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Coupled dipole method for radiation dynamics in finite photonic crystal structures

Frédéric Bordas,1 Nicolas Louvion,1 Ségolene Callard,1 Patrick C. Chaumet,2 and Adel Rahmani'
"Laboratoire d "Electronique, Optoélectronique et Microsystemes-UMR CNRS 5512-Ecole Centrale de Lyon 36,
avenue Guy de Collongue, F-69134 Ecully Cedex, France
*Institut Fresnel (UMR 6133), Université d’Aix-Marseille III, avenue Escadrille Normandie-Niemen,
F-13397 Marseille cedex 20, France
(Received 24 October 2005; revised manuscript received 3 February 2006; published 2 May 2006)

We present a coupled-dipole treatment of radiation dynamics in the weak-coupling regime in a finite three-
dimensional photonic crystal structure. The structure is discretized in real space and the self-consistent local
field is computed. We illustrate the computation of radiation dynamics by calculating the spontaneous emission
rate for a source located in a defect cavity inside a slab photonic crystal structure. We compute the cavity
spectral response, the near-field modal structure, and the far-field radiation pattern of the microcavity. We also
discuss our results in light of the recent experimental near-field observations of the optical modes of a photonic

crystal microcavity.
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I. INTRODUCTION

By combining high refractive index contrast and lattice
effects, photonic crystals have demonstrated an unprec-
edented ability to herd and confine photons [1]. Even struc-
tures exhibiting an incomplete band gap, which prevent the
propagation of photons within a range of frequencies only in
some specific directions, have led to an impressive array of
new devices. In particular, slablike structures, which rely on
total internal reflection for the vertical optical confinement
while the photonic band-gap effect controls the in-plane
propagation, have become an important brick in the design
of new nanophotonic architectures. Passive structures can
make, for instance, efficient waveguides and filters [2], while
active structures, with embedded sources, can, for instance,
make ultralow threshold microlasers [3], or be used as a
source of nonclassical light [4]. These structures have also
been used to control the dynamics of nanosources and ob-
serve inhibition and enhancement of spontaneous emission
[5-7].

The ever growing importance of photonic crystals in op-
tics and photonics is matched by the increasing need for
numerical methods capable of handling complex configura-
tions. There are a great many numerical methods that can be
used to study the electromagnetic properties of a photonic
crystal structure. However, when it comes to arbitrary, finite
defects in a photonic crystal, two types of approaches are
often used. The first one is based on a plane-wave expansion
and the use of supercells [8]. The second is the finite differ-
ence in time domain (FDTD) technique [9]. In this article,
we present a complementary approach based on the coupled
dipole method (CDM), which unlike the FDTD operates in
the frequency domain and only requires the scatterer to be
discretized in real space. Also, in the CDM no explicit
boundary conditions need to be specified. Furthermore, be-
cause the CDM in its most common formulation deals with
finite scatterers, it does not require a supercell formulation
(in fact in the CDM it is when dealing with infinite periodic
structures that one needs a formulation in terms of elemen-
tary cells [10]).
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The purpose of this paper is therefore to illustrate how the
CDM can be applied to a defect cavity in a finite photonic
structure. In particular, we will show how radiation dynamics
can emerge naturally from the formulation of the method,
and how, once the local fields inside the scatterer are known,
the far field can be obtained readily. We will also discuss the
field confinement induced by the cavity in light of our recent
near-field optics experiments.

We shall consider the weak-coupling regime of the
source-cavity system. In this regime, the evolution of the
source, assumed to be a two-level system initially in its ex-
cited state, is irreversible. The time evolution of the source is
characterized by an exponentially decreasing probability to
remain in the excited state. The decay rate for this process is
given by Fermi’s golden rule. We emphasize that within this
regime, the normalized decay rate (normalized to a source in
an infinite medium) can be calculated classically [11]. This
treatment is valid as long as the escape time of the photon
out of the cavity is short enough to prevent any memory
effect (Markovian regime) in the interaction between the
source and the electromagnetic field. Equivalently, this
means that the quality factor of the cavity resonance has to
be much smaller than the intrinsic quality factor associated
with the optical transition of the source. This will clearly be
the case for the cavity modes we consider in this paper. Note
that for any resonator in general (photonic crystal, microdisk,
microsphere,...), the treatment of situations which do not
satisfy the approximations we just mentioned requires a
more rigorous description of the interaction between the
source and the electromagnetic field, including non-
Markovian effects [12].

The CDM has been introduced by Purcell and Penny-
packer [13] to study the scattering of light by interstellar
grains with arbitrary shapes. This method has been used to
compute cross sections [14], optical forces [15-17], near-
field light scattering [18], and spontaneous emission [19].
The theoretical foundation of the CDM relies on the fact that
when an object interacts with an electromagnetic field, it
develops a polarization. If one considers a small enough vol-
ume inside the object, the induced polarization is uniform
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within this volume, and hence that small region can be rep-
resented by an electric dipole with the appropriate polariz-
ability. Therefore, any object can be discretized as a collec-
tion of dipolar subunits. In this paper, we use the CDM to
address the radiation dynamics of a source inside a finite
photonic crystal microcavity.

II. COMPUTATION OF THE SELF-CONSISTENT LOCAL
FIELD

Consider an arbitrary, three-dimensional object with com-
plex permittivity e(r,w) [i.e., complex refractive index
n(r,w)=€(r,m)]. When an electromagnetic wave interacts
with the object, it creates a linear polarization within the
object. The spatial variations of the polarization inside the
object depend on the refractive index of the material and the
geometry of the object. However, over any small-enough
volume inside the object, the polarization can be considered
to be uniform and that volume can be represented as an elec-
tric dipole. When this principle is applied to the entire scat-
terer, one obtains the coupled dipole method [13,14]. If we
discretize the scatterer over a cubic lattice with period d, we
can write the local field at each lattice site as

N
(rnw) EO(rnw)"' E FO(rlv ]7w)a(rj7w)E(rj’w)’

j=1j#i
(1)

where Ey(r;, w) is the incident field, E(r;, w) is the local field
at position r;, and a(r;, ) is the dynamic polarizability of
the volume element located at position r;. The tensor
Fo(r;,r;, w) is the free-space linear field susceptibility which
gives the field at position r; due to a dipole at position r;. The
case i=j is taken into account in the expression of the polar-
izability, which can be written as [20]

- Fz)m(rj,rj,w)+477/3 -l

a(rj’ (1)) = ao(rj7 (1)) X aO(rjaw) s
V;
(2)
where
3d e(r;,w) - 1
ap(rj,w)=——"— (3)

47 e(r;,w) +2

follows from the Clausius-Mossotti relation. The volume V;
of the jth cell is in our case d°. In the present study, the
subunit has a cubic shape and € is a scalar; hence the polar-
izability is a scalar. Then Flm( r;,r;,w) is the result of the
numerical integration of the component xx of the field-
susceptibility tensor F,, over the volume of cell j (due to the
cubic shape of the subunit, the components yy and zz are
equivalent to xx) [20]. However, a simpler, analytical expres-
sion of the polarizability can be obtained by integrating the
tensor over a spherical region with a volume equal to that of
the cubic cell. This yields the expression of the polarizability
derived by Lakhtakia [21,22], which simplifies the calcula-
tion of the polarizability, without introducing any substantial
error compared to the rigorous expression of Eq. (2), as was
demonstrated in [20].
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The local field at all lattice sites is found by solving the
linear system of Eq. (1) iteratively using the quasiminimal
residual method of Freund and Nachtigal [23]. The compu-
tation of the local field can be accelerated by using the fact
that the field-susceptibility tensor actually depends on the
relative positions of the source point and the field point,
rather than on their absolute locations. This means that
Fy(r;,r;, ®) can be written as Fy(r;—r;,w). This property of
the field-susceptibility tensor allows Eq. (1) to be cast as a
convolution product which can be computed very efficiently
using fast-Fourier transform techniques [24].

Consider a discretization box with dimensions N,d,N,d,
and N,d, which contains the scattering object. We define the
polanzablhty over the box as a; ; ;. (r; ; ;,0)=0 for a sub-
unit lying outside the obJect (note tﬂat i(=1,...,N,, i,
=1,...,N,, and i=1,...,N), and a,x,‘,(rl i, i ®)
= a(r,, w) otherwise. We now double the size of the lattice in
each dimension and treat all quantities as periodic in the
three dimensions with periods 2N,, ZN}., and 2N,. Note that
the actual object is neither doubled in size nor made periodic.
This is merely a numerical technique that allows us to treat
the convolution product as a cyclic convolution. The matrix
containing the field susceptibility is Toeplitz, i.e., each of its
elements can be labeled by i—j instead of (i,j). To use FFTs,
we need to embed the Toeplitz matrix into a circulant matrix
of twice the size whose element i is equal to element K—i for
0=i=K-1, and where K is the order of the circulant matrix
(twice the order of the original matrix). The matrix-vector
convolution product can now be computed by FFT after the
vector is doubled in size and padded with zeros. The result of
the original convolution product is then obtained by cropping
the result of the cyclic convolution down to the size of the
original vector. Omitting the dependence on w, we can for-
mally rewrite Eq. (1) as

2N, 2N, 2N,
l l ol T 2 2 E FO(rl l e jxj j)XjX,j),,jZ (4’)
J=1iy=1j=1 '
with X; ;. ] G, ]E( vy ]) for j,<N, and j,<N, and j,

<N, and X=0 everywhere “else. It is now obvious that Eq.
4)isa convolutlon product which can be computed in a very
efficient way using a FFT [25].

Once the local field is known at all lattice sites, the scat-
tered field anywhere else can be computed as

N

E(r,0) =E(r,0) + 2 Fo(r,r;,w)a(r;,0)E(r,w). (5)
i=1

The scattered field can also be seen as the result of a 2D
convolution product by a proper choice of the computation
grid. Therefore, the computation of the scattered field can
also be accelerated by using FFT techniques. The far-field
radiation pattern is readily obtained by taking the asymptotic
form of the scattered field [18],
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X a(r;, o) ME(r;,0) |, (6)

where n is the unit vector r/r, ¢ is the speed of light in
vacuum, and the matrix M is given by

M=1-n®n. (7)

III. COMPUTATION OF THE SOURCE DECAY RATE

The dynamics of a dipole source in the weak-coupling
regime can be studied by using the field created by the
source and the incident field term E, in Egs. (1) and (5).
Indeed, by computing the work done by the scattered field on
the source, one can obtain the spontaneous emission decay
rate. Similarly, the dispersive part of the source-field interac-
tion would yield the (classical) frequency shift. It is, how-
ever, more compact to compute the self-consistent field sus-
ceptibility that accounts for the environment of the source as
it allows one to compute at once the decay rate for an arbi-
trary orientation of the dipole moment of the source.

The principle of the calculation is identical to the deriva-
tion of the local field presented in the previous section. Let ry,
be the position of the source; the self-consistent field suscep-
tibility tensor reads

F(ri’ Iy, 0)) = FO(ri’ ro, (J))

N
+ > Fy(r,.r;,0)a(r;, w)F(r,ro,w). (8)

Jj=1j#i

The field susceptibility is therefore computed through the
same procedure as the local field in the previous section. The
dynamics of the source is derived from the value of the field
susceptibility at the source, i.e.,

N

F(r()a Iy, (1)) = FO(rO’rO’ (1)) + 2 FO(r()a rj» (,()) a’(rj’ (l))F(rj, ro, (1)) .
j=1

)
The decay rate and frequency shift, normalized to free-space,

for a source with a dipole moment along, for instance, direc-
tion x can now be written as [19]

r 3
=1+ —Im[F, (ry,ry,w)], 10
r, =1+ g P ro)] (10)
(Aw), 3

. =—mRe[Fm(ro,ro,w)], (11)

where kog=w/c. The spontaneous emission rate is propor-
tional to the imaginary part of the field susceptibility (i.e., the
local density of states) as it corresponds to the dissipative
part of the interaction between the dipole moment of the
source and the electromagnetic field. On the other hand, the
frequency shift pertains to the dispersive part of the interac-
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FIG. 1. (Color online) Schematic of the H2 microcavity. The
slab thickness is 250 nm. The refractive index is 3.17. The period of
the lattice of the photonic crystal is 535 nm. The air hole radius is
178 nm. The source is a dipole located in the middle of the slab. In
the figure, we marked the in-plane positions for a dipole at the
center, at one corner (left), and at one side (top) of the H2 cavity.

tion and therefore it involves the real part of the field sus-
ceptibility at the location of the source. This formulation was
compared to the exact analytical result for a source inside a
microsphere with excellent agreement [26]. Note that the
CDM result includes a local-field factor which can be de-
rived numerically for a substitutional source [26] or calcu-
lated analytically for an interstitial source [27]. Here we will
use an interstitial source so as to eliminate the local-field
effect. We shall also normalize the decay rates to that of a
source in the bulk, i.e., an infinite mediumwith permittivity
E.

IV. EXAMPLE

To illustrate the calculation of radiation dynamics inside a
finite photonic crystal structure, we consider the configura-
tion of Fig. 1. A slab with dimensions 5350X 5125
X 250 nm? and refractive index 3.17 is drilled with air holes
(radius 178 nm) on a triangular pattern with period 535 nm.
An H2 cavity is created by omitting seven holes.

A source is placed inside the structure at an interstitial
position inside the lattice. Vertically the source is located in
the middle of the slab. We shall consider several positions of
the source inside the cavity. We discretize the structure with
a lattice size d=25 nm and use Egs. (8)—(10) to compute the
decay rate normalized to free space. We further normalize
the results to the decay rate of a source in an infinite medium
of permittivity e (which is Ve times the free-space decay
rate). Note that this implies that we factor out the local-field
effect which can be done readily as the local-field factor can
be derived analytically for any arbitrary interstitial position
of the source in the lattice [27].

By changing the radiation wavelength of the source, we
can also probe the optical modes of the cavity. Figure 2
shows the spontaneous emission rate spectra for a source
placed at three locations inside the cavity: at the center, near
a corner, and at one side of the cavity. The orientation of the
dipole moment of the source is given in the inset. We ob-
serve several resonances separated by regions where the de-
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FIG. 2. (Color online) Decay rate, normalized to a source in
bulk for a dipole located at the three positions marked in Fig. 1. The
position and orientation of the dipole are given in the inset.

cay rate is almost zero. These regions are the illustration of
the effect of the photonic band gap on the radiation dynamics
of the source. Photon emission by the source is inhibited in
those electromagnetic modes that are forbidden by the pho-
tonic crystal. Although this is not a three-dimensional photo-
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FIG. 3. (Color online) Square of the modulus of the electric field
(arbitrary units) above the cavity at the wavelength of modes la-
beled A (left column) and B (right column) in Fig. 2. The result has
been averaged over all orientations of the dipole moment of the
source in an xy plane. The maps are computed at different heights z
above the cavity. (a) and (d) z=50 nm; (b) and (e) z=100 nm; (c)
and (f) z=500 nm.
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FIG. 4. (Color online) Far-field intensity radiation pattern in the
half-space above the cavity for modes labeled A [top row, i.e. (a)
and (b)] and B [bottom row, i.e., (c) and (d)] in Fig. 2. Left column
[(a) and (c)]: the source is a dipole oriented along x. Right column
[(b) and (d)]: the source is a dipole oriented along y. The intensities
are normalized to the maximum intensity for a dipole oriented along
the x direction.

(b)

0.5

nic crystal, one can see that the combination of photonic
band-gap effect by the periodic array of holes, and refractive
confinement (total internal reflection) by the slab, leads to a
quite effective inhibition of spontaneous emission at some
frequencies. On the other hand, the resonances that we ob-
serve correspond to an enhancement of the spontaneous
emission of the source by the modes of the cavity. We can
also note that for a given frequency of emission of the
source, the spontaneous emission rate depends on the loca-
tion and the orientation of the dipole moment of the source.
This reflects the fact that in order to obtain a good electro-
magnetic coupling between the source and the cavity, the
source needs not only to overlap spectrally with the cavity
modes (where the density of states is larger), but also spa-
tially, since the coupling term involves the product of the
dipole moment of the source with the electric local field at its
location; i.e., the dynamics of the source depends on the
local density of states [28,29].

We have illustrated how the electromagnetic response of
the cavity and the radiation dynamics of the source can be
computed simultaneously. We now turn our attention to the
spatial distribution of light in the near-field of the cavity.
Near-field intensity maps can be computed using Eq. (5). We
emphasize that because the CDM only requires that the scat-
terer be discretized, the computation of the scattered field is
not restricted to lattice sites. Note that the field maps can be
computed efficiently as cyclic convolution products as de-
scribed previously for the computation of the local field. We
plot in Fig. 3 the square of the electric field at a distance z
above the cavity. The left column corresponds to the cavity
mode labeled A in Fig. 2, whereas the right column pertains
to mode B. In an ideal structure, modes A and B are degen-
erate. In our case, the degeneracy is lifted by our discretiza-
tion of the cavity. The two modes, however, retain a similar
pattern, with a prevailing direction given by x (dipole along
y) for mode A and y (dipole along x) for mode B. What is
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FIG. 5. (Color online) Square of the modulus of the electric field
(arbitrary units) above the cavity at the wavelength of modes la-
beled C (left column) and D (right column) in Fig. 2. The result has
been averaged over all orientations of the dipole moment of the
source in an xy plane. The maps are computed a different heights z
above the cavity. (a) and (d) z=50 nm; (b) and (e) z=100 nm; (c)
and (f) z=500 nm.

also interesting is that the finer details of the mode structure
wash out quite quickly as one moves away from the surface
of the cavity. Figures 3(c) and 3(f), for instance, are com-
puted 500 nm above the cavity and do not show any of the
detail still visible at 100 nm [Figs. 3(b) and 3(e)]. This low-
pass filtering of high spatial modes is another reason for
using near-field techniques to observe the mode pattern of
this type of structure [30].

As we mentioned in Sec. II, the far-field radiation pattern
can be computed easily once the local field is known in the
scatterer. In Fig. 4, we plot the intensity radiation pattern of
the two modes. The patterns are normalized to the maximum
intensity for a source transition moment oriented along x.
Figures 4(a) and 4(b) pertain to mode A, whereas Figs. 4(c)
and 4(d) pertain to mode B. These far-field patterns are in
agreement with the spectrum, namely they show that modes
A and B correspond to an y and x dipole, respectively. Fur-
thermore, the obvious similarities between the far-field pat-
terns of the two modes illustrate that these two modes are in
fact degenerate and that although the discretization removes
the degeneracy, it does not induce any significant perturba-
tion on the far-field radiation patterns of the two modes. Note
that experimentally the mode degeneracy is usually lifted
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FIG. 6. (Color online) Square of the modulus of the electric field
(arbitrary units) above the cavity at the wavelength of modes la-
beled E (left column) and F (right column) in Fig. 2. The result has
been averaged over all orientations of the dipole moment of the
source in an xy plane. The maps are computed a different heights z
above the cavity. (a) and (d) z=50 nm; (b) and (¢) z=100 nm; (c)
and (f) z=500 nm.

because of the structural fluctuation of the crystal parameters
and the finite size of the structure.

The elusive nature of the evanescent components of the
optical modes is emphasized further in the behavior of the
mode labeled C [Figs. 5(a)-5(c)]. This mode exhibits a pat-
tern of six spots located at the center of the six walls (sides)
of the cavity. However, only 500 nm above the cavity, the
structure of the mode has disappeared to leave a ring-shaped
field pattern. Note that this evolution with the distance to the
cavity has recently been observed with a near-field scanning
optical microscope [30]. Again, this illustrates the need to be
within the near field of the cavity to observe the actual mode
structure.

The field map shown in Figs. 5(d), 5(e), and 5(f) is dif-
ferent from the other ones in that it corresponds to a very
weak resonance labeled D on the spectrum (not visible on
the scale of Fig. 2). What is interesting about this field map is
that such a mode with bright spots at the six corners of the
cavity has been observed experimentally using a scanning
near-field optical microscope; this mode appeared as a peak
in the near-field spectrum, whereas it was absent from the
far-field spectrum [30]. Our calculation allows us to gain
some insight into the nature of this mode. The field intensity

056601-5



BORDAS et al.

FIG. 7. (Color online) Square of the modulus of the electric field
(arbitrary units) above the cavity at the wavelength of the mode
labeled G in Fig. 2. The result has been averaged over all orienta-
tions of the dipole moment of the source in an xy plane. The maps
are computed a different heights z above the cavity. (a) z=50 nm;
(b) z=100 nm; (¢) z=500 nm.

map computed 500 nm above the cavity [Fig. 5(f)] shows
that the main contribution to the intensity comes from the
source (located in the lower left corner of the cavity) rather
than from the optical mode inside the cavity. This shows that
we are dealing with a very weak resonance of the cavity.
Similar field map calculations for the modes labeled E
through G on the spectrum are shown in Figs. 6 and 7. Al-
though the modeling of the interaction of the near-field probe
with the optical mode of the cavity is beyond the scope of
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this paper, we can make a few comments. Modes E and F are
twofold degenerate, which makes it difficult to observe a
clear pattern in the near field as confirmed by experiments
[30]. On the other hand, we note that the experimental near-
field map of mode G is in good agreement with the observed
pattern if we consider the map computed 500 nm above the
cavity. This is most likely due to the finite size of the optical
probe in the experiment, which leads to a low-pass filtering
of the field pattern. In an actual experiment also, because of
the vertical extension of the probe the interaction occurs over
a finite region above the cavity, not a single plane, which,
depending on the mode pattern, can lead to an intensity map
that differs from the one computed without accounting for
the probe.

V. CONCLUSION

We have presented a coupled dipole treatment of the prob-
lem of a source embedded in a cavity inside a finite photonic
crystal structure. We have illustrated the approach on an H2
photonic crystal microcavity for which we computed the
cavity spectrum, the Purcell effect, the near-field map, and
the far-field radiation pattern. We also discussed our results
in light of the recent near-field optical probing of an H2 and
found excellent agreement with the experimental results. We
have thus demonstrated that the CDM can be used to address
radiation dynamics in an arbitrary, finite photonic crystal
structure.

ACKNOWLEDGMENTS

This work is supported by the Ministere délégué a la Re-
cherche et aux Nouvelles Technologies through an “ACI
Jeune Chercheur” Grant.

[1] E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).

[2] E. Drouard, H. T. Hattori, C. Grillet, A. Kazmierczak, X. Le-
tartre, P. Rojo-Romeo, and P. Viktorovitch, Opt. Express 13,
3037 (2005).

[3]J. Mouette, C. Seassal, X. Letartre, P. Rojo-Romeo, J. L.
Leclercq, P. Regreny, P. Viktorovitch, E. Jalaguier, P. Perreau,
and H. Moriceau, Electron. Lett. 39, 526 (2003).

[4]J. Vuckovic, D. Englund, D. Fattal, E. Waks, and Y. Yama-
moto, Physica E (Amsterdam) 31, 2 (2006).

[5] M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda,
Science 308, 1296 (2005).

[6] D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T.
Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vuckovic, Phys.
Rev. Lett. 95, 013904 (2005).

[7] K. Kounoike, M. Yamaguchi, M. Fujita, T. Asano, J. Nakan-
ishi, and S. Noda, Electron. Lett. 41, 1402 (2005).

[8] S. G. Johnson and J. D. Joannopoulos, Opt. Express 8, 173
(2001).

[9] A. Taflove and S. C. Hagness, Computational Electrodynam-
ics: The Finite-Difference Time-Domain Method, 2nd ed.

(Artech House, Norwood, MA, 2000).

[10] P. C. Chaumet, A. Rahmani, and G. W. Bryant, Phys. Rev. B
67, 165404 (2003).

[11] S. Haroche, in Fundamental Systems in Quantum Optics, ed-
ited by J. Dalibard, J. M. Raimond, and J. Zinn-Justin (North-
Holland, Amsterdam, 1992), pp. 767-940.

[12] B. Fain, Phys. Rev. A 37, 546 (1988).

[13] E. M. Purcell and C. R. Pennypacker, Astrophys. J. 186, 705
(1973).

[14] B. T. Draine, Astrophys. J. 333, 848 (1988).

[15] B. T. Draine and J. C. Weingartner, Astrophys. J. 470, 551
(1996).

[16] P. C. Chaumet and M. Nieto-Vesperinas, Phys. Rev. B 61,
14119 (2000); 62, 11185 (2000); 64, 035422 (2001).

[17] P. C. Chaumet, A. Rahmani, and M. Nieto-Vesperinas, Phys.
Rev. Lett. 88, 123601 (2002).

[18] A. Liu, A. Rahmani, G. W. Bryant, L. Richter, and S. Stranick,
J. Opt. Soc. Am. A 18, 704 (2001).

[19] A. Rahmani, P. C. Chaumet, and F. de Fornel, Phys. Rev. A
63, 023819 (2001).

056601-6



COUPLED DIPOLE METHOD FOR RADIATION...

[20] P. C. Chaumet, A. Sentenac, and A. Rahmani, Phys. Rev. E
70, 036606 (2004).

[21] A. Lakhtakia, Int. J. Mod. Phys. C 3, 583 (1992).

[22] A. Lakhtakia and G. Mulholland, J. Res. Natl. Inst. Stand.
Technol. 98, 699 (1993).

[23] R. W. Freund and N. M. Nachtigal, Numer. Math. 60, 315
(1991).

[24]7. J. Goodman, B. T. Draine, and P. J. Flatau, Opt. Lett. 16,
1198 (2001).

[25] We use the FFT code of D. Takahashi (http://www.ffte.jp/).

[26] A. Rahmani and G. W. Bryant, Phys. Rev. A 65, 033817

PHYSICAL REVIEW E 73, 056601 (2006)

(2002).

[27] A. Rahmani, P. C. Chaumet, and G. W. Bryant, Opt. Lett. 27,
430 (2002).

[28] R. Sprik, B. A. van Tiggelen, and A. Lagendijk, Europhys.
Lett. 35, 256 (1996).

[29] R. C. McPhedran, L. C. Botten, J. McOrist, A. A. Asatryan, C.
M. de Sterke, and N. A. Nicorovici, Phys. Rev. E 69, 016609
(2004).

[30] N. Louvion, D. Gérard, J. Mouette, F. de Fornel, C. Seassal, X.
Letartre, A. Rahmani, and S. Callard, Phys. Rev. Lett. 94,
113907 (2005).

056601-7



