in the vicinity of the object for different
angles. It can be seen that the spatial frequencies contained in the modulus of the field vary a
lot with respect to the illumination angle : higher spatial frequencies are present in the case of a
large illumination angle. Of course as the object is at the limit of the Rayleigh criterion the four
cylinders cannot be distinguished when illuminated by a single plane wave.
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Figure 3.71 : Modulus [(a)-(d)] and phases [(e)-(h)] of the data set obtained by
PSI, respectively. Samples diameter 200nm, height 150nm. (a) and (e) θl = 53◦,
φl = 0◦, TE polarization; (b) and (f) θl = 11◦, φl = 0◦, TE polarization; (c)
and (g) θl = 54◦, φl = 90◦, TM polarization; (d) and (h) θl = 9◦, φl = 90◦, TM
polarization.

Figure 3.72 presents the data for the same illumination angles in the Fourier space. The
theoretical field calculated by the CDM is also shown on Fig. 3.73 for comparison. In both cases
it can be seen that a larger illumination angle permits to detect inside of the objective NA a
diffraction lobe at higher spatial frequencies, which is beneficial to determine the center to center
distance of the cylinders.
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Figure 3.72 : Modulus (first line) and phases (second line) of the far field
(Fourier space) scattered by resin cylinders with diameter 200 nm and height 150
nm, obtained by PSI. (a) and (e) θl = 53◦, φl = 0◦, TE polarization; (b) and
(f) θl = 11◦, φl = 0◦, TE polarization; (c) and (g) θl = 54◦, φl = 90◦, TM
polarization; (d) and (h) θl = 9◦, φl = 90◦, TM polarization.
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Figure 3.73 : Modulus (first line) and phases (second line) of the theoretical far
field (Fourier space) scattered by resin cylinders with diameter 200 nm and height
150 nm. (a) and (e) θl = 53◦, φl = 0◦, TE polarization; (b) and (f) θl = 11◦,
φl = 0◦, TE polarization; (c) and (g) θl = 54◦, φl = 90◦, TM polarization; (d)
and (h) θl = 9◦, φl = 90◦, TM polarization.

3.2.3.2 Data set obtained by off-axis holography

With smaller object sizes, the sensibility to external perturbations of the PSI method can become
more critical. Therefore the measurement has also been carried out by off-axis holography. For
each illumination angle the scattered field can be retrieved by a single shot measurement, but 30
repetitions are here averaged for each angle to increase the signal to noise ratio. The acquisition
time is thus reduced to about one quarter of the time necessary for the PSI technique. The
intensity measured in the image space is presented on Fig. 3.74 for several illumination angles. As
the object is small, it can barely be seen as it is hidden by the interference fringes between the
off-axis reference wave and the specular reflection.
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Figure 3.74 : Intensity in the image space measured by off-axis holography on
samples with diameter 200 nm and height 150 nm. (a) θl = 52◦, φl = 0◦, TE
polarization; (b) θl = 10◦, φl = 0◦, TE polarization; (c) θl = 54◦, φl = 90◦, TM
polarization; (d) θl = 10◦, φl = 90◦, TM polarization.

Once divided by the reference wave modulus, that is measured independently, these intensities
are transferred to the Fourier space. Figure 3.74 displays the modulus of the signal in the Fourier
space for the same illumination angles as previously. The three interference orders can clearly be
seen. Only one of them on the side is filtered to retrieve the field scattered by the object, as shown
on Fig. 3.75.
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Figure 3.75 : Modulus of the far field (Fourier space) scattered by resin cylinders
with diameter 200 nm and height 150 nm, obtained by off-axis method. (a) θl =
52◦, φl = 0◦, TE polarization; (b) θl = 10◦, φl = 0◦, TE polarization; (c) θl = 54◦,
φl = 90◦, TM polarization; (d) θl = 10◦, φl = 90◦, TM polarization.
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Figure 3.76 : Modulus of the selected interference order of the far field (Fourier
space) scattered by resin cylinders with diameter 200 nm and height 150 nm,
obtained by off-axis method. (a) θl = 52◦, φl = 0◦, TE polarization; (b) θl = 10◦,
φl = 0◦, TE polarization; (c) θl = 54◦, φl = 90◦, TM polarization; (d) θl = 10◦,
φl = 90◦, TM polarization.

As previously explained for the case of the 500 nm large resin cylinders, a 2D FT is then applied
to this filtered field to obtain the complex scattered field in the image space, as would have been
obtained by the PSI technique. The modulus of this field is presented on Fig. 3.77 for the same
illumination angles. For small angles the scattering spot due to the object can be easily detected.
Thus the phase origin can be placed on the object position before transfer to the Fourier space,
what was impossible to perform accurately on the raw intensity measurement in the image space.
Note that the modulus attenuation on the sides of the image is due to the mask function introduced
on the intensity measurement to limit the artefacts of the discrete 2D FT−1 for the Fourier space
transfer. Finally, the modulus and phase of the scattered field in the Fourier space inside of the
objective NA are displayed on Fig. 3.78. As in the PSI and theoretical cases, the diffraction lobe
appearing at high illumination angles is clearly resolved. However, the data appears more noisy in
the off-axis case compared to PSI.



76 3.2 Experimental results

 

 

200 400 600

100

200

300

400

500

600

0.5

1

1.5

2

 

 

200 400 600

100

200

300

400

500

600

0.5

1

1.5

2

2.5

 

 

200 400 600

100

200

300

400

500

600

0.2

0.4

0.6

0.8

1

1.2

 

 

200 400 600

100

200

300

400

500

600

0.5

1

1.5

2

(a) (b) (c) (d)

Figure 3.77 : Modulus of the field in the image space retrieved from the off-axis
holography data set on samples with diameter 200 nm and height 150 nm. (a)
θl = 52◦, φl = 0◦, TE polarization; (b) θl = 10◦, φl = 0◦, TE polarization; (c)
θl = 54◦, φl = 90◦, TM polarization; (d) θl = 10◦, φl = 90◦, TM polarization.
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Figure 3.78 : Modulus (first line) and phase (second line) of the field in the
Fourier space retrieved from the off-axis holography data set on samples with di-
ameter 200 nm and height 150 nm. (a) and (e) θl = 53◦, φl = 0◦, TE polarization;
(b) and (f) θl = 11◦, φl = 0◦, TE polarization; (c) and (g) θl = 54◦, φl = 90◦,
TM polarization; (d) and (h) θl = 9◦, φl = 90◦, TM polarization.

3.2.3.3 Reconstructions obtained with the non-linear inversion proce-
dure on the PSI and off-axis data sets

The non-linear inversion algorithm is applied on the PSI and off-axis data sets presented in the
previous section. Once again, the linear 3D FT−1 inversion is used to estimate the initial investiga-
tion domain size for the iterative algorithm. The application of the 3D FT−1 to the PSI data set is
shown on Figs. 3.79 and 3.80, whereas the off-axis case is presented on Figs. 3.81 and 3.82. In both
cases, the reconstruction is not only axially distorted as previously, but also in the transverse plane
where the four cylinders cannot be resolved. The reconstruction is moreover much more distorted
in the off-axis case, due to a more noisy data set. Note that for such distorted reconstructions, it
is preferable to use the iterative method based on the backpropagation to correct the phase origin
mismatch dz. As the investigation domain is reduced with smaller objects, the computation time
requirements are no longer an issue.
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Figure 3.79 : Transverse cut at
z = 53 nm of the reconstruction un-
der Born approximation with 53 nm
meshing of 200 nm large resin cylin-
ders with 150 nm height (PSI data
set)

Figure 3.80 : Longitudinal cut at
y =0 nm of the reconstruction un-
der Born approximation with 53 nm
meshing of 200 nm large resin cylin-
ders with 150 nm height (PSI data
set)

Figure 3.81 : Transverse cut at
z = 53 nm of the reconstruction un-
der Born approximation with 53 nm
meshing of 200 nm large resin cylin-
ders with 150 nm height (Off-axis
data set)

Figure 3.82 : Longitudinal cut at
y =0 nm of the reconstruction un-
der Born approximation with 53 nm
meshing of 200 nm large resin cylin-
ders with 150 nm height (Off-axis
data set)

The reconstruction obtained with our algorithm and the PSI data set for a 1 µm×1 µm×400 nm
domain with a 50 nm meshing is displayed on Figs. 3.83 and 3.84. The off-axis case is presented on
Figs. 3.85 and 3.86. In both cases the four resin cylinders are resolved, but the PSI reconstruction
has a better homogeneity on the four cylinders than the off-axis one.
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The interest of off-axis holography to improve the robustness of the set-up is therefore not
proved on this example. It has on the contrary given rise to a more noisy data set than PSI.
The required measurement time for 20 illumination angles with the PSI technique seems therefore
compatible with a sample position that is not altered too much by mechanical drifts. The stabi-
lization of the optical table seems also sufficient to limit the impact of external perturbations on
the applied phase shifts. The signal to noise ratio can in this case be better with the PSI technique
compared to off-axis holography. In PSI, as described in chapter 2, the useful signal is retrieved
by performing a differential detection between several interference patterns. It therefore eliminates
any additive noise level in the signal and increases by a factor 2 its useful part, which contains
the two interference terms involving the scattered field. On the other hand in off-axis holography
only one interference term is kept, so the useful signal is four times weaker than in PSI, and no
correction of the additive noise level is performed. On this small object with weak scattering signal
it can be an important factor.

The main result here is however that to our knowledge, this is the first time that such an iter-
ative non linear inversion procedure successfully reaches the Rayleigh limit with 3D experimental
data in optics.
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Figure 3.83 : Transverse cut at
z = 125 nm of the reconstruction
with 50 nm meshing of 200 nm large
resin cylinders with 150 nm height
(PSI data set)
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Figure 3.84 : Longitudinal cut at
y =200 nm of the reconstruction with
50 nm meshing of 200 nm large resin
cylinders with 150 nm height (PSI
data set)
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Figure 3.85 : Transverse cut at z =
125 nm of the reconstruction with 50
nm meshing of 200 nm large resin
cylinders with 150 nm height (Off-
axis data set)
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Figure 3.86 : Longitudinal cut at
y =300 nm of the reconstruction with
50 nm meshing of 200 nm large resin
cylinders with 150 nm height (Off-
axis data set)

3.2.4 Resin cylinders with diameter 150 nm

3.2.4.1 Comparison of the data set measured by PSI with the theory

The resin cylinders have here a diameter and a height of 150 nm, their center to center distance
of 300 nm is thus clearly below the Rayleigh criterion. The measurement is carried out with the
same 20 illumination angles as for the previous sample. The first detection method used here is the
PSI technique. Figure 3.87 presents the measured fields in the image space for several illumination
angles. The signal is as expected still weaker than for the 200 nm diameter case.
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Figure 3.87 : Modulus (first line) and phases (second line) of the data set ob-
tained by PSI. Samples diameter 150 nm, height 150 nm. (a) and (e) θl = 53◦,
φl = 0◦, TE polarization; (b) and (f) θl = 11◦, φl = 0◦, TE polarization; (c) and
(g) θl = 54◦, φl = 90◦, TM polarization; (d) and (h) θl = 10◦, φl = 90◦, TM
polarization.
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The data for the same angles is shown in the Fourier space on Fig. 3.88, and for comparison
Fig. 3.89 displays the theoretical field calculated with the CDM. As expected, the diffraction lobe
appearing at high spatial frequencies for large angles is more reduced than in the 200 nm diameter
case.
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Figure 3.88 : Modulus (first line) and phases (second line) of the data set in
the Fourier space, obtained by PSI. Samples diameter 150 nm, height 150 nm.
(a) and (e) θl = 53◦, φl = 0◦, TE polarization; (b) and (f) θl = 11◦, φl = 0◦,
TE polarization; (c) and (g) θl = 54◦, φl = 90◦, TM polarization; (d) and (h)
θl = 10◦, φl = 90◦, TM polarization.
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Figure 3.89 : Modulus (first line) and phases (second line) of the theoretical
field in the Fourier space. Samples diameter 150 nm, height 150 nm. (a) and (e)
θl = 53◦, φl = 0◦, TE polarization; (b) and (f) θl = 11◦, φl = 0◦, TE polarization;
(c) and (g) θl = 54◦, φl = 90◦, TM polarization; (d) and (h) θl = 10◦, φl = 90◦,
TM polarization.
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3.2.4.2 Data set measured by off-axis holography

For comparison with the PSI technique, the same measurement is performed by off-axis holography
and presented on Fig. 3.90. The acquisition time is about four times quicker, but again it appears
that the data is more noisy in the case of off-axis holography compared to PSI.
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Figure 3.90 : Modulus and phases of the data set in the Fourier space, obtained
by off-axis holography. Samples diameter 150 nm, height 150 nm. (a) and (e)
θl = 54◦, φl = 0◦, TE polarization; (b) and (f) θl = 11◦, φl = 0◦, TE polarization;
(c) and (g) θl = 54◦, φl = 90◦, TM polarization; (d) and (h) θl = 11◦, φl = 90◦,
TM polarization.

3.2.4.3 Comparison of the reconstructions obtained with the non-linear
inversion procedure on the PSI and off-axis data sets

The non-linear inversion procedure is applied on the PSI and the off-axis data sets. Figs. 3.91
and 3.92 show the reconstruction obtained with the PSI data set in a 1 µm ×1 µm ×400 nm
investigation domain with 50 nm meshing. Four cylinders are reconstructed but their separation
distance is wrong. As the information on this distance is mainly present in the large angle mea-
surements, the data set is restricted to its eight larger illumination angles and the corresponding
reconstruction is shown on Figs. 3.93 and 3.94. No real improvement can be seen, the separation
distance is still wrong, so even if the lower angle measurements do not carry much information on
the object, they do not seem to be detrimental to the reconstruction process.
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Figure 3.91 : Transverse cut im-
age at z = 100 nm of the recon-
struction obtained with the PSI data
set (20 incidences). Sample diame-
ter 150 nm, height 150 nm.
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Figure 3.92 : Longitudinal cut im-
age at y = 150 nm of the recon-
struction obtained with the PSI data
set (20 incidences). Sample diame-
ter 150 nm, height 150 nm.
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Figure 3.93 : Transverse cut image
at z = 100 nm of the reconstruction
obtained with the PSI data set (8 in-
cidences). Sample diameter 150 nm,
height 150 nm.
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Figure 3.94 : Longitudinal cut im-
age at y = 150 nm of the recon-
struction obtained with the PSI data
set (8 incidences). Sample diameter
150 nm, height 150 nm.

The reconstruction obtained with the off-axis data set and the 20 illumination angles is pre-
sented on Figs. 3.95 and 3.96, this time in a 750×750×200 nm3 investigation domain with 25 nm
meshing. The result is as expected more noisy than in the PSI case, and the cylinders cannot be
resolved any more.
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Figure 3.95 : Transverse cut im-
age at z = 100 nm of the reconstruc-
tion obtained with the off-axis data
set (20 incidences). Sample diame-
ter 150 nm, height 150 nm.
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Figure 3.96 : Longitudinal cut im-
age at y = 150 nm of the reconstruc-
tion obtained with the off-axis data
set (20 incidences). Sample diame-
ter 150 nm, height 150 nm.

In conclusion, the non-linear inversion procedure is able to reconstruct small 3D objects suc-
cessfully until the Rayleigh limit with very few illumination angles compared to the classical linear
inversion performed under the Born approximation. However, our approach is not straightforward
to go beyond the Rayleigh criterion, and in the next chapter we will show that such a resolution
improvement is possible by taking into account polarization effects.
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4.1 Introduction

In the previous chapters, the TDM set-up has been used with a laser beam that was polarized
vertically for both the illumination and the reference wave. To our knowledge, such a configuration
where the polarization state is the same for both the illumination and the detection is the only
one that has been used so far in tomographic diffractive microscopy. With our test objects, the
far field diffraction pattern is made of various lobes separated by intensity minima. These minima
carry useful information on the separation distance between the resin cylinders. When the object
becomes smaller and smaller, the minima shift towards the edge of the numerical aperture and
their number decreases inside of the objective NA, as can be seen when comparing Fig. 3.10
(D = 1 µm), Fig. 3.35 (D = 500 nm) and Fig. 3.73 (D = 200 nm). For a resolution beyond the
Rayleigh criterion, a minimum can only be seen for large illumination angles close to the edge of
the NA opposite to the specular reflection. The problem is that close to the edge of the NA (and
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86 4.1 Introduction

far from the specular) the scattered field is no longer parallel to the polarization of the incident
field.

Hence, we have improved the set-up so that both polarizations of the illuminating beam and
that of the detected field can be modified. The aim is to retrieve the full vectorial field scattered
by the object, and not just a projection, for any polarization state of the illumination, and see if
the resolution can be improved by this way.
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Figure 4.1 : Modulus of the scattered field computed by the CDM, in Fourier
domain. Samples diameter D = 150 nm, height h = 150 nm. (a), (c) and
(e) θl = 55◦, φl = 0◦, TE polarization; (a) presents the computed full vectorial
scattered field, (c) the scattered field in the incident electric field direction, (e)
the scattered field in the orthogonal direction of incident electric field (crossed
polarization). (b), (d) and (f) θl = 54◦, φl = 270◦, TM polarization; (b) is the
computed full vectorial scattered field, (d) the scattered field in the incident electric
field direction, (f) the scattered field in the orthogonal direction of incident electric
field (crossed polarization).

For the sake of clarity, a computation is done with different polarization conditions for both
the illumination and the detection of the scattered field, for a sample with D = 150 nm and
h = 150 nm. The results are presented in Fig. 4.1. One can notice that in TE polarization, the
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crossed polarization gives a scattered field one order of magnitude lower than the scattered field
in the incident electric field direction. Hence in that case it is not crucial to take into account
the crossed polarization. This is no longer the case for the TM polarization, where the crossed
polarization gives a scattered field with the same magnitude as the scattered field in the incident
electric field direction.

4.2 Measurement of the vectorial scattered field

with the experimental set-up

To retrieve the full vectorial field scattered by the object for any polarization state of the illumi-
nation, it is necessary to choose two bases to describe the polarization state of the illumination
wave and that of the detected scattered field, respectively. Then, for each given illumination an-
gle, four measurements are performed, that associate all the possible combinations between two
independent polarization states in the illumination base and two independent polarization states
in the detection base. As a result, it is possible by simple linear combinations of the measurements
to obtain the vectorial scattered field for a any chosen polarization direction of the illumination.

To put in practice this approach, two half wave plates have been inserted in the set-up to
modify at will the polarization state of both the illumination beam and the reference wave (see
Fig. 4.2). A straightforward choice for the bases is the association of the vertical and horizontal
directions v̂ and ĥ, respectively, as shown for the case (a) on Fig. 4.2. In the previous chapters,
all the measurements were done with both the illumination and detection polarization states along
v̂ (called v̂v̂ configuration, first letter indicating the direction for the illumination and second one
that for detection). Retrieving the vectorial scattered field for any illumination polarization state
requires to carry out the four measurements v̂v̂, ĥĥ, v̂ĥ and ĥv̂.

However, these four measurements have to be normalized both in phase and in amplitude as
specified in chapter 3. Since this normalization is based on the detection of the specular reflection,
the choice of the base (ĥ, v̂) for the detection appears unsuitable since the specular reflection is
killed for pure TE or TM illuminations in the measurements v̂ĥ and ĥv̂. As a result another
detection base has been chosen with two orthogonal diagonal polarization states d̂1 and d̂2, as
shown on Fig. 4.2, case (b). Four groups of scalar data for the scattered field are therefore measured
on the CCD camera, we define them as: Ev̂d̂1

s;exp, Ev̂d̂2
s;exp, Eĥd̂1

s;exp and Eĥd̂2
s;exp, where the subscript,

for example, v̂d̂1 means the incident electric field direction is vertical and the reference wave is
polarized along the direction d̂1.
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Figure 4.2 : Sketch of the experimental setup, laser source emitting at 633 nm;
M , adjustable mirror; PL, polarizer; HW , half-waveplate for changing the polar-
ization. Li=1,··· ,6 lenses; fi, f

′
i , object and image focal planes of lenses; B1, B2,

B3, beam splitters; BE1, BE2 beam expander; TM, pinhole; D1, D2, diaphragms.
The red crosses correspond to the polarization bases, two cases are considered for
the detection : (ĥ, v̂) (a) and (d̂1, d̂2) (b)

4.3 Amplitude and phase normalization

4.3.1 Correction on the measured field

As the electric polarization of the incident field, in this chapter, is always in TE or TM polarization
the renormalization defined in chapter 3 still holds. Notice if one wants an illumination with a
mixed of TE and TM polarizations for the electric incident field, the principle of the renormalization
will be completely changed and more complex.

4.3.2 Decomposition in TM and TE polarizations

Figure 4.3 : Orientation of the directions for TM (or p) and TE (or s) polar-
izations compared to the vertical and horizontal (v̂, ĥ) directions.

Once we get the scattered electric field by the incident field in the base (v̂, ĥ), one can easily obtain
the scattered field by the incident field in TM (or p) and TE (or s) polarisations. We decompose
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the electric incident field as follows (see Fig. 4.3):
(

Ep
inc

Es
inc

)
=

(
cos ϕinc sin ϕinc

− sin ϕinc cosϕinc

)(
Eĥ

inc

Ev̂
inc

)
= A

(
Eĥ

inc

Ev̂
inc

)
(4.1)

where Ep
inc and Es

inc are the incident field in TM and TE polarization, respectively. The relationship
Eq. (4.1), between the incident field in the bases (v̂, ĥ) and (p, s), is the same for each component
of the scattered field, hence the scattered field for an illumination in TM or TE polarization can
be deduced by: (

Ecor;p
d;exp

Ecor;s
d;exp

)
= A

(
Ecor;ĥ

d;exp

Ecor;v̂
d;exp

)
. (4.2)

Up to now, for any illumination angle and for two measurements with the incident polarization in
the (ĥ, v̂) base, we can separate the measured scattered field into two parts, corresponding to the
incident field in TM polarization and TE polarization, respectively. And the measured scattered
field can be normalized before the separation in TM and TE polarizations, for matching with the
amplitude and the phase of the theoretical scattered field.

4.4 Experimental results with polarization resol-

ved measurements

In chapter 3 we have presented experimental reconstructions for our resin test objects with different
diameters D = 1 µm, 500 nm, 200 nm and 150 nm. We have seen that without taking into
account polarization effects, which means with only v̂v̂ configuration measurements, the data set
is sufficient to retrieve successfully the objects with D = 1 µm and 500 nm. However, when
the resolution requirement reaches the Rayleigh criterion, which corresponds to the samples with
diameter 200 nm, the useful signal gets closer to the edges of the NA in the Fourier space, where
polarization changes can occur. In this section we present new reconstructions for the objects with
D =200 nm and 150 nm using different polarization configurations for the measurements :

• ĥĥ

• combining v̂v̂ and ĥĥ

• combining v̂d̂1, ĥd̂1, v̂d̂2 and ĥd̂2 to retrieve the full vectorial field for both TE and TM
illuminations

• combining v̂d̂1, ĥd̂1, v̂d̂2 and ĥd̂2 to retrieve the full vectorial field for TM illuminations
only

• combining v̂d̂1, ĥd̂1, v̂d̂2 and ĥd̂2 to retrieve the full vectorial field for TE illuminations
only.

The same 20 illuminations as in chapter 3 have been used and the set-up has been run in
its off-axis holography configuration. For the sake of clarity, only the final reconstructions are
presented in this chapter, and the scattered fields in the Fourier space are shown in Appendix C
for ĥĥ polarization and in Appendix D for v̂d̂1, ĥd̂1, v̂d̂2 and ĥd̂2 polarization.

4.4.1 Samples with diameter 200 nm

The non linear inversion procedure has been firstly applied to the ĥĥ measurement using an
investigation domain of 1 µm×1 µm×400 nm and a mesh size of 50 nm. The corresponding
reconstructions are shown on Figs. 4.4 and 4.5. The case of the combination of the ĥĥ and
v̂v̂ measurements is displayed on Figures 4.6 and 4.7. Compared to the results with the v̂v̂
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measurement presented in chapter 3 the ĥĥ reconstruction is very similar, and few improvement
can be seen by combining both polarization cases.
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Figure 4.4 : Transverse cut im-
age at z = 100 nm of the recon-
struction obtained with the off-axis
data set (20 incidences), polarizers
in ĥĥ mode. Sample diameter D =
200 nm, height h = 150 nm.
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Figure 4.5 : Longitudinal cut im-
age at y = 200 nm of the recon-
struction obtained with the off-axis
data set (20 incidences), polarizers
in ĥĥ mode. Sample diameter D =
200 nm, height h = 150 nm.
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Figure 4.6 : Transverse cut im-
age at z = 100 nm of the recon-
struction obtained with the off-axis
data set (20 incidences), polarizers
in v̂v̂+ ĥĥ mode. Sample diameter
D = 200 nm, height h = 150 nm.
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Figure 4.7 : Longitudinal cut im-
age at y = 200 nm of the recon-
struction obtained with the off-axis
data set (20 incidences), polarizers
in v̂v̂+ ĥĥ mode. Sample diameter
D = 200 nm, height h = 150 nm.

The combination of the four measurements with the bases (v̂, ĥ) and (d̂1, d̂2) is then tested to
use the vectorial field as input data in the inversion. The corresponding reconstructions are shown
on Figs. 4.8 and 4.9 when all the illuminations are kept, on Figs. 4.10 and 4.11 with only the TM
illuminations, and on Figs. 4.12 and 4.13 with only the TE illuminations.
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Figure 4.8 : Transverse cut image
at z = 100 nm, obtained by consid-
ering full polarization. Sample with
diameter D = 200 nm and height
h = 150 nm.
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Figure 4.9 : Longitudinal cut image
at y = 200 nm, obtained by consid-
ering full polarization. Sample with
diameter D = 200 nm and height
h = 150 nm.
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Figure 4.10 : Transverse cut im-
age at z = 100 nm, obtained by us-
ing scattered field obtained from only
TM-polarization incidence. Sample
with diameter D = 200 nm and
height h = 150 nm.
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Figure 4.11 : Longitudinal cut im-
age at y = 200 nm, obtained by us-
ing scattered field obtained from only
TM incidence. Sample with diam-
eter D = 200 nm and height h =
150 nm.
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Figure 4.12 : Same as Fig. 4.10 for
TE polarization.
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Figure 4.13 : Same as Fig. 4.11 for
TE polarization.
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The improvement is globally small using the vectorial field as input data, except that the
four resin cylinders are reconstructed in a more homogeneous way. However, the reconstruction is
degraded when only the TE illuminations are conserved.

4.4.2 Samples with diameter 150 nm

We therefore continue to work with smaller objects, samples with diameter 150 nm. Here the
center to center distance of 300 nm is smaller than the Rayleigh limit of 400 nm. In chapter 3, the
inversions with v̂v̂ data sets were unable to reconstruct correctly the four cylinders in this case. We
first test here a data set in ĥĥ configuration, the reconstructions are shown on Figs. 4.14 and 4.15
with an investigation domain 1 µm×1 µm ×400 nm and mesh size 50 nm. As for the off-axis data
set in v̂v̂ configuration on the same sample, at the end of chapter 3 (Figs. 3.95 and 3.96), the four
cylinders cannot be resolved. One can however notice here a vertical separation between the left
and right cylinders on the transverse cut, whereas the separation was horizontal between the top
and bottom cylinders in chapter 3. As will be confirmed hereafter, TM polarized illuminations
seem therefore to have a better resolution power than TE polarized ones.
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Figure 4.14 : Transverse cut im-
age at z = 100 nm of the recon-
struction obtained with the off-axis
data set (20 incidences), polarizers
in ĥĥ mode. Sample diameter D =
150 nm, height h = 150 nm.
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Figure 4.15 : Longitudinal cut im-
age at y = 150 nm of the recon-
struction obtained with the off-axis
data set (20 incidences), polarizers
in ĥĥ mode. Sample diameter D =
150 nm, height h = 150 nm.

When combining v̂v̂ and ĥĥ measurements the four cylinders are this time all resolved, as can
be seen on Figs. 4.16 and 4.17.
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Figure 4.16 : Transverse cut im-
age at z = 100 nm of the recon-
struction obtained with the off-axis
data set (20 incidences), polarizers
in v̂v̂+ ĥĥ mode. Sample diameter
D = 150 nm, height h = 150 nm.
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Figure 4.17 : Longitudinal cut im-
age at y = 150 nm of the recon-
struction obtained with the off-axis
data set (20 incidences), polarizers
in v̂v̂+ ĥĥ mode. Sample diameter
D = 150 nm, height h = 150 nm.

We at last consider the bases (v̂, ĥ) and (d̂1, d̂2) to use the vectorial field as input data in
the inversion. The corresponding reconstructions are shown on Figs. 4.18 and 4.19 when all the
illuminations are kept, on Figs. 4.20 and 4.21 with only the TM illuminations, and on Figs. 4.22
and 4.23 with only the TE illuminations.
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Figure 4.18 : Transverse cut im-
age at z = 100 nm, obtained by us-
ing total scattered field. Sample with
diameter D = 150 nm and height
h = 150 nm.
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Figure 4.19 : Longitudinal cut im-
age at y = 150 nm, obtained by us-
ing total scattered field. Sample with
diameter D = 150 nm and height
h = 150 nm.
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Figure 4.20 : Transverse cut im-
age at z = 100 nm, obtained by using
scattered field obtained from only TM
polarization incidence. Sample with
diameter D = 150 nm and height
h = 150 nm.
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Figure 4.21 : Longitudinal cut im-
age at y = 150 nm, obtained by using
scattered field obtained from only TM
polarization incidence. Sample with
diameter D = 150 nm and height
h = 150 nm.
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Figure 4.22 : Same as in Fig. 4.20
with TE polarization.
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Figure 4.23 : Same as in Fig. 4.21
with TE polarization.

The vectorial field permits to improve further the retrieved geometry of the cylinders, and
also to give a better estimation of their permittivity. Keeping only the TM illuminations does not
change much the reconstructions, whereas keeping only the TE ones dramatically deteriorates the
result.

To assess in a more quantitative manner the quality of the reconstructions obtained with the
full vectorial case compared to the other cases, we define the error function :

Errχ =
∑

Ω ‖χactual − χrec‖2∑
Ω ‖χactual‖2 , (4.3)

where χactual and χrec are the actual and the reconstructed permittivity contrasts, respectively,
and the sum is done over all the subunits of the investigation domain. We get for the sample with
D = 150 nm:

• Errχ = 76% for ĥĥ mode.

• Errχ = 63% for ĥĥ+v̂v̂ mode.

• Errχ = 56% for full vectorial configuration.

• Errχ = 59% for TM illuminations only.
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• Errχ = 78% for TE illuminations only.

We can formally conclude that the reconstruction with full polarization gives the best map of
relative permittivity.

4.5 Some final remarks on the reconstructions

1. If the separation between the cylinders is larger or equal to the Rayleigh criterion one can
work with the v̂v̂+ĥĥ mode without any loss compared to the full vectorial case.

2. The illuminations with TM polarization for the incident field always give reconstructions
clearly better than illuminations with TE polarization (it is particular true for the sample
with D = 150 nm where Errχ gives the higher value). One way to explain this behaviour is
that the intensity of the field above the substrate for large angles of incidence (the angles
that give the resolution) is larger in TM polarization than in TE polarization. Hence, the
signal to noise ratio decreases for TE polarization.

3. If the separation between the cylinders is smaller than the Rayleigh criterion, then the use
of the full vectorial configuration increases the resolution and the quantitative value of the
retrieved relative permittivity. This is particularly true for the TM polarization where the
crossed polarization is not negligible, as seen in Fig. 4.1, and then clearly brings additional
information.

4. We have studied objects with a separation below the Rayleigh criterion but still above the
resolution limit given by the synthetic aperture in TDM.



General conclusion and
perspectives

The work presented in this thesis aims at exploring new modalities for tomographic diffractive
microscopy (TDM) and the 3D quantitative reconstruction of scattering objects, both at the ex-
perimental set-up level and for the numerical inversion procedure applied to the data. This work
has firstly used different techniques to perform the phase measurement : classical ones like phase
shifting interferometry and off-axis holography, but also wavefront sensing by quadri-wave lateral
shearing interferometry. This is the first time that a wavefront sensor is used for TDM, as until
now the number of pixels available on wavefront sensors was usually too low, an issue that is
considerably relaxed thanks to quadri-wave lateral shearing interferometry. As a result the TDM
set-up can be considerably simplified by suppressing the need for a reference wave, which also
greatly improves its robustness regarding the sensitivity to external perturbations. Moreover, the
use of low cost light sources with lower temporal coherence such as laser diodes or spatially filtered
LEDs becomes possible, what diminishes the speckle noise stemming from the parasitic reflections
and scattering along the light path. This improvement can therefore make TDM compatible with
standard set-ups like the ones used for classical wide-field microscopy.

Another main specificity of the present work is the coupling of the TDM set-up to a non-
linear inversion algorithm to retrieve the 3D permittivity map of the probed objects from the
measurement of their scattered fields. The usual approach makes use of inversion procedures based
on a 3D Fourier transform, which is valid only when the link between the scattered field and the
permittivity contrast is linear. This restricts the application of TDM mainly to samples with
low permittivity contrasts. Additionally, such an approach imposes that the object is coherently
illuminated by a single plane wave. Here, the inversion algorithm performs a rigorous modelling
of the wave sample interaction based on the Coupled Dipole Method, and relies on an iterative
minimization of a cost function describing the discrepancy between the measurements and the field
scattered by the estimated object. This approach is validated for resin objects deposited on a silicon
reflective substrate, where the permittivity contrast is far higher than those usually encountered
with linear approximations, and where the illumination is given by the interference between an
incident plane wave and its specular reflection on the substrate. It also has the great advantage
to be less sensitive to missing data for certain illumination and scattering angles, contrarily to the
Fourier transform based technique. As a result, it has been carried out with a number of angles
that is at least 10 times smaller for both the illuminations and the scattering directions. The speed
of the data acquisition can therefore be greatly increased, and the necessity for a high number of
pixels on the detector is considerably relaxed. The superiority of our non-linear inversion algorithm
in these conditions has been clearly shown to retrieve both the geometry and the permittivity of
the scattering objects.

97
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Lastly, the set-up and the inversion algorithm have been improved to perform polarization
resolved reconstructions. TDM usually relies on measurements where both the illumination and
the reference wave are polarized linearly in the same direction. It means that when the object
is illuminated at normal incidence, the incident electric field and the reference electric field are
parallel. However, for other illumination angles the two fields cannot be considered as parallel,
and in this case there are some scattering angles for which the electric field is not parallel to that
of the reference wave, even if the object does not induce any depolarization effect. As a result
only a projection of the total scattered field is measured. To take into account this effect, the
measurements have been done with two polarization states for the illumination combined with
two polarization states for the detection. This permits to retrieve the vectorial scattered field for
any polarization state of the illumination by a simple linear combination of these measurements.
We have shown on our test objects that such an approach ameliorates the resolution beyond the
Rayleigh criterion and improves the quantitative estimation of the permittivity.

This work opens the way to 3D high resolution quantitative reconstructions of permittivity
maps by TDM. The transverse resolution can still be improved to reach the limit predicted by
a synthetic aperture analysis and even go beyond thanks to the insertion of additional a priori
knowledge in the algorithm. The axial resolution, which is usually the weak point of microscopy set-
ups, can compete with the transverse one if the object is placed in the vicinity of a perfect mirror37,
and such a configuration has been shown to be compatible with the inversion algorithm with these
first results on resin objects deposited on a reflective substrate. New samples are being prepared
to test more specifically the axial resolution in a near future. More advanced illumination schemes
will also be studied, such as structured illumination patterns combining several plane waves to
further diminish the required number of illuminations, or random speckle patterns to dramatically
simplify the set-up illumination path120. Besides, more complex sample configurations will be
considered : samples with different permittivity domains, and samples giving rise to a strong
multiple scattering regime (for instance through plasmonic resonance), where a strong resolution
enhancement can occur80.
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The dyadic Green’s functions
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A.1 Wave equation

An important concept in field theory are Green’s functions: the fields due to a point source. In
electromagnetic theory, the dyadic Green’s function G is is essentially defined by the electric field
E at the field point r generated by a radiating electric dipole p located at the source point r′.

The derivation of the Green’s function for the electric field is most conveniently accomplished
by considering the time-harmonic vector potential A and the scalar potential φ in an infinite and
homogeneous space which is characterized by the constant ε0 and µ0. In this case, A and φ are
defined by the relationships,

E(r) = iωA(r)−∇φ(r) (A.1)

H(r) =
1
µ0

∇×A(r). (A.2)

We can insert these equations into Maxwell’s second equation Eqs. (1.9) and (1.10), then obtain

∇×∇×A(r) = µ0J(r)− iωε0µ0[iωA(r)−∇φ(r)], (A.3)

where we used D(r) = ε0E(r). The potentials A and φ is not only uniquely defined by Eqs. (A.1)
and (A.2), we are still free to define the value of ∇ ·A which we choose as,

∇ ·A(r) = iωε0µ0φ(r). (A.4)

A condition which fixes the redundancy of Eqs (A.1) and (A.2) is called a gauge condition. The
gauge chosen through Eq. (A.4) is the so-called Lorentz gauge. Using the mathematical identity
∇×∇×A = −∇2A + ∇(∇ ·A) together with the Lorentz gauge we can rewrite Eq. (A.3) as

[∇2 + k2
0]A(r) = −µ0J(r), (A.5)

which is the inhomogeneous Helmholtz equation. It holds independently for each component Ai

for A. A similar equation can be derived for the scalar potential φ

[∇2 + k2
0]φ(r) =

−ρ(r)
ε0

, (A.6)
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100 A.2 The scalar Green’s function

thus, we could obtain four scalar Helmholtz equations of the form

[∇2 + k2
0]f(r) = −g(r). (A.7)

A.2 The scalar Green’s function

To derive the scalar Green’s function G0(r, r′), for the Helmholtz operator we replace the source
term g(r) by a single point source δ(r − r′) and obtain

[∇2 + k2
0]G0(r, r′) = −δ(r − r′). (A.8)

The coordinate r denotes the location of the field point, for example, the point in which the fields
are to be evaluated, whereas the coordinate r′ designates the location of the point source. In free
space without boundaries, the scalar Green function depends only of r − r′ due to a spherical
symmetry must be a function only of r−r′ and must possess spherical symmetry about the source
point. Thus in spherical coordinates, we can write Eq. (A.8) as:

1
R

d2

dR2
[RG0(R)] + k2

0G0(R) = −δ(R), (A.9)

with R = r − r′ and R = |R|. The homogeneous equation can be written as

d2

dR2
[RG0(R)] + k2

0RG0(R) = 0, (A.10)

with the following solution

RG0(R) = Aeik0R + Be−ik0R (A.11)

G0(R) =
1
R

(
Aeik0R + Be−ik0R

)
, (A.12)

where A and B are constants. Near the origin, we can use the static approximation k0 ≈ 0 and
Eqs. (A.8) and (A.12) become:

∇2G0(R) =
1
R

d2

dR2
[RG0(R)] = −δ(R) (A.13)

G0(R) =
1
R

(A + B) . (A.14)

Equation (A.13) is the well known static case and has the solution 1
4πR . This provides that

A + B = 1/(4π). The solution with the plus sign denotes a spherical wave that propagates out of
the origin whereas the solution with the minus sign is a wave that converges towards the origin. In
the following we only retain the outwards propagating wave. Then the scalar Green function can
be written as :

G0(R) =
eik0R

4πR
. (A.15)

A.3 The dyadic Green’s function

So far we reduced the treatment of Green’s functions to the potentials A and φ because it allows
us to work with scalar equations. The formalism becomes more involved when we consider the
electric and magnetic fields. The reason for this is that a source current in x-direction leads to an
electric and magnetic fields with x, y, and z-components. This is different for the vector potential:
a source current in x gives only rise to a vector potential with a x component. Thus, in the case
of the electric and magnetic fields we need a Green’s function which relates all components of the
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source with all components of the fields, or, in other words, the Green’s function must be a tensor.
This type of Green’s function is denoted as dyadic Green’s function. To determine the dyadic
Green’s function we start with Eq. (1.17) established in Chap. 1

∇×∇×G(r, r′)− k2
0G(r, r′) = Iδ(r − r′), (A.16)

I being the unit dyad (unit tensor). The first column of the tensor G corresponds to the field due
to a point source in x-direction, the second column to the field due to a point source in y-direction,
and the third column is the field due to a point source in z-direction. Thus a dyadic Green’s
function is just a compact notation for three vectorial Green’s functions. Using that ∇.(∇×) = 0
the divergence of Eq. (A.16) gives :

−k2
0∇G(r, r′) = ∇Iδ(r − r′). (A.17)

then using ∇×∇×G = −∇2G + ∇(∇G) Eqs. (A.16) and (A.17) we get:

−∇2G + ∇(∇G)− k2
0G(r, r′) = Iδ(r − r′) (A.18)

(∇2 + k2
0)G(r, r′) = −

(
∇∇ +

1
k2
0

)
Iδ(r − r′), (A.19)

using Eq. (A.8) we replace the δ function in Eq. (A.19) and write

(∇2 + k2
0)G(r, r′) =

(
∇∇ +

1
k2
0

)
I[∇2 + k2

0]G0(r, r′) (A.20)

(∇2 + k2
0)

[
G(r, r′)−

(
∇∇ +

1
k2
0

)
IG0(r, r′)

]
= 0, (A.21)

hence a possible expression for the dyadic Green function is

G(r, r′) =
[
I +

1
k2
0

∇∇
]

G0(r, r′) (A.22)

at last, the expansion formula of G(r, r′) could be obtained by derivation follows, we rewrite the
component ∇∇,

∇∇ =

∣∣∣∣∣∣∣

∂
∂x

∂
∂x

∂
∂x

∂
∂y

∂
∂x

∂
∂z

∂
∂y

∂
∂x

∂
∂y

∂
∂y

∂
∂y

∂
∂z

∂
∂z

∂
∂x

∂
∂z

∂
∂y

∂
∂z

∂
∂z

∣∣∣∣∣∣∣
. (A.23)

for the sake of computation simplicity, we replace x, y, z components two variables α, β, where
α = x − x′, y − y′, z − z′, β = x − x′, y − y′, z − z′, R =

√
(x− x′)2 + (y − y′)2 + (z − z′)2, we

obtain,

∂R

∂α
=

α

R
(A.24)

∂( α
R )

∂β
= −αβ

R3
+

δαβ

R
, (A.25)

substituting Eqs. (A.24) and (A.25) into Eq. (A.22), we yield a final resolution,

G(r, r′) =
eik0R

4πk2
0

[
(3R̂⊗ R̂− I)

(
1

R3
− ik0

R2

)
+ (I − R̂⊗ R̂)

k2
0

R

]
, (A.26)

where R̂ = R/R.
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Appendix B

The approximation of scalar
Green’s function in far field

Let Q be a typical point in the scattering volume V and P a point far away from it, see in Fig. B.1.
Let O be the origin. Moreover, let r′ be the position vector of Q and r = rs, where s2 = 1, be

Figure B.1 : Diagram for illustrating of the approximation of scalar green func-
tion under Born approximation.

the position vector of P and let N be the foot of the perpendicular dropped from Q onto the OP .
Then evidently, when r is large enough,

| r − r′ |≈ r − s · r′ (B.1)

and Eq. (A.15) becomes,

eik0|r−r′|

4π | r − r′ | ≈
eik0r

4πr
e−ik0s·r′ =

eik0r

4πr
e−ik·r′ , (B.2)

where k is the wavevector of the diffracted field in the direction OP .
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Appendix C

The measured scattered fields
under ĥĥ polarization

C.1 Samples with diameter 200 nm

The ĥĥ data set of sample with diameter 200 nm is presented as follows in Fig. C.1.
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Figure C.1 : Modulus and phases of the data set in the Fourier space, obtained
by off-axis holography, polarizers in ĥĥ mode. Samples diameter 200 nm, height
150 nm. (a) and (e) θl = 55◦, φl = 0◦, TE polarization; (b) and (f) θl = 9◦,
φl = 0◦, TE polarization; (c) and (g) θl = 54◦, φl = 90◦, TM polarization; (d)
and (h) θl = 10◦, φl = 90◦, TM polarization.

Although we make an orthogonal polarization change for each incidence, if we overall research
the v̂v̂ and ĥĥ measurement, respectively, neglecting the polarizability of objects, these are two
identical experiments. As usual, the theoretical diffracted field under such incident conditions
computed by CDM are presented in Fig. C.2 for a nice comparison.
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Figure C.2 : Modulus (first line) and phases (second line) of the theoretical field
in the Fourier space, polarizers in ĥĥ mode. Samples diameter 200 nm, height
150 nm. (a) and (e) θl = 55◦, φl = 0◦, TE polarization; (b) and (f) θl = 9◦,
φl = 0◦, TE polarization; (c) and (g) θl = 54◦, φl = 90◦, TM polarization; (d)
and (h) θl = 10◦, φl = 90◦, TM polarization.

An agreement between the measured data set with simulated ones within NA is visible.

C.2 Samples with diameter 150 nm

The ĥĥ data set of sample with diameter 150 nm is presented in Fig. C.3.
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Figure C.3 : Modulus and phases of the data set in the Fourier space, obtained
by off-axis holography, polarizers in ĥĥ mode. Samples diameter 150 nm, height
150 nm. (a) and (e) θl = 55◦, φl = 0◦, TE polarization; (b) and (f) θl = 9◦,
φl = 0◦, TE polarization; (c) and (g) θl = 54◦, φl = 90◦, TM polarization; (d)
and (h) θl = 10◦, φl = 90◦, TM polarization.
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We usually compute the theoretical diffracted field by CDM technique, in Fig. C.4, to have a
preliminary comparison,
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Figure C.4 : Modulus (first line) and phases (second line) of the theoretical field
in the Fourier space, polarizers in ĥĥ mode. Samples diameter 150 nm, height
150 nm. (a) and (e) θl = 55◦, φl = 0◦, TE polarization; (b) and (f) θl = 9◦,
φl = 0◦, TE polarization; (c) and (g) θl = 54◦, φl = 90◦, TM polarization; (d)
and (h) θl = 10◦, φl = 90◦, TM polarization.

we continue to think that although there are lot of noise, a roughly consistency between the
measured information and the theory is exsit.
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Appendix D

The measured four groups of data
set to retrieve the vectorial

scattered fields

D.1 Samples with diameter 200 nm

The detected amplitude and phase of scattered far field of sample with diameter 200 nm, in Fourier
domain, are presented as follows in Figs. D.1, D.2, D.3 and D.4.
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Figure D.1 : Modulus and phases of the data set measured by v̂d̂1 mode,
in Fourier domain, off-axis holography method, respectively. Samples diameter
200 nm, height 150 nm. (a) and (e) θl = 55◦, φl = 0◦, TM polarization; (b)
and (f) θl = 9◦, φl = 0◦, TM polarization; (c) and (g) θl = 54◦, φl = 90◦, TE
polarization; (d) and (h) θl = 9◦, φl = 90◦, TE polarization.
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Figure D.2 : Modulus and phases of the data set measured by v̂d̂2 mode,
in Fourier domain, off-axis holography method, respectively. Samples diameter
200nm, height 150nm. (a) and (e) θl = 55◦, φl = 0◦, TM polarization; (b) and
(f) θl = 9◦, φl = 0◦, TM polarization; (c) and (g) θl = 54◦, φl = 90◦, TE
polarization; (d) and (h) θl = 9◦, φl = 90◦, TE polarization.
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Figure D.3 : Modulus and phases of the data set measured by ĥd̂1 mode,
in Fourier domain, off-axis holography method, respectively. Samples diameter
200 nm, height 150 nm. (a) and (e) θl = 55◦, φl = 0◦, TM polarization; (b)
and (f) θl = 9◦, φl = 0◦, TM polarization; (c) and (g) θl = 54◦, φl = 90◦, TE
polarization; (d) and (h) θl = 9◦, φl = 90◦, TE polarization.
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Figure D.4 : Modulus and phases of the data set measured by ĥd̂2 mode,
in Fourier domain, off-axis holography method, respectively. Samples diameter
200 nm, height 150 nm. (a) and (e) θl = 55◦, φl = 0◦, TM polarization; (b)
and (f) θl = 9◦, φl = 0◦, TM polarization; (c) and (g) θl = 54◦, φl = 90◦, TE
polarization; (d) and (h) θl = 9◦, φl = 90◦, TE polarization.

D.2 Samples with diameter 150 nm

The following four Figs. D.5, D.6, D.7 and D.8, present the measured scattered fields of sample
with diameter 150 nm, under four different polarizers positions conditions.
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Figure D.5 : Modulus and phases of the data set measured by v̂d̂1 mode,
in Fourier domain, off-axis holography method, respectively. Samples diameter
150 nm, height 150 nm. (a) and (e) θl = 55◦, φl = 0◦, TM polarization; (b)
and (f) θl = 9◦, φl = 0◦, TM polarization; (c) and (g) θl = 54◦, φl = 90◦, TE
polarization; (d) and (h) θl = 9◦, φl = 90◦, TE polarization.
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Figure D.6 : Modulus and phases of the data set measured by v̂d̂2 mode,
in Fourier domain, off-axis holography method, respectively. Samples diameter
150 nm, height 150 nm. (a) and (e) θl = 55◦, φl = 0◦, TM polarization; (b)
and (f) θl = 9◦, φl = 0◦, TM polarization; (c) and (g) θl = 54◦, φl = 90◦, TE
polarization; (d) and (h) θl = 9◦, φl = 90◦, TE polarization.
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Figure D.7 : Modulus and phases of the data set measured by ĥd̂1 mode,
in Fourier domain, off-axis holography method, respectively. Samples diameter
150 nm, height 150 nm. (a) and (e) θl = 55◦, φl = 0◦, TM polarization; (b)
and (f) θl = 9◦, φl = 0◦, TM polarization; (c) and (g) θl = 54◦, φl = 90◦, TE
polarization; (d) and (h) θl = 9◦, φl = 90◦, TE polarization.
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Figure D.8 : Modulus and phases of the data set measured by ĥd̂2 mode,
in Fourier domain, off-axis holography method, respectively. Samples diameter
150 nm, height 150 nm. (a) and (e) θl = 55◦, φl = 0◦, TM polarization; (b)
and (f) θl = 9◦, φl = 0◦, TM polarization; (c) and (g) θl = 54◦, φl = 90◦, TE
polarization; (d) and (h) θl = 9◦, φl = 90◦, TE polarization.
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[91] P. Massatsch, F. Charriére, E. Cuche, P. Marquet, and C. Depeursinge, “Time-domain op-
tical coherence tomography with digital holographic microscopy,” Appl. Opt. 44, 1806–1812
(2005)

[92] P. Marquet, B. Rappaz, P.J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. De-
peursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allow-
ing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett.
30, 468–470 (2005)

[93] F.M. Kahnert, “Numerical methods in electromagnetic scattering theory,” J. Quant. Spec-
trosc. Radiat. Transf. 775, 79–80, (2003).

[94] P. EM, and P. CR, “Scattering and adsorption of light by non-spherical dielectric grains,”
Astrophy J 186, 705–714, (1973).

[95] A. D. Yaghjian, “Electric dyadic Green’s functions in the source region,” Proc. IEEE, 68,
248–263, (1980)

[96] A. D. Yaghjian, “A delta-distribution derivation of the electric field in the source region,”
Electromagn., 2, 161–167, (1982)

[97] W.S. Weiglhofer, A. Lakhtakia, B. Michel, “Maxwell Garnett and Bruggeman formalisms
for a particulate composite with bianisotropic host medium,” Microw. Opt. Technol. Lett.
15(4), 263–266, (1998).

[98] A. Lakhtakia, “Selected Papers on Linear Optical Composite Materials,” SPIE Press. 20,
(1996)

[99] A. Lakhtakia, “Electromagnetic Fields in Unconventional Materials and Structures,” Wiley-
Interscience. (2000)

[100] W. S. Weiglhofer, A. Lakhtakia, “Introduction to Complex Mediums for Optics and Electro-
magnetics,” SPIE Press. (2003)

[101] P.C. Chaumet, A. Rahmani, F. de Fornel, and J.P. Dufour, “Evanescent light scattering:The
validity of the dipole approximation,” Phys. Rev. B 58, 2310–2135 (1998)

[102] P.C. Chaumet, and M. Nieto-Vesperinas, “Coupled dipole method determination of the elec-
tromagnetic force on a particle over a flat dielectric substrate,”Phys. Rev. B 61, 14119–14128
(2000)

[103] P.C. Chaumet, A. Rahmani, and G.W. Bryant, “Generalization of the coupled dipole method
to periodic structure,” Phys. Rev. B 67, 165404–165408 (2003)



REFERENCES BIBLIOGRAPHIES 121

[104] P.C. Chaumet, K. Belkebir, and R. Lencrerot, “Three-dimensional optical imaging in layered
media,” Opt. Exp. 14, 3415–3426 (2006)

[105] P. C. Chaumet, K. Belkebir, and A. Sentenac, “Three-dimensional subwavelength optical
imaging using the coupled dipole method,” Phy. rev. B 69, 245405–245411 (2004)

[106] P.C. Chaumet, K. Belkebir, “Three-dimensional reconstruction from real data using a con-
jugate gradient-coupled dipole method,” Inv. Problems 25, 024003–024020 (2009).

[107] E. Mudry, P.C. Chaumet, K. Belkebir, and A. Sentenac, “Electromagnetic wave imaging
of three-dimensional targets using a hybrid iterative inversion method,” Inv. Problems 28,
065007–065023 (2012)

[108] W. C. Chew and Y. M. Wang, “Reconstruction of two-dimensional permittivity distribution
using the distorted Born iterative method,” IEEE Trans. Med. Imaging, 9, 218 (1990).

[109] N. Joachimowicz, C. Pichot, and J. P. Hugonin, “Inverse scattering: An iterative numerical
method for electromagnetic imaging,” IEEE Trans. Antennas Propag, 39, 1742 (1991).

[110] A.G. Tijhuis, “Born type reconstruction of material parameters of an inhomogeneous, lossy
dielectric slab from reflected-field data,” Wave Motion, 11, 151 (1989).

[111] A.G. Tijhuis, K. Belkebir, A. Litman, B.P. de Hon, “Theoretical and computational aspects
of 2D inverse Profiling,” IEEE Trans. Geosci. Remote Sens, 39, 1316 (2001).

[112] R.E. Kleinman and P.M. van den Berg, “A modified gradient method for two dimensional
problems in tomography,” J. Comput. Appl. Math, 42(17), (1992).

[113] R.E. Kleinman and P.M. van den Berg, “An extended range modified gradient technique for
profile inversion,” Radio Sci, 28, 877 (1993).

[114] K. Belkebir, S. Bonnard, F. Pezin, P. Sabouroux, M. Saillard, “Validation of 2D inverse
scattering algorithms from multi-frequency experimental data,” J. Elect. Waves and App,
14, 1637–1667, (2000).

[115] K. Belkebir, A.G. Tijhuis, “Modified2 gradient and modified Born method for solving a
two-dimensional inverse scattering problem,” Inverse Problems, 17, 1671–1688, (2001).

[116] Y. Ruan, P. Bon, E. Mudry, G. Maire, P.C. Chaumet, H. Giovannini, K. Belkebir, A. Talneau,
B. Wattellier, S. Monneret, and A. Sentenac, “Tomographic diffractive microscopy with a
wavefront sensor,” Opt. lett, 37(10), 1631–1633 (2012)

[117] K. Belkebir R.E. Kleinman and C. Pichot, “Microwave imaging location and shape recon-
struction from multifrequency scattering data,” IEEE Trans. Microw. Theory Tech, 45 469–
476 (1997)

[118] K. Belkebir, P.C. Chaumet and A. Sentenac, “Superresolution in total-internal reflection
tomography,” JOSA A, 22(9), 1889–1897, (2005).

[119] W.H. Press, S.A. Teukolsky, W.T. Vetterling and B.P. Flannery, “Numerical recipes: The
art of scientific computing,” Cambridge University Press, (1986)

[120] E. Mudry, K. Belkebir, J. Girard, J. Savatier, E. Le Moal, C. Nicoletti, M. Allain and
A. Sentenac, “Structured illumination microscopy using unknown speckle patterns,” Nature
Photonics, 6, 312, (2012).





Résumé

La microscopie tomographique (MTD) est une technique d’imagerie récente qui reconstruit la
carte de permittivité tri-dimensionnelle de l’objet sondé avec une résolution accrue par rapport à
la microscopie plein champ classique. Elle consiste à illuminer l’objet avec un faisceau laser sous
différents angles d’incidence successifs, et à détecter à la fois en amplitude et en phase son champ
diffracté imagé dans un microscope. Cette technique a jusqu’à présent été appliquée avec succès
au cas des objets tri-dimensionnels uniquement pour de faibles contrastes d’indices de réfraction
(habituellement inférieurs à 5.10-2), pour lesquels les approximations linéaires de calcul du champ
diffracté sont valides. Ainsi un important champ d’application reste inaccessible à cette nouvelle
technique.

Pour s’affranchir de ces limitations, nous présentons dans ce manuscrit les résultats obtenus
en couplant un dispositif de MTD à un algorithme d’inversion sophistiqué, basé sur une modéli-
sation rigoureuse de l’interaction onde-matière. Plusieurs configurations ont été appliquées dans
le dispositif pour effectuer la mesure de phase. Des techniques classiques comme l’interférométrie
à décalage de phase où l’holographie numérique hors axe, mais aussi pour la première fois en to-
mographie optique un capteur de front d’onde basé sur l’interférométrie à décalage multi-latéral.
Cela conduit à une grande simplification du système et le rend compatible avec les architectures
classiques de microscope plein champ, ainsi qu’avec des sources bon marché comme des diodes laser
ou des LEDs. Notre algorithme d’inversion non-linéaire a été comparé à la procédure d’inversion
linéaire classique basée sur l’approximation de Born pour reconstruire en 3D la carte de permittiv-
ité de petits objets en résine déposés sur substrat de silicium. Nous montrons que contrairement à
l’inversion linéaire, notre approche restitue avec succès la permittivité et la géométrie 3D des objets
avec environ 20 angles d’illuminations, même pour une résolution latérale à la limite de Rayleigh,
à savoir 400 nm dans notre dispositif. Le nombre d’illuminations est ainsi diminué de plus d’un
facteur 10 en comparaison des résultats usuels en inversion linéaire, ce qui peut être exploité pour
accélérer le temps d’acquisition. L’extension axiale typique de 125 nm de nos objets est de plus
retrouvée de manière satisfaisante, grâce à la modélisation de l’interaction entre les objets et le
substrat réfléchissant, contrairement à l’approche linéaire. Enfin, le dispositif a été amélioré pour
effectuer des mesures résolues en polarisation à la fois pour l’illumination et la détection, ce qui a
permis d’améliorer la résolution transverse au-delà de la limite de Rayleigh.

Mots clés: tomographie optique; microscopie de phase; algorithmes d’inversion;



Resume

Tomographic diffractive microscopy (TDM) is a recent imaging technique that reconstructs the
tri-dimensional permittivity map of the probed sample with an increased resolution compared to
conventional wide-field microscopy. It consists in illuminating the sample with coherent collimated
light under different successive incidence angles, and detecting both in amplitude and phase its
scattered field imaged through a microscope set-up. This technique has until now been applied
successfully to tri-dimensional samples only in the case of weak refractive index contrasts (usually
below 5.10-2) where linear approximations to calculate the scattered field are valid. As a result,
an important field of applications is still out of reach of this new imaging tool.

To go beyond these limitations, we present in this manuscript the results obtained by coupling
a TDM set-up to a sophisticated inversion algorithm based on a rigorous modeling of the wave-
sample interaction. Different configurations have been used in the set-up to perform the phase
measurement. Classical ones like phase-shifting interferometry and off-axis holography, and also for
the first time in tomography applications a wavefront sensor based on quadri-wave lateral shearing
interferometry. This leads to a dramatic simplification of the system and makes it compatible
with common wide-field microscopes and low cost light sources like laser diodes and LEDs. Our
dedicated non-linear inversion algorithm has been compared to the standard linear inversion based
on the Born approximation for the 3D reconstructions of the permittivity maps of small resin
objects deposited on a silicon substrate. We show that contrarily to the linear inversion, our
approach retrieves successfully the permittivity and the 3D geometry of the objects with about 20
illumination angles, even when reaching lateral resolutions at the Rayleigh limit, which is of 400 nm
in our set-up. The number of illuminations is thus decreased by a factor of more than 10 compared
to usual results obtained with the linear inversion, which can be used to increase the speed of the
acquisition. The typical 125 nm axial extent of our objects is moreover satisfactory retrieved by
the non-linear algorithm, thanks to the modeling of the interaction between the objects and the
reflective substrate, contrarily to the linear approach. Lastly, the set-up has been ameliorated to
perform polarization resolved measurements for both the illumination and the detection, which has
permitted to improve the transverse resolution beyond the Rayleigh limit.

Key words: optical tomography; phase microscopy; inversion algorithms;


