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Coupled dipole method with an exact long-wavelength limit
and improved accuracy at finite frequencies
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We present a new formulation of the coupled dipole method that accounts for local-field effects and is exact

in the long-wavelength limit.
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OCIS codes: 260.2110, 290.0290.

Since its introduction in the early seventies' the
discrete dipole approximation, also called the coupled
dipole method (CDM), has been used extensively to
study many problems, such as light scattering by
arbitrary objects,>"* near-field molecular probes,® op-
tical forces,® and nanosources in microcavities.” The
versatility of the method resides in the simplicity of
its formalism. An arbitrary scatterer can always
be viewed as a collection of polarizable subunits.
Provided that the sizes of the subunits are small
enough compared with the local spatial variations
of the field, the dipole approximation applies, and
each subunit can be represented by a polarizability «.
Several formulations of the CDM exist. They differ
by the polarizabilities used to describe the optical
response of the subunits. Nevertheless, the polar-
izabilities always reduce to the Clausius—Mossotti
(CM) expression in the long-wavelength limit. As it
is often pointed out, for a uniform excitation the CM
expression for the polarizability of a small particle
is exact in the long-wavelength limit. However, as
demonstrated by Draine,? when the CM polarizability
is used within the CDM to describe a small particle as
a collection of dipoles, one does not get the exact result
in the long-wavelength limit. The reason for this is
that the common assumption that all dipoles must
have the same optical response, irrespective of their
environment, is flawed. Indeed, near interfaces, one
must account for the particular local environment of
each dipole.

In this Letter we present a form of the CDM that
is exact in the long-wavelength regime. This form is
achieved by derivation of a self-consistent local-field
correction that accounts for the particular environ-
ment of each subunit. Accordingly, the performance
of the CDM at finite frequencies is improved as well.
We start with a general derivation of the self-consis-
tent local-field correction and of the corresponding
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This formulation also leads to improved accuracy of the description of light-
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polarizability. Consider an arbitrary scatterer dis-
cretized over a cubic lattice with spacing d. The self-
consistent local field at subunit i is given by

Eiloc = EiO + Z FijajEjloc, (1)
7

where E;° is the incident field at subunit i and F
is the free-space field susceptibility,® i.e., F;;a;E;"°°,
gives the electric field at location i produced by sub-
unit j. The sum over j runs over all the subunits
(j # i) that form the scatterer. Our aim is to find
the exact local-field factor in the long-wavelength limit
(electrostatic approximation) from which we will in-
fer the polarizability. After making the electrostatic
approximation and introducing macroscopic field E™,
which is related to the incident field by E™[1 + L;(e; —
1)/(4m)] = E;°, with depolarization tensor L;, we find
that Eq. (1) becomes

-1
Eiloc _ (1 + 1 6—>Elm + Z FijajEjloc, (2)

4m G
where 1 is the identity tensor and ¢;, assumed to be
scalar for simplicity, is the permittivity of subunit i.
By definition, local-field tensor A; satisfies

E;lc = A,E;™. (3)

Using the fact that the polarization can be written as

Pi — % Eiloc’ (4)
i—1

B 6477 E, ®)

= €i4; : AR (6)
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we can express the polarizability in terms of the
local-field tensor:

Gi—l

ypm A;7td3. (7

a; =

We derive the local-field tensor by use of Egs. (3)—(7)
to express the local field in terms of the macroscopic
field in Eq. (2), leading to

=1
A, =C; + Z Fij GJ— dSCj_ICi , (8)
= 47
J#i
where the tensors C; are defined as

Gi—l
47

Ci=1+ L;. 9)

The depolarization tensor, L;, is essentially a geometri-
cal factor whose value is determined by the shape of the
object.” Note that to arrive at Eq. (8) we assumed that
the initial, static field E° was uniform (static limit of
a plane wave, for instance). If this were not the case,
there would simply be an additional term in the sum
on the right-hand side of Eq. (8) to account for the vari-
ation of E° from one subunit to another.

The polarizability of Eq. (7) reduces to the CM
expression only for a single, isolated dipolar scatterer
or a subunit lying away from any interface. In
the general case the polarizability accounts for the
environment of the subunit via the local-field tensor
[Eq. (8)]. Note that because of its dependence on the
environment the polarizability can be anisotropic even
for an isotropic material (scalar €). We emphasize
that Eq. (7) replaces the CM expression. This means
that the usual radiation reaction correction® can now
be applied to Eq. (7). All the results presented below
include the radiation-reaction correction.

To illustrate the method presented above, we con-
sider a slab (infinite along directions x and y) of mate-
rial with permittivity e and thickness ¢ along direction
z. This configuration has an analytic solution that
will be our reference. Note that for a slab (as well as
for ellipsoids and infinite cylinders'®) L; is uniform over
the slab. For more-complex geometries L; is not con-
stant and can easily be calculated numerically.’) We
emphasize that although the geometry of a slab allows
a two-dimensional treatment we describe the slab as
a three-dimensional object, using an extension of the
CDM to periodic structures.’! This approach allows
us to use three-dimensional expressions for the polar-
izabilities and will make it easier to apply the present
approach to more-complex scatterers. The case of a
slab makes the physical content of Eq. (7) obvious. A
subunit near the surface of the slab will respond (be
polarized) differently depending on the polarization of
the incident field, because of the subunit’s particular
environment near the interface. However, a subunit
that lies within the bulk of the slab will be have an
isotropic response.

We focus on the behavior of the new formulation
of the CDM at finite frequencies. Indeed, in the
long-wavelength limit, Eq. (7) is exact by design. We
first consider a dielectric slab (e = 20, ¢ = 50 nm)
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illuminated by a plane wave, with wavelength
A = 400 nm and angle of incidence 6 = 50°, polar-
ized in the xz plane. The slab occupies the region
0 = z = 50 nm and is discretized into 20 layers. We
choose a large value of € to emphasize the effects
of the new formulation of the CDM. We compare
in Fig. 1 the x component of the macroscopic field
outside and inside the slab, for the old (conventional)
and new forms of the CDM, with the exact result.
The old CDM predicts strong, nonphysical oscillations
of the field inside the slab. These oscillations have
been pointed out before, although they have not
been explained.’>"** They result from the erroneous
assumption that the bulk local-field correction can be
used for every subunit. Indeed, the assumption that
each subunit of the CDM is well described by the CM
polarizability and experiences a local-field correction
(e + 2)/3 is incorrect near interfaces. However,
the new form of the CDM reduces drastically the
oscillations of the macroscopic field inside the slab.
As a result, the reflected and the transmitted fields
are improved as well. We emphasize that the new
local-field correction is most important at interfaces.
In general, the new polarizability differs significantly
from the CM value only for the first two or three
layers near an interface.

To illustrate further the influence of the local-field
correction on the calculation of the scattered field,
we present in Figs. 2 and 3 the relative error (in
percent) of the transmitted field as a function of the
number of layers used to discretize the slab. The
incident light is polarized in the xz plane or along
y, and we represent the x or the y components of
the field. The z component has a behavior similar
to the x component. The inclusion of local-field
corrections [Eq. (7)] improves significantly the con-
vergence of the CDM for dielectric (Fig. 2), metals
(Fig. 3), and strongly absorbing media (not shown).
Because the optical response of each subunit ac-
counts for its local environment, the induced dipole
moment at each subunit is calculated more precisely,
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Fig. 1. Macroscopic field outside and inside a dielectric
slab. The slab occupies the region 0 = z = 50 nm delim-
ited by the vertical lines. The plane wave (A = 400 nm)
is incident from the left of the figure. Angle 6 = 50°, per-
mittivity of the slab € = 20 (see text for details).
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Fig. 2. Relative error of the field transmitted through a
slab. Results for the x and the y components are plotted
as a function of the number of discretization layers. The
parameters of the calculation are € = 20, ¢ = 50 nm, 0 =
50°, and A = 600 nm.
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Fig. 3. Same as Fig. 2 but for an aluminum slab and pa-
rameters € =—34.5 + 8.5i,¢t = 50 nm, § = 50°, and A =
488 nm.

and therefore the error on the scattered field is
reduced.

In summary, we have presented a new form of the
CDM in which the local field is derived so that the
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CDM is exact in the long-wavelength limit. The po-
larizability of the subunits is expressed in terms of a
local-field tensor that is derived self-consistently and
accounts for the local environment of each subunit.
Accordingly, the convergence of the CDM at finite fre-
quencies is drastically improved, and fewer subunits
are needed for a given accuracy. In this Letter we ex-
plicitly considered a slab to make the physical basis
for the new form of the CDM clear. It will be inter-
esting to consider more-complex geometries. Indeed,
calculations for spherical scatterers show that the per-
formance of the CDM for three-dimensional scatterers
can be significantly improved.

A. Rahmani’s e-mail address is adel.rahmani@
ec-lyon.fr.
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