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The diffraction of light by a single subwavelength hole in a highly conductive metallic sheet is analyzed
with a recently developed differential theory that is able to plot the nearly electromagnetic field. Using
rigorous electromagnetic and phenomenological analysis, we show that a single subwavelength hole can
excite surface-plasmon resonance that contributes greatly to extraordinary transmission. © 2005
Optical Society of America
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1. Introduction

Extraordinary transmission1 by subwavelength-hole
arrays has attracted a great amount of interest in the
past 6 years and offers promising applications in
physics and biology.2 Recently it was shown that a
single subwavelength hole surrounded by circular
corrugation exhibits similar extraordinary transmis-
sion.3,4 In such structures the diffraction phenome-
non cannot be analyzed in the context of classical
optics, even for a single circular hole, and requires a
full electromagnetic analysis. As a result, polariza-
tion effects, as well as electromagnetic resonances,
are found. Among them, surface-plasmon resonances
are especially important, as they are suspected to
play a key role in enhancing the transmission of
light.5 It is thus interesting to develop a deep under-
standing of the process, despite the great amount of
research that was already done to study transmission
by hole arrays. Only a few electromagnetic theories
exist with which to analyze diffraction by devices
described in cylindrical coordinates. The modal meth-
od6 was recently adapted to analyze coaxial aperture
arrays but is unable to analyze isolated holes. Re-
cently the finite-difference time-domain method was
applied with success to analyzing subwavelength el-

liptical holes7 thanks to a local grid refinement. We
followed a completely different way to analyze holes
that takes advantage of a recent breakthrough8 in
grating theory and termed fast Fourier factoriza-
tion.9,10 The result is a generalization of the differen-
tial theory to diffraction by devices described in
cylindrical coordinates.11 In such a geometry the elec-
tromagnetic field is represented on a Fourier–Bessel
basis, which has to be truncated for numerical com-
putation. After having developed new factorization
rules8,12 with which to derive the component of a
product of two functions from the components of each
function, i.e., rules that are valid on an arbitrary
continuous function basis, we obtained a formulation
of Maxwell equations on a truncated Fourier–Bessel
basis that yields numerical results that rapidly con-
verge when the truncation order is increased. We
applied this theory, named fast numerical factoriza-
tion, here to investigate in detail the diffraction of
light by a single circular hole in a plane metallic
sheet. We observed strong asymmetry (namely, lack
of cylindrical symmetry) in the electromagnetic field
distribution that is caused by the linear polarization
of the incident light. At the edges of the hole, where
the incident electric field vector is perpendicular to
the metal–air borders, there are regions with a sharp
increase of electric field amplitude, usually known as
the edge effect. The effect is due to charge accumu-
lation caused by the discontinuity of the induced elec-
tric current.7 The charges have opposite signs at
opposite edges of the hole, thus forming an electric
dipole.7 This electric field enhancement excites a
surface-plasmonlike wave that propagates (with an
exponentially decreasing amplitude) along the sur-
face away from the hole, as was demonstrated in the

The authors are with the Institut Fresnel, Case 161, Unité Mixte-
de Recherche 6133, Faculté des Sciences et Techniques de St-
Jérôme, 13397 Marseille Cedex 20, France. E. Popov’s e-mail
address is e.popov@fresnel.fr.

Received 2 September 2004; revised manuscript received 17 No-
vember 2004; accepted 18 November 2004.

0003-6935/05/122332-06$15.00/0
© 2005 Optical Society of America

2332 APPLIED OPTICS � Vol. 44, No. 12 � 20 April 2005



research reported in Ref. 13. In addition to this plas-
mon field, we can distinguish another contribution to
the field, which declines as 1��, where � is the dis-
tance between the observation point and the hole
edge, a contribution that represents a field radiated
by the dipole.

2. Description of the Device

The device under study is shown in Fig. 1. It consists
of a cylindrical hole with a circular cross section with
radius R � 0.125 �m that has been made in a plane
metallic sheet of thickness t � 0.2 �m. The axis of the
cylinder is Oz, and xOy is the plane bottom interface
of the sheet. All media are isotropic and homoge-
neous; the superstrate, the substrate, and the hole
are in vacuum. The sheet is made from a highly con-
ducting metal with complex refractive index n
� 0.52 � i2.88. This value is close to the refractive
index of silver, but to prevent convergence problems
caused by the metal’s very high conductivity,11 we
increased the real part of the index tenfold. A mono-
chromatic plane wave falls upon the sheet under nor-
mal incidence, with a unit amplitude vector E
parallel to the x axis. The wavelength in vacuum is
0.5 �m. Our aim is to study the field characteristics
in the vicinity of the hole and to demonstrate surface-
plasmon excitation. The wavelength-to-radius ratio is
chosen in such a way that a fundamental mode that
could propagate in a hollow cylindrical waveguide
with the same radius is below the cutoff.

3. Field Maps Near the Hole

Resolving the boundary-value problem with the fast
numerical factorization described in Refs. 9–11 al-
lows any field component to be determined in any
region near or inside the hole. Figure 2 shows square
modulus |E|2 of the total electric field as a function
of x and y coordinates for z � �15 nm, i.e., slightly
below the lower interface of the sheet. It clearly ap-
pears that, despite the cylindrical symmetry of the
hole, the field map is not cylindrically symmetric; a
privileged direction, namely, the x axis, is determined
by the polarization of the incident field. Along the y

direction, |E|2 as a function of x exhibits two sharp
peaks approximately twice higher than its value at
the center �x � y � 0�, separated by a distance close
to 0.25 �m, i.e., by the hole diameter. The sharp
peaks appear in the area where the electric field is
almost perpendicular to the metal boundary. The
boundary conditions thus predict strong charge den-
sity. |E|2 is much lower in the regions where E is
tangential to the surface, however, as was already
demonstrated in Ref. 7. Similar field maps were re-
cently measured experimentally by other authors.5

Figure 3 shows a map of the modulus of the z
component of the total electric field under the same
conditions as for Fig. 2 �z � �15 nm�. Although the z
component of the incident electric field is zero, two
peaks appear for the z component of the total field
along the y axis, situated in the vicinity of the hole
edges. The curve in Fig. 4, which shows |Ez| as a
function of x, points out the existence of extremely
sharp peaks as well as of thin fluctuations that are

Fig. 1. Schematic representation of a hole in a metallic sheet.
Fig. 2. Map of the square modulus of the electric field obtained at
z � �15 nm (distances are in nanometers).

Fig. 3. Map of |Ez| at z � �15 nm; the location of the hole’s cross
section is represented by a thick circle.

20 April 2005 � Vol. 44, No. 12 � APPLIED OPTICS 2333



due to the Gibbs phenomenon that results from the
reconstruction of a function that has sharp variations
at z � 0 (metal surface) from its truncated Fourier–
Bessel representation. As one can see, |Ez| is equal
to zero at x � 0, as can be expected from symmetry
considerations. To get a better insight into the field
topography, we show in Fig. 5 an |Ez| field map in
the xOz plane. The location of the hole edge is shown
by an arrow. From the shape of equal-amplitude field
lines, it is evident that the decrease of |Ez| is much
slower in the x direction (i.e., along the metallic sur-
face) than in the z direction (going away from the
surface). This is better shown in Fig. 6, which repre-
sents two cuts made in Fig. 5, one along the line z
� 0, which shows the x dependence of |Ez|, and the
other along the line x � R, showing the z dependence.
Keeping in mind the logarithmic scale in ordinate, we
note that the z decrease is much faster because no
surface wave can contribute to propagation of the
field in that direction.

The other two electric field components demon-
strate similar tendencies. Figure 7 shows the behav-
ior of |Er|, which is close to unity for x � 0 and
decreases sharply for x � 0.125 �m, i.e., outside the

hole; the thin fluctuations still occur from the Gibbs
phenomenon. Figure 8 shows a smooth curve, how-
ever, as it represents |E�| as a function of y instead
of x. The incident electric field vector is tangential to
the hole boundaries (at y � �0.125 �m), so no charge
accumulation is observed. This curve culminates in a
value close to the incident field’s amplitude and tends
to zero when |y| is increased, as can be observed in
the field map in Fig. 3. We may remark that anyway
two small fluctuations occur when y � �R that are
due to the discontinuity of the normal derivative of
|E�| at the hole boundaries.

To determine the field behavior in detail, and, in
particular, to demonstrate the plasmon excitation on
the metallic surface in the x direction, it is easier to
work first in Fourier–Bessel space rather than in
coordinate space. This analysis is favored by the fact
our method works with the field components in
Fourier–Bessel space.

Fig. 4. Variation of |Ez| for y � 0 and z � �1 nm as a function
of x.

Fig. 5. |Ez| field map of the xOz plane below the hole. For rea-
sons of symmetry, only positive values of x are considered.

Fig. 6. Variation of |Ez| in the xOz plane below the hole: trian-
gles, |Ez| as a function of x at z � 0; squares, |Ez| as a function
of z along the line x � R that crosses the hole ridge.

Fig. 7. Same as in Fig. 4 but for |Er|.

2334 APPLIED OPTICS � Vol. 44, No. 12 � 20 April 2005



4. Fourier–Bessel analysis

On a truncated Fourier–Bessel basis, the field com-
ponents are represented as discrete and finite sums of
Bessel functions of integer orders �n � 1� and �n
� 1� (Ref. 14):

Er(r, �, z) � i �
n��N

N

�
m�0

Max

	km[bn, m
E (z)Jn�1(kmr)

� cn, m
E (z)Jn�1(kmr)]exp(in�),

E�(r, �, z) � �
n��N

N

�
m�0

Max

	km[bn, m
E (z)Jn�1(kmr)

� cn, m
E (z)Jn�1(kmr)]exp(in�), (1)

where km are the discretized values of kr, the r com-
ponent of the wave vector of each spectral component
of the field. Similar expansions are valid for the mag-
netic field, with amplitudes denoted by superscript H.
For a normally incident plane wave, its only nonzero
km components are those with k0. For a perfect me-
tallic sheet without a hole the reflected and transmit-
ted fields contain wave-vector components that
reduce to k0 only. When a surface perturbation (hole,
bump, etc.) is introduced, however, the diffracted
field contains all the components with km that are
equal to or different from zero, including evanescent
waves.

For a normally incident plane wave it can be shown
theoretically that the most important contribution to
the sum in Eq. (1) is given by the amplitudes b�1,m

E and
c�1,m

E . Their behavior as functions of m is quite simi-
lar, and the thin curve in Fig. 9 shows the real part of
one of the Fourier–Bessel (i.e., spectral) field ampli-
tudes b�1

E as a function of the discretized values km of
radial wave number kr, normalized to wave number
k0 of the incident wave in the superstrate. At normal
incidence, k0 is equal to the 0th diffraction order k0 of
the incident field. As can be expected, the existence of
the hole generates all the km components in the dif-
fracted field. Components with kr�k0 � 1 correspond
to waves that are evanescent in the z direction.

A sharp variation (anomaly) is observed for values
of kr�k0 slightly higher than 1. This curve resembles
the Lorentzian-shaped anomalies that are due to
guided-wave excitation in diffraction grating effi-
ciency curves.15

A plasmon surface wave propagating along a plane
metal–dielectric interface has a propagation constant
� that can easily be determined from the refractive
indices of the metal and the dielectric.15 In our case its
normalized value is equal to 
̃ � 
�kM � 1.05892
� i0.02431. The coupling of the plasmon waves prop-
agating along the two boundaries of the metallic layer
slightly changes this value, but with the chosen thick-
ness of the layer, t � 0.2 �m, the change is almost
negligible, as we verified with independent numerical
methods. As can be observed from Fig. 9, the position
of the peak of the anomaly coincides with the real
part of the normalized propagation constant of the
unperturbed plasmon, which is a good indication of
their common nature. To further convince ourselves
of this and to separate the different contributions
quantitatively, we made a numerical experiment by
artificially suppressing the anomaly in the spectral
behavior of b�1

E , c�1
E , b�1

H , and c�1
H , as shown for b�1

E by
the filled squares in Fig. 9. This artificial distribution
of the reconstructed spatial variation of |Ez| is fur-
ther called |Ez, no plasmon| and is shown in Fig. 10(b) in
which it is compared to the true values of Ez given by
the thin solid curve in Fig. 10(a). It is important to
notice the change in the ordinate scale and thus an
important reduction of the values of |Ez|. Moreover,
its x dependence is quite different. Despite the strong
oscillations, one can determine the rate of decrease,
shown as a thicker curve in Fig. 10(b) and drawn as
a function proportional to 1��, where � � |x � R| is
the distance from the hole edge:

|Ez, no plasmon| �
Cno plasmon

|x � R| . (2)

Numerical fitting gives the value for Cno plasmon � 21.

Fig. 8. Variation of |E�| for x � 0 and z � �1 nm as a function
of y. Fig. 9. Re�b�1

E � as a function of the normalized radial wave-vector
component.
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An additional argument for expecting the exis-
tence of this contribution comes from Fig. 9, in
which the behavior of spectral component b�1

E looks
like that of a sinusoid when kr�k0 is further increased,
with a period in the kr space close to 2��R. The inte-
gral of the product of the basic function J0�kr, r� and
the function sin�krR� can be evaluated analytically
and outside the interval x � ��R, R� is proportional
to 1��. Thus the conclusion from the analysis in both
real space and kr space is that the no-plasmon con-
tribution is the field radiated by the electric dipole (at
least, relatively far from the source).

Let us go now to the remaining part of the field, to
see whether it is really a plasmon contribution. The
difference between the values of |Ez| [Fig. 4 or Fig.
10(a)] and |Ez, no plasmon| [Fig. 10(b)] is plotted in Fig.
11 by a thin, wavy curve. The logarithmic vertical
scale enables us to find the exponential decay when
we are going away from the hole. More precisely, the
fit (thicker curve) is better made with the function

Cplasmon

�x
exp(i
�x), (3)

where �� is the imaginary part of the plasmon prop-
agation constant on the plane metal–air interface
and numerical fitting gives the value for Cplasmon
� 6. The factor in the denominator of expression (3)
can be explained by the fact that the propagation of
the plasmon is made not only in the x direction but
along the entire surface. During the preparation of
this paper, we found a paper13 that confirms this
behavior but does not take into consideration the
nonplasmonic scattering given by Eq. (2). More pre-
cisely, Fig. 10(a) exhibits the same x dependence
of |Ez| as in Fig. 4 (the thin solid curve) but on a
wider x scale, together with the sum of the two con-
tributions, Eq. (2) and expression (3) (thick dotted
curve). As can be observed, the decrease of the field
combines two effects: first, plasmon propagation (ex-
ponential decay plus cylindrical expansion on the sur-
face), with the plasmon excited at the ridge of the hole
in the direction perpendicular to the incident field
polarization, and second, a spherical decrease of the
radiated wave that originated at the charge accumu-
lation points.

Similar curves were obtained for the Er component
of the field, which are not considered here. One can
trace the same two contributions, given by Eq. (2) and
expression (3), with the same ratio between the fit-
ting constants Cno plasmon�Cplasmon as for |Ez|. On the
contrary, no plasmon contribution can be found in
component E� of the field that is tangential to the hole
edge.

5. Conclusions

Using rigorous electromagnetic analysis, we studied
the transmission of light through a subwavelength
hole. An electric field map of the area below the hole
and in its vicinity has shown that there are two main
contributions to the transmitted field: plasmon exci-
tation produced by the ridges of the hole, which are
almost normal to the electric vector of the incident

Fig. 10. (a) Thin, solid curve, the same as in Fig. 4 but on a
different scale; thick dotted curve, fitting by the sum of Eq. (2) and
expression (3). (b) Thinner curve, dependence of |Ez,no plasmon| as a
function of x for y � 0 and z � �1; thicker curve, fit by Eq. (2).

Fig. 11. Thin, wavy curve, the same as in Fig. 10 but for
|Ez,plasmon|; thicker curve fit by expression (3).
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field, and much weaker (in the case studied) radiation
from the electric dipole formed by the charge accu-
mulated at the same points. Thus the role of surface-
plasmon excitation in the extraordinary transmission
of light is clearly established.
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