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Evanescent light scattering: The validity of the dipole approximation
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Laboratoire de Physique de l’Universite´ de Bourgogne ESA CNRS 5027,
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In near-field optics the very concept of dipole is often used to represent either an elementary source or a
scattering center. The most simple and widely used example is that of a small spherical particle whose
polarizability is assumed to conform to the Clausius-Mossotti relation. While in conventional, far-field optics
this approximation is known to be valid provided that the object is much smaller than the wavelength, its
extension to near-field optics requires some precautions. Indeed, in the case of the scattering, by a spherical
object, of an evanescent field generated, for instance, by total internal reflection or by a surface polariton, the
strong-field gradient may increase the contribution to the polarizability of multipoles higher than the dipole.
Such high-order multipoles are seldom considered in near-field optics because they complicate considerably
any scattering calculation. In this paper we derive, for a spherical particle, the contributions of multipole orders
up to the hexadecapole. This serves to illustrate the relative importance of each order. Moreover, within the
framework of the coupled dipole method, we study, self-consistently, the problem of the scattering of an
evanescent field by the sphere. We show that, with an initial field decreasing exponentially, the dipole ap-
proximation can be misleading.@S0163-1829~98!01428-3#
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I. INTRODUCTION

With the recent development of near-field optics,1,2 many
models have been proposed to describe the scattering o
electromagnetic wave by some structure deposited on a
face. An example of an elementary object often encounte
either as such or within a discretization procedure, is tha
a subwavelength-sized spherical particle. A simple way
calculate the electromagnetic response of such a sphere
consider a dipole whose polarizability is given by t
Clausius-Mossotti relation. While the great simplicity of th
model explains why it is widely used,3–7 it has the drawback
to assume the initial field to be uniform within the sphe
Obviously, when the sphere is placed in an evanescent fi
this approximation may not hold anymore. We can refine
description of the particle with a multipole expansion of t
polarizability,8 but we must then have clear indications as
how to restrict the required multipole expansion in order
describe efficiently the polarizability of the sphere. We sh
show that the importance of terms higher than the dipole
the multipole expansion depends on the radius of the sp
and on its dielectric function. In parallel to the multipo
calculation, we shall represent the sphere as an array of
larizable subunits arranged on a cubic lattice. Under so
precautions, the field calculation conducted with this meth
is considered to be very close to the exact solution and
as reference for other calculations.

II. MULTIPOLAR POLARIZABILITIES

In this section, we study the field existing above a sph
deposited on a plane surface of a transparent medium,
minated in total internal reflection~Fig. 1!. Within the dipole
approximation, the field created atr by a sphere centered a
r s5(0,0,zs) is given by the self-consistent equation
PRB 580163-1829/98/58~4!/2310~6!/$15.00
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E~r ,v!5E0~r ,v!1@S~r ,r s ,v!

1T~r ,r s ,v!#as~v!E~r s ,v!, ~1!

with

E~r s ,v!5@ I2S~r s ,r s ,v!#21as~v!E0~r s ,v!, ~2!

whereI is the unit tensor. The quantityE0(r ,v) is the ~ini-
tial! field at r without the sphere being present,as(v) is the
dynamical dipolar polarizability of the sphereas(v)
5a3@«s(v)21#/@«s(v)12# where a is the radius of the
sphere, and«s(v) is its dielectric function. The tensorT is
the free-space field susceptibility9 andS the field susceptibil-
ity associated with the surface. The derivation of the surf
field susceptibility and the self-consistent calculation of t
field are extensively developed in Refs. 10 and 11. As
gards the optical response of the sphere, a more refined

FIG. 1. Schematic of the configuration considered in this pap
2310 © 1998 The American Physical Society



th
h
la

or
th
n
m
de
se
-
m
on
r

a-

re

he

ap

o

is
n

the

y
ect

o-

s

-

q.

ch
.

-
he
one

er

PRB 58 2311EVANESCENT LIGHT SCATTERING: THE VALIDITY . . .
culation can be performed but it requires a knowledge of
local-field gradients at the site occupied by the sphere. T
can be realized by taking a series of dynamical multipo
polarizabilities:8

E~r ,v!5E0~r ,v!1 (
p51

`
1

@~2p21!!! #2

3“ r8
~p21!

@S~r ,r 8,v!1T~r ,r 8,v!#~r85rs!

3as
~p!~v!“ r8

~p21!
@E~r 8,v!#~r85rs! , ~3!

where“ r is the gradient operator.as
(p)(v) is the multipolar

polarizability, defined by12–14

as
~p!~v!5a~112p!

«s~v!21

«s~v!1
p11

p

. ~4!

Solving this self-consistent equation up to very high
ders is difficult as it has been pointed out in Ref. 3 where
authors restricted their work to the dipole approximatio
This difficulty is the major reason why this method is seldo
used beyond the dipole approximation and why the mo
higher than the quadrupole have never been used in a
consistent procedure.15 In order to gain a clear physical in
sight, without obscuring the discussion with too much cu
bersome calculations, we shall make two approximati
before solving Eq.~3!. The first is based on the fact that fo
an evanescent~initial! field, the variations of the field are
very important alongz, hence only the successive deriv
tives of the field with respect toz will be taken into account.
The second is not really an approximation but rather a
striction: we only study the field along thez axis. In this case
the point of observation lies on the axis of revolution of t
system sphere plus substrate and the tensors~S and T! and
their successive derivatives with respect to thez coordinate
are diagonal. This restriction, together with the previous
proximation, allows us to write Eq.~3! as a set of three
independent equations, each of which involves only one
the three components of the field:

Ei~zs ,v!5E0i
~zs ,v!1 (

p51

`
1

@~2p21!!! #2

3S ]~p21!Sii ~zs ,z8,v!

]z8~p21! D
z85zs

3as
~p!~v!S ]~p21!Ei~z8,v!

]z8~p21! D
z85zs

, ~5!

with i 5x,y,z, and thei component of the field alongOz,
outside the sphere, becomes

Ei~z,v!5E0i
~z,v!1 (

p51

`
1

@~2p21!!! #2

3S ]~p21!@Sii ~z,z8,v!1Tii ~z,z8,v!#

]z8~p21! D
z85zs

3as
~p!~v!S ]~p21!Ei~z8,v!

]z8~p21! D
z85zs

. ~6!
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When the sum in Eq.~5! is stopped at thepth order, it
means that the derivatives, higher than thepth order, of
Ei(z8,v) for z85zs are equal to zero, and thusEi(zs ,v) can
be written as a polynomial of degreep. To find the coeffi-
cients of this polynomial, we differentiate Eq.~5! p times
with respect toz. We obtain (p11) equations with the
aforementioned coefficients as unknowns. This system
solved to findEi(zs ,v) and itsp successive derivatives. O
replacing these derivatives in Eq.~6! it becomes possible to
computeEi(z,v). This method requires us to compute thep
successive derivatives ofE0i

(z,v), hence, it amounts to

make a Taylor expansion of the initial field atz5zs ; doing
so leads us to a more correct form of the field inside
sphere.

III. THE COUPLED DIPOLE METHOD

The coupled dipole method~CDM! initially introduced by
Purcell and Pennypacker16 is a very useful method to stud
the scattering electromagnetic field by an arbitrary obj
represented by a cubic array ofN polarizable subunits. An
external electric field induces for each subunit a dipole m
mentpi(v) given by

pi~v!5a i~v!E~r i ,v!, ~7!

wherer i is the position of the sitei , E(r i ,v) is the electric
field at the sitei due to the incident field and the field
created by all the other dipoles located atr j ,

E~r i ,v!5E0~r i ,v!1(
j 51

N

@S~r i ,r j ,v!

1T~r i ,r j ,v!#a j~v!E~r j ,v!. ~8!

The polarizability a i~v! conforms to the Clausius
Mossotti relation:

a i~v!5
3d3

4p

«s~v!21

«s~v!12
, ~9!

whered is the spacing lattice. We solve the linear system E
~8! to obtainE(r i ,v) at each site.17 Hence, the field at the
position r is given by

E~r ,v!5E0~r ,v!1(
j 51

N

@S~r ,r j ,v!

1T~r ,r j ,v!#a j~v!E~r j ,v!. ~10!

Using the Clausius-Mossotti relation implies that in ea
cell of the discretization lattice the electric field is uniform
Owing to the discretization of the sphere~we use the value of
the initial field at each siter i! we take into account the varia
tion of the initial field inside the sphere. The smaller t
spacing lattice parameter, the closer to the exact solution
gets.

IV. RESULTS AND DISCUSSION

In all the calculations presented in this paper the low
mediumz,0 is glass (n51.5) illuminated in total internal
reflection atu560° in p polarization withuE0u51 ~Fig. 1!.
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Since for isotropic materials the penetration depth of the fi
depends only on scalar parameters~wavelength, optical con-
stants, and angle of incidence! the three components of th
field have exactly the same behavior. For the sake of s
plicity and brevity we shall henceforth consider only thez
component of the electric field. In all the figures, except
last one, the magnitude of thez component of the fielduEzu
is plotted along theOz axis betweenz52a ~the top of the
sphere! andz53a since it is near the sphere that the cont
butions of high multipole orders become important.

We first consider a dielectric sphere~glass,«s52.25! with
radiusa5100 nm. The wavelength of the incident light~in
vacuum! is 633 nm. Let us consider the CDM computatio
for four values of the spacing lattice parameter. When
field is computed far from the sphere (z53a), the first three
curves~for d59.52, 10.00, and 13.33 nm, respectively! are
almost merged; only the last one (d528.57 nm) is slightly
above the three others@Fig. 2~a!#. Such a behavior for a
relatively large value ofd is not surprising since this value o
d that corresponds to 179 dipolar subunits does not co
spond to a suitable simulation of a dense spherical particl
we focus on the first three curves, we note that very clos
the sphere (z'2a) the observed behavior depends stron
on the value ofd. For an observation point very close to th
sphere the electric field conveys the discrete character o
sphere. But besides this general feature, two configurat
are possible. First, the discretization is such that theOz axis
corresponds to a row of the lattice~i.e., dipolar subunits are
located on theOz axis!. In this case, since in Fig. 2~b! the
field is computed along theOz axis, when the point of ob-
servation~where the field is computed! gets closer to the
sphere, it approaches the topmost dipolar subunit. As
distancer between them is reduced, the contribution of t
free-space field susceptibility~which varies as 1/r 3 for short
distances! to the electric field diverges. This explains th
dramatic increase of the field ford528.57, 13.33, and 9.52
nm. The other possibility is that the mesh is such that
dipole is present on theOz axis. Hence, as the point o
observation gets closer to the sphere and the discrete n
of the latter appears, one is confronted with ‘‘an absence
matter’’ that entails a strong decrease of the computed fi
close to the top of the sphere (d510.00 nm). Clearly, as one
gets closer to the sphere, the smallerd, the later the discrete
nature of the sphere will be unveiled by the field. As
empirical criterion concerning glass, the result of the com
tation of the field is assumed to be converged forz>2a
1d. For instance, if we wish to compute the field atz
5215 nm, a spacing latticed513.33 nm is sufficient, and
we can see clearly on Fig. 2~b! that takingd510.00 nm, or
9.52 nm does not lead to any significant improvement.

A similar field computation from the standpoint of a mu
tipolar expansion is given in Fig. 3@Eqs.~6! and Eq.~5! for
p51,2,3,4#. We note that whenp increases the result con
verges toward a limit value and the correction brought
increasingp of unity becomes less significant. The relati
positions of the four curves is a consequence of the hyp
esis made on the initial field. Indeed, if we recall what h
been said in Sec. II, performing a multipolar expansion up
order p amounts to make a polynomial expansion of t
initial electric field at the center of the sphere. We ha
plotted in Fig. 4 the modulus of theexactinitial field inside
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the sphere (0,z,2a) as well as the result of polynomia
expansion forp51,2,3,4~the casep51 for which the field
is uniform inside the sphere obviously corresponds to
Clausius-Mossotti static approximation!. When the field is
computed just above the sphere it is clear that the contr
tion of the upper part of the sphere will be more importa
than that of the lower half. Therefore, whenever the init
field is overestimated~underestimated! in the upper part of

FIG. 2. Modulus of thez component of the electric field com
puted for different values of the spacing latticed for a dielectric
sphere («s52.25) with radiusa5100 nm. The number beside th
value ofd is the number of dipoles used for the CDM computatio
~b! is an enlargement of~a!.

FIG. 3. Same as Fig. 2 but the computation is done with
multipole expansion. On all the figures, the value ofp indicates the
largest order included in the multipole expansion.
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PRB 58 2313EVANESCENT LIGHT SCATTERING: THE VALIDITY . . .
the sphere by the polynomial expansion, the computed fi
will also be overestimated~underestimated!. This is why
with the multipolar expansion, the relative magnitude of t
field computed above the sphere is a reflection of the rela
magnitude of the initial field.

Now, let us focus our attention on the order of the mu
pole up to which the expansion must be done to obtai
converged result for the field. Close to the sphere, the cu
corresponding top53 andp54 ~Fig. 3! are close and this
means that considering the octupole mode is sufficient. F
ther from the sphere, the quadrupole order becomes s
cient ~the curves merge forp52,3,4!; on the other hand, the
dipole approximation entails an overestimation of the fi
even at relatively large distances from the sphere; the
pothesis of an initial field uniform over the sphere is t
crude for this configuration.

At this stage we should recall that to solve Eqs.~5! and
~6! we made an approximation that consisted in taking i
account only the derivatives of the field with respect to thz
coordinate. To illustrate the influence of this assumption,
have plotted in Fig. 5 three curves. The first one~dotted line!
is the multipolar expansion forp54. The second one~solid
line! corresponds to a CDM calculation withd513.33 nm
and gives the correct field forz.2a1d. This result allows
us to estimate the error brought by the approximation don
the multipolar expansion, and to show that with the lat
method the field is always overestimated. The third cu
~dashed line! is still computed with the CDM, but at the
location of each subunit, the initial field as given by t
hexadeca-pole approximation~Fig. 4!. One can see then tha
the multipolar curves tend towards this limit. This establish
that the approximation made to solve Eqs.~5! and ~6! ~to
consider only the derivatives with respect toz! amounts to
neglect the lateral variation of the initial field inside th
sphere. Hitherto, we have considered a relatively la
sphere in order to illustrate clearly the difference between
CDM and the multipolar expansion. If now we consider
smaller sphere (a550 nm), the quadrupole approximatio
(p52) is sufficient and gives a result close to the CD
calculation~Fig. 6!. This is a normal behavior: owing to th
smaller size of the sphere, the spatial variations of the in
field within the sphere are less important and as expected

FIG. 4. Modulus of thez component of the initial~applied!
electric field inside the sphere. The thickest line is the exact in
field inside the sphere. The four other curves are the terms
Taylor series of the initial field.
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two approaches give similar results. As regards the dip
approximation, however, it gives an electric field larger th
the quadrupole approximation and this even far from
sphere. Once again this demonstrates that the assumptio
an initial field uniform over the sphere is misleading, a
though the sphere is relatively small~we do not present
curves for the casea525 nm for the conclusions are ident
cal!.

We now consider the case of metals. Metallic sphe
with a radius around 25 nm have been extensively con
ered in the literature. For an incident radiation in the visib
spectrum, such small spheres made of noble metals can
port plasmon resonances, leading to an enhancement o
field around the sphere. This phenomenon has been use
investigate the modification of the optical properties and
characterization of adsorbed molecules on me
particles,18,19 the stimulated emission radiative spectrosco
intensity,20–23 and the modification of the fluorescenc
lifetime.24 The interested reader is referred to the reviews
Chance and co-workers,24 Metiu,25 and Moskovits.26 Very
recently, localized plasmon resonances have also been
served with near-field optics techniques.27,28

The field enhancement above a metallic sphere illu
nated in total internal reflection has been addressed by
eral authors.3,5 Usually, they consider the spheres as dipo
~Clausius-Mossotti! and they compute the field at distanc

FIG. 5. Same as Fig. 2. The solid line is computed with CD
(d513.33 nm), the dotted line with multipolar expansion forp
54, and the dashed line with CDM (d513.33 nm) with the form
of the initial field given by the hexadecapole approximation~see
Fig. 4!.

FIG. 6. Electric field computed for a sphere of glass~radiusa
550 nm! with the multipolar expansion and the CDM.
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sometimes as small as 1 or 2 nm. For such short distance
shall show that while the dipole approximation does not
tail any significant modification of the resonance energy
leads to an important error on the value of the field. Usua
the spheres are made of gold or silver. In this paper we s
consider spheres of gold.29 If we wish to get a sound resu
for the field very close to the sphere~around 1 nm!, the
parameterd must be very small. In order to keep the amou
of computer memory and the CPU required to do the CD
computation reasonable, we used an adaptable discretiz
grid30 where the parameterd is taken very small on the top
of the sphere. Incidentally, we might mention that in the c
of metals the convergence of the CDM computation is di
cult to perform. This point will be discussed elsewhere. T
energies of resonance as computed from the different m
ods are given in Table I.

The resonance for an isolated sphere lies at 2.3895
@this value corresponds to the maximum value for the po
izability uas(v)u#. As the sphere is brought close to the su
face, the electromagnetic coupling between the sphere
the substrate increases, entailing a well-known redshift of
resonance.31 Actually, as higher values ofp are included in
the multipolar expansion, the electromagnetic coupling
tween the sphere and the surface increases, which exp
the fact that the largerp, the lower the resonance energy.

On the other hand, it must be borne in mind that in t
case of the multipolar expansion, irrespective of the or
(p) up to which the expansion is performed, the compu
field is always a function of the initial field~and of its de-
rivatives! at the center of the sphere only. When the CD
approach is adopted, many subunits of the discretized sp
are located close to the surface~the closest ones lie atd/2!,
and the coupling~which is described in a more realistic wa
by the CDM than by the multipolar expansion! between the
sphere and the surface is strong. This explains why the C
gives the largest value for the redshift. However, the diff
ence between the shifts predicted by the dipole approxi
tion ~Clausius-Mossotti! and the CDM is only of 0.04 eV
Thus we can conclude that the dipole approximation does
cause a significant error for the resonance energy. We s
now study the implications of the various approaches on
magnitude of the field.

The field is computed for the resonance of the dip
~2.3696 eV!. We plot in Fig. 7~a! uEzu as a function ofz. As
regards the multipole expansion, the same values ofp (p
51,2,3,4) are considered, while the CDM calculation is p
formed for two different numbers of dipolar subunits, i.
two different sizes of the lattice spacingd in order to dem-
onstrate that the convergence of the CDM calculation
achieved~the thinnest of the two discretization grids corr
sponds tod50.41 nm at the top of the sphere!. We plot in
Fig. 7~b! the relative difference, in percent, between the fi
computed with the multipolar expansion and the CDM c
culation with 22 361 dipoles. By looking at the differenc

TABLE I. Energy of the resonance of the sphere computed w
the multipolar expansion forp51,2,3,4 and CDM.

Method p51 p52 p53 p54 CDM

Resonance in eV 2.3696 2.3680 2.3679 2.3679 2.32
we
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between the field as derived from the octupole (p53) and
from the hexadecapole (p54) approximations we can notic
that the multipole expansion is not exactly converged n
the sphere. On the other hand, far from the sphere, the o
pole approximation constitutes a relevant approximati
However, unlike the case of a dielectric~glass! sphere, the
difference between the CDM and the multipole expans
remains significant. This is once again due to the approxim
tion we made to solve Eqs.~6! and ~5!. The discrepancy
between the CDM and the multipole expansion is much m
pronounced in the metallic case than in the dielectric ca
This is an expected result. Indeed, for the gold sphere, th
is an enhancement of the field induced by the plasmon p
nomenon; hence the respective gradients~spatial derivatives!
of the field are larger, on the one hand, along thez axis, thus
higher orders must be included in the multipole expansi
and, on the other hand, alongx or y, which makes the ap-
proximations used to solve the equations slightly less va
As regards the simplest approach based on the dipole
proximation@which does not rely on the approximation ma
to solve Eqs.~5! and~6! for p.1] at a distance of 2 nm from
the top of the sphere, the relative difference, in compari
with the CDM, is of the order of 20%~25% at 1 nm!.

V. CONCLUSION

We have presented a theoretical study of the electrom
netic response of a minute spherical particle in finite geo

h

9

FIG. 7. Electric field computed for sphere of gold at 2.3696
with radiusa525 nm. ~a! electric field computed either with the
CDM @with 12579~circle! and 22361~square! dipoles# or the mul-
tipole expansion.~b! relative difference in percent between the mu
tipole expansion and the CDM~22361!.
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etries. We have investigated the scattering of an evanes
wave by such a particle deposited on a surface, includ
both the far-field and the near-field components of the fie
in a rigorous, fully retarded description of the interaction.
knowledge of the dynamical electromagnetic response of
surface together with the use of the coupled dipole meth
allowed us to study the interaction between the sphere a
the field in a realistic way. On the other hand, we have co
sidered the contribution of several multipole orders to t
dynamical polarizability of the particle. In order to avoid th
too cumbersome calculations arising from the multipole p
ture, we have neglected the variations of the field and
successive gradients in a plane parallel to the surface. H
ever, this approximation does not prevent us from observ
the convergence of the multipole expansion when comput
the field above the sphere. For dielectric spheres whose
dius is smaller than 50 nm the quadrupole approximation
sufficient and very close to the CDM result. On the oth
hand, the dipole approximation systematically overestima
the field above the sphere. In the case of metals, if only
I

~1973!.
nt
g
d

e
d
d
-

e

-
s
-

g
g
a-
is
r
s
e

spectral position of the plasmon resonance is required, t
dipole approximation is valid. However, if one seeks fo
quantitative values of the field, the multipole expansion ha
to be performed up to high orders; for the dipole approxim
tion the behavior observed for dielectrics is enhanced by t
plasmon resonance phenomenon and the field above
sphere is strongly overestimated. In this paper we did n
make an extensive study of the influence of the variou
physical parameters that play a role. Actually, any modific
tion of the penetration depth will have a consequence on t
way that the multipolar response of the sphere should
computed and some other features may be observed. Si
larly, the description of the interaction of an object~for in-
stance, a sphere! with the highly nonhomogeneous field ex-
isting in the near field of a microscopic source, i.e.,
decaying atom or molecule, may benefit from a multipola
analysis. Further studies of near-field interactions involvin
inhomogeneous modes of the electromagnetic field are un
progress in our group.
t.
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