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ABSTRACT

We investigate the influence of local-field effects on the electromagnetic response of a collection of dipoles. We
derive the local-field corrected static polarizability for a collection of dipoles in the case of a scatterer with uniform
depolarization. We then use this correction within the discrete dipole approximation to study the scattering of an
electromagnetic wave by a spherical particle. The local-field correction leads to a new formulation of the discrete
dipole approximation that is exact in the long-wavelength limit and more accurate at finite frequencies. We also
discuss the feasibility of a generalization of the local-field correction to arbitrary scatterers.

Subject headings: dust, extinction — scattering

1. INTRODUCTION

The scattering of electromagnetic waves by irregular objects
can be addressed from many viewpoints. For simple or special
configurations, analytical solutions can be found. However, in
the majority of cases the scattering problem is not amenable
to an analytic solution and numerical methods must be used.
Many computational approaches exist, relying on different
strategies (Mishchenko et al. 2000; Kahnert 2003). Among
these methods one finds volume integral methods, of which
the discrete dipole approximation (DDA) is a discretized
version. The DDA was introduced by Purcell & Pennypacker
(1973) to study the scattering of light by interstellar dust
grains with arbitrary shapes. Dust grains can alter the elec-
tromagnetic signature of stars and galaxies, some wavelengths
being attenuated or, conversely, strengthened by the scattering
process (Draine 2003). An accurate description of the scat-
tering of light by arbitrary dust grains is therefore an essential
part of the astrophysics of the interstellar medium. The theo-
retical foundation of the DDA stems from a simple observa-
tion. When an object interacts with an electromagnetic field, it
develops a polarization. If one considers a small enough
volume inside the object, the induced polarization will be uni-
form within this volume and hence that small region can be
represented by an electric dipole. Accordingly, in the DDA
the scatterer is discretized over a cubic lattice and its elec-
tromagnetic properties are described by those of a collection
of coupled electric dipoles. Therefore, the central quantity in
the DDA is the electric polarizability associated with the di-
poles (polarizable regions forming the scatterer).

The original formulation of the DDA (Purcell & Pennypacker
1973) used the Clausius-Mossotti (CM) polarizability. How-
ever, the CM polarizability is only exact in the long-wavelength
(static) regime, and for an isolated dipole in free-space (or a
dipole in an infinite lattice). Consequently, problems such as
the violation of the optical theorem arise when the DDA is

used at finite frequencies, a critical issue for the calculation of
absorption cross sections or optical forces and torques (Draine
& Weingartner 1996; Chaumet & Nieto-Vesperinas 2000;
Chaumet et al. 2002). Subsequent formulations of the DDA
improved on the CM polarizability by accounting for retardation
and propagation effects (Draine & Flatau 1994 and references
therein). For instance, Draine (1988) introduced a radiation-
reaction correction to the CM polarizability, thereby ensuring
that the optical theorem is satisfied (i.e., the total electromagnetic
energy is conserved). Later, Draine & Goodman (1993) intro-
duced the lattice dispersion relation (LDR) correction to derive
a polarizability such that the lattice would reproduce the prop-
agation properties of a continuum. Other forms of the polariz-
ability were also proposed in order to improve the performance
of the DDA at finite frequencies (Dungey & Bohren 1991;
Lakhtakia 1992). A point worth emphasizing is that although
several prescriptions exist for the polarizability, they all reduce
to the Clausius-Mossotti expression in the long-wavelength
(static) limit. In other words, it has been widely accepted that
the CM polarizability was the correct starting point and that
any improvement of the DDA in describing electromagnetic
scattering has to come from an improvement of how dynamic
(i.e., finite frequency) effects are accounted for.

However, in his study of light scattering by spherical par-
ticles Draine (1988) pointed out some discrepancies between
the DDA and the exact Mie calculation in the long-wavelength
limit. These discrepancies are most noticeable for large values
of jn�1j (n being the complex refractive index of the sphere),
and are not due to a mere convergence issue since increasing
the number of dipoles does not solve the problem. In the long-
wavelength regime radiative corrections are irrelevant; there-
fore, the problem pointed out by Draine suggests that the
conventional form of the DDA overlooks some fundamental
issues that exist in the long-wavelength regime.

While this long-wavelength anomaly may hinder high-
precision scattering calculations at any wavelength (the
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finer the discretization, the closer to the long-wavelength
limit), it will have particularly dramatic consequences in the
infrared (IR) part of the electromagnetic spectrum (1�m <
wavelength < 300 �m). Indeed, consider the scattering of
electromagnetic radiation by interstellar dust particles. In the
IR region, two effects will contribute to the dramatic increase
of the long-wavelength anomaly. First, for a given size of the
scatterer as the wavelength gets larger one moves deeper into
the long-wavelength regime. The second effect results from
the large refractive index (and the usually concomitant large
absorption) that most materials exhibit as the wavelength
increases, which demands a fine discretization in the DDA and
hence ensures again that the long-wavelength regime will be
attained. These two effects can drastically reduce the accuracy
of the DDA, putting the method in a delicate situation. A
coarse discretization will fail at describing accurately the
scattering properties of the particle. But on the other hand, a
fine discretization will hit the long-wavelength anomaly. The
only way to overcome this problem is by understanding the
physics of the scattering of electromagnetic waves by a col-
lection of dipoles in the long-wavelength regime.

In this paper, we address the problem of the static polariz-
ability for a dipole in a finite lattice, by deriving an expression
of the polarizability that takes into account the particular
environment of each dipole. Because the correction is made
on the static polarizability, the usual radiative corrections,
such as the LDR, still apply. We illustrate the relevance of
local-field corrections by computing the scattering properties
of a spherical particle and comparing them to the exact Mie
results. We also discuss the possibility of extending this ap-
proach to arbitrary scatterers.

2. DERIVATION OF A STATIC POLARIZABILITY THAT
ACCOUNTS FOR LOCAL-FIELD EFFECTS

The idea behind our derivation is quite simple. When a static
electric field is applied to a collection of small polarizable
particles, each particle will develop an induced dipole moment
that will depend on the applied field but also on the field
resulting from all other induced dipoles. This local-field effect
will be responsible for all particle not having an identical po-
larization, which in other terms means that not all particles will
have the same effective polarizability. The simplest way to see
this is to consider a slab of matter discretized over a cubic lattice
with infinite extension along directions x and y, and a finite
thickness, larger than a few layers, along z. From symmetry
considerations, a dipole near the center of the slab should have
equal polarizabilities along directions x, y, and z. On the other
hand, for a dipole at the surface of the slab one should expect
that the response (polarizability) to an applied field within the xy
plane will differ from the response to a field applied along z. We
now express this idea in a more formal way. For the sake of
clarity we reproduce here the derivation of the static polariz-
ability as described in Rahmani et al. (2002). However, we will
make an essential distinction between two classes of scattering
objects that was not made in Rahmani et al. (2002). The first
class, with uniform depolarization (response of the material due
to polarization charges when an electric field is applied), is
discussed in the next section. The second class, with nonuni-
form depolarization, will be discussed in x 3.2.

2.1. Class A: Objects with Uniform Depolarization

From a mathematical viewpoint, the first class of objects
comprises shapes for which the depolarization tensor is

uniform over the volume of the object. The depolarization
tensor L can be viewed as a geometrical factor whose value is
determined by the shape of the object (Yaghjian 1980). From a
physical viewpoint, these are objects that respond to a uniform
static electric field by exhibiting a uniform electric polariza-
tion (not necessarily parallel to the initial field). This class
includes objects such as slabs, infinite cylinders, spheres,
and spheroids. Consider a class A homogeneous scatterer with
permittivity � (assumed to be scalar for simplicity), whose
electromagnetic properties are approximated by a set of N
electric dipoles with electric polarizability � i (i ¼ 1;N ), ar-
ranged on a cubic lattice with spacing d. The self-consistent
local field at subunit i is

E loc
i (!) ¼ E0

i (!)þ
X
j 6¼ i

Fi j(!)� j (!)E
loc
j (!): ð1Þ

E0
i (!) is the incident field at subunit i, F(!) is the free-space

field susceptibility (Green tensor), and ! is the angular fre-
quency of the electromagnetic wave. The sum over j runs over
all the subunits forming the scatterer. Note that the term j ¼ i
is not included in the sum; this term is automatically dealt with
by accounting for the finite volume of the dipoles.
We make the electrostatic approximation (! ¼ 0; the an-

gular frequency will be omitted in the equations henceforth)
and consider a uniform applied field E0. In the case where the
macroscopic field Em is uniform over the lattice, it can be
related to the applied field through the (uniform) depolariza-
tion tensor L such that

1þ �� 1

4�
L

� �
Em ¼ E0; ð2Þ

where 1 is the identity tensor. Once the macroscopic field is
introduced in equation (1) we obtain

E loc
i ¼ 1þ �� 1

4�
L

� �
Em þ

X
j 6¼ i

Fi j� jE
loc
j : ð3Þ

By definition , the local-field tensor +i satisfies

E loc
i ¼ +iE

m: ð4Þ

Using the fact that the (uniform) polarization can be written as

P ¼ � i

d 3
E loc
i ¼ �� 1

4�
Em ¼ �� 1

4�
+�1

i E loc
i ; ð5Þ

we can express the polarizability in terms of the local-field
tensor:

� i ¼
�� 1

4�
+

�1
i d 3: ð6Þ

The local-field tensor is derived by using equations (4)–(6) to
express the local field in terms of the macroscopic field in
equation (3), leading to

+i ¼ 1þ �� 1

4�
Lþ

X
j6¼i

Fij

�� 1

4�
d3: ð7Þ

The local-field corrected static polarizability (LFCSP) of
equation (6) reduces to the CM expression only for a single,
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isolated dipole in free space, or a dipole in an infinite lattice
(for any practical purpose, a dipole more than a few lattice
sites away from any interface can in general be considered as
immersed in an infinite lattice).

We emphasize that our correction affects the static polar-
izability, i.e., the LFCSP prescription is used as a replacement
of the CM expression. Consequently, previously derived cor-
rections that account for radiation-reaction (Draine 1988) or
propagation effects (Draine & Goodman 1993) can be applied
to the LFCSP.

Rahmani et al. (2002) illustrated the relevance of the LFCSP
by computing the field inside and outside a slab. Note that the
slab was actually treated as a three-dimensional problem using
a generalization of the DDA to periodic systems (Chaumet
et al. 2003). This made it possible to use the conventional,
three-dimensional expressions for the field susceptibility and
the polarizability. Using the example of a slab, we showed
that accounting for the influence of the local environment of
the dipoles on their electromagnetic response led to a more
accurate estimate of the macroscopic field inside the slab as
well as a more accurate calculation of reflected and trans-
mitted fields.

However, it is of interest to test the prescription of equa-
tions (6) and (7) on a fully three-dimensional scatterer. In
the next section, we consider the case of a spherical scatterer.

2.2. Example: Light Scattering by a Homogeneous
Spherical Particle

The case of a homogeneous spherical scatterer is of partic-
ular interest because an analytic solution is known in the form
of a Mie series. We shall use the Mie result as our reference
in the computation of the scattering properties of spheres. The
Mie scattering numerical code we use is the Bohren-Huffman
Mie scattering subroutine modified by Draine. Our DDA
light-scattering code is derived from our DDA spontaneous

emission code (Rahmani et al. 2001; Rahmani & Bryant 2002)
by solving for the electric field instead of the field sus-
ceptibility. The local field at each lattice site is found by
solving a linear system using the QMR iterative solver de-
veloped by Freund & Nachtigal (1991). For free-space com-
putations, we perform matrix-vector multiplications using the
Temperton fast Fourier transform routine (FFT; Temperton
1992) as implemented in the DDSCAT code of Draine and
Flatau.1

For a homogeneous sphere with permittivity �, the depo-
larization tensor L is constant within the volume of the sphere
and equal to 4�=3 (note that our definition of L and that of
Yaghjian 1980 differ by a factor 4�). Following equation (7),
the local-field tensor becomes

+i ¼
�þ 2

3
þ �� 1

4�
d 3

X
j 6¼ i

Fi j; ð8Þ

where the sum involves the static limit of the free space field
susceptibility. It is of interest to note that d3 times the sum is
a finite lattice sum that depends only on the relative position
of the dipoles on the lattice. Therefore, the sum pertaining to
a homogeneous sphere with a given number N of dipoles need
not be computed again if the wavelength of the incident light,
the permittivity of the sphere, the lattice spacing or any other
parameter is changed.

We plot in Figures 1, 2, and 3 the relative error (using Mie
as a reference) for the extinction, absorption, and scattering
efficiencies, as a function of jnjkd where n is the complex
refractive index of the sphere, k the magnitude of the wave

Fig. 1.—Scattering properties of a pseudosphere with N ¼ 17904 and � ¼ n2 ¼ 5þ 5i. The incident wave vector is along direction ½1 1 1� of the lattice. The
electric field is polarized along direction ½2 1̄ 1̄� of the lattice. From top to bottom the figure shows extinction, absorption, and scattering efficiencies (Qext;Qabs, and
Qsca; top panel ) as given by Mie as a function of the normalized lattice spacing jnjkd, where k is the free-space wave vector of the incident light; and the relative
error in the DDA computed values of the extinction, absorption, and scattering efficiencies (lower three panels). The static polarizability (dashed lines) is defined
according to the Clausisu-Mossotti relation. The static polarizability (solid lines) is defined according to eq. (6). A dynamic correction is applied to both forms of the
static polarizability. (a) Lattice dispersion relation (LDR); (b) radiation reaction.

1 DDSCAT is a software package developed by Draine and Flatau that
applies the DDA to calculate scattering and absorption of electromagnetic
waves by targets with arbitrary geometries and complex refractive index.
DDSCAT is available at http://www.astro.princeton.edu/~draine/DDSCAT
.6.0.html. Note that the routines we use come from ver. 5.10 of DDSCAT.
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vector in vacuum of the incident light, and d the DDA lattice
spacing. The scatterer is a pseudosphere composed of N ¼
17; 904 dipoles. The plots in all the figures are for an incident
field with a wave vector parallel to direction ½1 1 1� of the
lattice and polarized along direction ½2 1̄ 1̄�. Other combina-
tions of propagation direction and polarization lead to similar
results for the effectiveness of the LFCSP prescription. The
extinction and absorption efficiencies are calculated from the
respective cross sections (Draine 1988, eqs. [3.02] and [3.06]).
The scattering efficiency is computed as the difference of the
two other efficiencies after we check that it yields a value in
agreement with what can be found by a direct computation
(Draine 1988, eq. [3.07]).

A good assessment of the relevance of the LFCSP pre-
scription can be made by considering a scatterer with j� 2�
1j > 1. We consider in Figures 1a and 1b a sphere with per-
mittivity � ¼ 5þ 5i. The two figures differ by the nature of the
radiative correction . On Figure 1a, the LDR prescription is
used (in addition to the ‘‘static prescription’’; either CM or
LFCSP), whereas the radiation-reaction corrective term is used
in Figure 1b. We consider two dynamic correction terms
merely to illustrate the fact that the LFCSP leads to an im-
provement of the accuracy of the DDA irrespective of the
specifics of the additional correction procedure used to account
for finite frequency effects. The overall effect of the LFCSP is
to bring the DDA computation closer to the Mie result. In

Fig. 2.—Same as Fig. 1, but for (a) silicate at 20 �m (� ¼ n2 ¼ 2:3þ 4i) and (b) silicon carbide at 12 �m (� ¼ n2 ¼ �9þ 20i). The radiation-reaction correction
is used in both cases.

Fig. 3.—Same as Fig. 1, but for graphite at 20 �m. (a) Electric field parallel to c-axis, � ¼ n2 ¼ 3þ 1:4i; (b) electric field perpendicular to c-axis, � ¼
n2 ¼ �34þ 140i. The radiation-reaction correction is used.
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particular, the tendency of the DDA to overestimate the ab-
sorption is noticeably moderated by the use of the LFCSP.
Another striking feature is that the local-field corrected DDA
converges toward the exact result, whereas the conventional
DDA (using the CM polarizability) converges toward a result
with a relative error of a few percent in the long-wavelength
limit (jnjkd ! 0). We emphasize that this does not depend on
the permittivity of the sphere; the local-field correction of
equation (8) was designed precisely to yield the exact result in
the static limit. This point is illustrated further in the next
figures. As we mentioned previously, the DDA might have
great difficulties at describing accurately scattering processes
in the infrared region of the spectrum. Figures 2a and 2b
pertain to a spherical particle with permittivities � ¼ n2 ¼
2:3þ 4i and � ¼ n2 ¼ �9þ 20i, respectively. These rounded-
off values are close to the permittivity of silicate around 20 �m
and that of silicon carbide around 12 �m (Laor & Draine
1993). Figures 3a and 3b pertain to a spherical particle with
permittivities � ¼ n2 ¼ 3þ 1:4i and � ¼ n2 ¼ �34þ 140i,
respectively, which corresponds to graphite around 20 �m with
the electric field parallel (Fig. 3a) or perpendicular (Fig. 3b) to
the c-axis (Laor & Draine 1993).

One can see that, irrespective of the permittivity, the LFCSP
prescription leads to a higher accuracy of the DDA. Most
striking is the fact that the DDA using our new prescrip-
tion always converges toward the exact result in the long-
wavelength limit. Moreover, we see again that the LFCSP
lessens the tendency of the DDA to overestimates absorption.
This is most noticeable in Figure 3b, where the imaginary part
of the permittivity is large.

These examples demonstrate the dramatic effect that the
local-field correction has on the computation of the electro-
magnetic properties of a sphere with the DDA, despite the
fact that the correction is significant only for the dipoles at
the surface of the sphere. In the next section, we discuss the
possibility of a generalization of this approach to arbitrary
scatterers.

3. SCATTERERS WITH ARBITRARY SHAPE

3.1. Class A: Objects with Uniform Depolarization

For this class of objects, the LFCSP is readily found using
equation (7) with the appropriate value of L in place of the
4�=3 value for a sphere. For objects from this class, or

sometimes a collection of objects as illustrated in Figure 4a,
the use of the LFCSP prescription will make the DDA con-
verge toward the exact result in the long-wavelength limit and
should improve significantly the performances of the DDA
at finite frequencies, not only for far-field computations but for
internal fields as well. We emphasize again that the LFCSP
will differ from the CM polarizability only near interfaces. To
illustrate this point, we plot in Figure 4b the xx (squares) and
zz (circles) components of the LFCSP, normalized to the CM
result, for the multilayered structure of Figure 4a. Figure 4b
shows that only the dipoles at the interfaces have optical
responses that depart notably from the CM prescription.

3.2. Class B: Objects with Nonuniform Depolarization

This class comprises objects that would exhibit a nonuni-
form polarization when placed in a uniform static field. One of
the simplest examples of such an object is a dielectric cube.
For this class of objects, the derivation described above or in
Rahmani et al. (2002) is not valid.2

While investigating the possibility of extending the LFCSP
to class B objects, we found that Karam (1997) derived the
general expression for the macroscopic field at position r
inside an arbitrary object placed in a static field E0. The
macroscopic field reads

Em(r) ¼ E0(r)� (�� 1)

4�

Z
S

R̂ ds0

jr� r0j2
Em(r0); ð9Þ

where � is the permittivity of the object, R̂ ¼ (r� r0)= jr� r0j,
and the integration is performed over the surface S enclosing
the object. Note that when the macroscopic field is uniform,
equation (9) reduces to equation (2), with the depolarization
tensor given by

L ¼
Z
S

R̂ ds0

jr� r0j2
: ð10Þ

Fig. 4.—(a): Reflected, internal, and transmitted electric field for a multilayered slab. The polarization of the incident light is shown on the figures. Solid line:
exact result; dashed line with crosses: DDA using CM; dashed line with diamonds: DDAwith LFCSP. The radiation-reaction prescription is applied to both forms of
the static polarizability. (b): Plot of the xx (squares) and the zz (circles) components of the LFCSP normalized to the CM result for the structure of Fig. 3a. The
dashed vertical lines mark the interfaces.

2 Note that because the necessity of a uniform depolarization was not
explicit, eq. (8) in Rahmani et al. (2002) is misleading as it does not include
the simplifications that result from the depolarization tensor being uniform.
However, it is clear that eq. (8) is not valid for a class B object since it would
yield a nonsymmetric static polarizability; a physical impossibility.
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Therefore, the obstacle in deriving the LFCSP for a class B
objects lies in the fact that a simple term of proportionality
between the incident and the macroscopic field cannot be
found. However, it will be of great interest to investigate
the possibility of estimating numerically the surface effect
of equation (9) in order to derive a more appropriate expres-
sion of the static polarizability when the DDA is used to
represent class B objects. We are currently working to extend
the LFCSP to this class of objects.

4. CONCLUSION

We have considered an electric dipole on a lattice and we
have shown that its electrostatic response (static polarizabil-
ity) depends on its local environment (local-field effect).
From this observation, we have derived a new prescription
for the static polarizability to be used in the DDA in place of
the Clausius-Mossotti expression. Our general derivation is
valid for any value of the refractive index and always con-
verging to the exact result in the long-wavelength limit. We

also showed that, at finite frequencies, the usual radiative
corrections to the polarizability can still be used. As a result,
when the DDA is used to model light scattering by a
spherical scatterer, the accuracy of the computation is glob-
ally enhanced and the long-wavelength problem pointed out
by Draine (1988) is resolved. Moreover, our prescription
improves significantly the description of strongly absorbing
material. The derivation of the static polarizability presented
in this work is valid for any scatterer whose depolarization
tensor, and by extension macroscopic field, is uniform. For
other shapes, there is no simple factor of proportionality
between the macroscopic field and the incident field, which
hinders the derivation of a static polarizability that account
for local-field effects. However, as we have shown, the local-
field correction can lead to significant improvements in the
modeling of scattering and internal properties of scatter-
ers, particularly in the infrared region. Therefore, even an
approximate solution of the local-field problem is worth
investigating.
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