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Local-field correction for an interstitial impurity in a crystal
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The local-field correction experienced by an interstitial impurity in a crystal with cubic symmetry is derived
by use of a rigorous, self-consistent, semimicroscopic description of spontaneous emission in a microcavity.
We compute the local-field factor for various positions of the impurity inside the crystal. Furthermore, we
demonstrate that the local-field factor can be computed from a simple electrostatic model as a rapidly converg-
ing lattice sum. We show that the agreement between the predictions of this simple model and the rigorous
calculations is remarkable, opening the way to a simple, general theory of a local-field effect for an impurity
in a crystal with arbitrary symmetry. © 2002 Optical Society of America

OCIS codes: 260.2510, 270.5580.
The inf luence of the local environment on the electro-
magnetic properties of a nanosource is of crucial impor-
tance in modern optics and optoelectronics. As optical
devices become smaller, the nature of the local-field
correction experienced by a nanosource (atom, mole-
cule, quantum dot) becomes a central issue. In this
Letter we present a self-consistent calculation of the
local-field correction experienced by an interstitial im-
purity source in a crystal with cubic symmetry. The
local-field correction is obtained from a rigorous de-
scription of spontaneous emission1 that includes the
Purcell effect and the dipole–dipole coupling between
the source and the host.

Consider a two-level atom that is located at r0 in a
microcavity and has an electric dipole transition mo-
ment along direction s � x, y, z. The normalized de-
cay rate is given by2,3
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where G0 and k0 � v�c are the decay rate and the
wave vector in free space, respectively, and

$
F is the

electric-f ield susceptibility that represents the electro-
magnetic response of the cavity. Finding the field sus-
ceptibility related to the expressions for the decay rate
amounts to f inding the electric field ref lected back to
the source by the cavity. To do so we use the cou-
pled dipole method (CDM), which was developed for
study of the scattering of light by particles with ar-
bitrary shapes.4 – 12 In the CDM the scatterer is dis-
cretized over a cubic lattice. Details of the theory are
given elsewhere.1,13,14 Local-field correction L is de-
fined as13,14

G � L2Gcav 1 dG , (2)

where Gcav represents the effect of the cavity geometry
(ref lection at the boundaries of the cavity). The term
dG represents the dissipative part of the dipole–dipole
interaction between the source and the polarizable ele-
ments of the host medium (for a lossless medium, dG �
0). When we consider a spherical cavity, we can use
the theory of Chew15 to compute Gcav . By compar-
ing this result and the CDM result, we can find jLj
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from Eq. (2).13,14 Therefore the CDM allows us to com-
pute rigorously the retarded, self-consistent local-f ield
correction.

To gain a better insight into the rigorous scattering
theory of the local-field correction it is useful to have a
simple model to describe the local-field correction ex-
perienced by an impurity source in a crystal. Here
we show how the local-field factor can be derived as
a rapidly converging sum. In what follows, we con-
sider an infinite crystal. However, it is implicit that
all derivations are to be performed for a slab with f inite
thickness in the z direction. The limit of an infinite
crystal is taken once all the relevant lattice sums have
been transformed into an absolutely convergent series
by the planewise summation technique.17

Consider an infinite cubic lattice of point dipoles
(polarizability a) with lattice spacing d. We neglect
retardation (electrostatic approximation) and assume
that a uniform external field Eext creates a uniform po-
larization P in the lattice. At any interstitial location
in the lattice the local f ield is the sum of the external
(applied) field and the f ield that is due to all the dipoles
of the lattice (the case of a substitutional impurity is
discussed in Refs. 13 and 14):

Eloc � Eext 1 Edip. (3)

Let �a, b, c� be the coordinates, normalized by d, of
the field point where we evaluate the local field inside a
unit cell. We have 21�2 , x # 1�2, where x � a, b, c
and �a, b, c� fi �0, 0, 0�.

The total field created at an interstitial location r
by the dipoles of the lattice is

Edip�r� �
X
i

$
F 0�r, ri; 0�

a

d3 Eloc
dip�ri� , (4)

where the sum runs over the infinite lattice.
$
F 0�d3 is

the vacuum field susceptibility.18 Because all dipoles
experience the same local field, Eloc

dip, we can write (the
dependence on r is omitted henceforth)

Edip �
a

d3

$
AEloc

dip . (5)

Tensor
$
A contains all the lattice sums (sums over the

lattice of the vacuum field susceptibility) for all dipole
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components. For instance, element �i, j� of the tensor
gives the lattice sum along direction i that is due to
a lattice of dipoles oriented along direction j . All the
elements of

$
A can be converted to rapidly converging

sums that are readily computed by the general ap-
proach of De Wette and Schacher.19 Polarization P
can be expressed as

P �
a

d3 Eloc
dip �

e 2 1
4p

Emacro, (6)

where Emacro is the macroscopic f ield. Using the con-
tinuity relations at an interface for the electric f ield
and the electric induction, we also have

$hEmacro � Eext, (7)

with

$h �

2
4 1 0 0
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0 0 e

3
5 , (8)

where e is the permittivity. This expression for $h
relates to our definition of the infinite crystal as the
limit for infinite thickness of a slab normal to direction
z. Equation (3) becomes

Eloc � $hEmacro 1
e 2 1
4p

$
AEmacro. (9)

By definition, local-f ield factor
$
L satisfies

Eloc �
$
LEmacro. (10)

Using Eqs. (9) and (10), we obtain

$
L �
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4p

$
A 1 $h . (11)

The local-field factor is obtained at once from Eq. (11).
For example, the local f ield factor in direction i is

jLij �

√
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2
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To foster understanding we first consider special
high-symmetry cases. At certain locations of the
lattice there is no mixing of polarization in the con-
tribution of the dipoles to the local field, and the
tensors

$
A and

$
L are diagonal. For example, an

impurity source with a transition moment along z and
located at �a, b, 0� or �0, 0, c� will experience a local-field
correction

L � Lz �
e 2 1
4p

Azz 1 e , (13)

with
Azz �
X̀

m�2`

�3�m 1 c�2S5/2 2 S3/2� , (14)

Sn �
X̀

k, l�2`

��k 1 a�2 1 �l 1 b�2 1 �m 1 c�2�2n . (15)

Note that Azz is a geometrical factor that is indepen-
dent of e. In Table 1 we list the values of dipole sum
Azz and local-field factor Lz at various locations inside
the unit cell. The dipole sum satisfies17 Azz�a,b, c� 1

Azz�c, a,b� 1 Azz�b, c, a� � 28p.
Because the local-field factor in our CDM treatment

of spontaneous emission is obtained from the decay
rate (power losses) and not from the field, the CDM
approach actually yields jLj. We plot in Figs. 1 and
2 the local-field factor found with the CDM (the di-
rection of the transition moment of the source defines
direction z). The dashed lines are the results com-
puted from Table 1. The agreement is remarkable.
Note that when c � 0 (source in a lattice plane and
oriented normally to it) L � 0 for certain values of e,
which would correspond to an inhibition of spontaneous
emission by local-field effects. The reason for the ex-
cellent agreement between the rigorous CDM scatter-
ing theory and the simple quasi-static model is that
the CDM calculation of the local field in a crystal is

Table 1. Dipole Sum and Local-Field Factor at
Various Locations in the Lattice

Location

a b c Dipole Sum Azz Local-Field Factor Lz

1�2 0 0 223.4186008171 20.864e 1 1.864
1�2 1�2 0 217.0453117498 20.356e 1 1.356

0 0 1�2 21.7044604055 2.727e 2 1.727
0 1�2 1�2 24.04371473946 0.678e 1 0.322

1�4 0 0 273.5999217727 24.857e 1 5.857
0 0 1�4 122.067102317 10.71e 2 9.710

1�2 1�2 1�2 28.37758040957 �e 1 2��3

Fig. 1. Absolute value of the local-field factor versus per-
mittivity e for an interstitial source: symbols, self-consis-
tent CDM calculation; dashed curves, results from Table 1
[Eq. (13)]. The numbers in parentheses give the �a, b, c�
coordinates of the source in the lattice. The transition mo-
ment of the source def ines the z direction.
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Fig. 2. Same as Fig. 1 but at different locations in the
lattice.

Fig. 3. Same as Fig. 1 but here we have computed the
solid curves by using the generalized local-f ield factor
[Eq. (12)].

meaningful only if k0d ,, 1. When this condition is
satisfied, because only the dipoles closest to the source
make a significant contribution to the local-field,13,14

the phase associated with retardation remains small
and has a negligible effect on the local-field correction.

Whereas in the special cases of Table 1 the local-field
factor depends linearly on the permittivity, we em-
phasize that in the general case the linearity of the
local-field factor with respect to the permittivity is only
asymptotic (for large e). This condition is illustrated
in Fig. 3, in which we compare Eq. (12) and our rigor-
ous, self-consistent calculation for sources at some ar-
bitrary location in the lattice. Again, the agreement
is excellent.
In conclusion, we have used a rigorous, self-con-
sistent scattering theory of spontaneous emission in
microcavities to derive the local-field correction experi-
enced by an interstitial impurity source in a crystal.
We also presented a simple but general theory of local-
field correction based on rapidly converging sums,
whose validity we have demonstrated. Although we
explicitly considered a cubic lattice here, this simple
model of a local-f ield effect can be extended to crystals
with lower symmetry by use of the appropriate lattice
sums.19
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