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Abstract
The detection and the characterization of targets buried in a natural medium
using an array of monochromatic micro-wave antennas are difficult tasks as
medium heterogeneities blur the signature of the objects of interest. In this
paper, we propose to couple a nonlinear inversion method to an eigenvector
analysis of the time reversal operator (Décomposition de l’Opérateur de
Retournement temporel (DORT) technique) for imaging the targets. We show
that this combined approach yields much better results than those of the
inversion or DORT approaches alone. In particular, it enables us to characterize
targets in highly cluttered environments supporting multiple scattering. The
efficiency of the technique is illustrated throughout many examples with varying
clutter statistics.

(Some figures may appear in colour only in the online journal)

1. Introduction

The detection and the characterization of objects using electromagnetic waves as a probing field
are of great interest in many areas, such as non-invasive testing, medical imaging or subsoil
probing. In most applications, the imaging issue is made difficult by the inhomogeneities
of the natural medium that blur the signature of the targets. Moreover, the emitting and
receiving antennas are generally located only on one side of the investigation domain so that
the information obtained from the response of the medium to the wave excitation is spatially
limited. While numerous mathematical [1] or applied physics [2–4] studies have addressed the
problem of target tracking and detection in a noisy environment, a few of them have considered
the specific issue of target characterization in a heterogeneous medium.
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The first issue is to extract the target contribution from the background noisy signature.
A tool of choice for this purpose is the time reversal signal technique or its frequency
counterpart, the DORT procedure (Décomposition de l’Opérateur de Retournement temporel).
The DORT method, originally developed in acoustics [5, 6], was more recently applied to
electromagnetic waves [7, 8]. It consists in analysing the eigenvalues and eigenvectors of
the time reversal operator (TRO), in order to synthesize incident fields that focus selectively
on the targets of interest, thus improving the signal-to-noise ratio. Additional possible data
preprocessing such as frequency averaging [9], angular correlation [10] or Wigner–Ville
transform [11] can enhance further the target signature. The methods developed for detecting
and localizing the targets buried in an inhomogeneous random medium are often based on
the manipulation of the TRO [12, 13, 1]. The simplest approach consists in simulating,
in a homogeneous average medium, the intensity maps of the dominant eigenvector fields
of the TRO and using these maps for pinpointing the targets. These techniques have been
shown to be efficient for weakly contrasted clutter where single scattering dominates but
have shown their limits in configurations supporting multiple scattering, especially when
using only monochromatic data [14–16]. Moreover, they do not provide any useful images
for characterizing the targets. For these reasons, inversion techniques which reconstruct the
permittivity map of a given investigation domain and which, in their nonlinear versions,
can handle configurations supporting multiple scattering [17–21] seem to be an interesting
alternative. However, the accuracy of the nonlinear reconstructions is strongly dependent on
the signal-to-noise ratio and on the size of the investigation domain [22]. When the targets
are buried in an inhomogeneous medium, the investigation domain should be large enough
to account properly for the perturbation induced by the clutter. In this case, the inversion
requires important computational resources, especially in the three-dimensional vectorial
configuration, and often fails because of the large number of unknowns compared to the number
of data.

In this paper, we propose to combine the advantages of the nonlinear inversion methods
with that of the DORT analysis. We show that this hybrid technique can be used to detect,
localize and characterize targets buried in highly contrasted clutter supporting multiple
scattering in a much better way than the DORT or classical inversion methods alone. Our
analysis is supported by three-dimensional vectorial simulations of an imaging experiment in
which two spheres buried in a random inhomogeneous medium are illuminated and observed
by an array of monochromatic microwave antennas.

2. Simulation of the imaging experimentand resolution of the forward problem

The three-dimensional imaging configuration simulated in this work is depicted in figure 1.
We consider an infinite homogeneous lossless medium of permittivity εb. The targets under
study are defined by their relative permittivity εr and are confined in a domain W . They are
surrounded by an inhomogeneous medium with relative permittivity εc(r) = εb + ε f (r),

where ε f (r) is a random function which is null outside W and whose average is null over
W . The entire configuration is non-magnetic. A two-dimensional array of N crossed-dipole
monochromatic antennas lying in a plane above W is used to illuminate and observe the scene.
This configuration resembles that which is encountered in the detection of buried objects. We
have chosen a clutter perturbation with null average in order to dismiss the issue of the interface
and to focus on the volume scattering. Note that, in practice this configuration can be obtained
with a proper impedance matching of the antennas or an appropriate time windowing. The
finite size of the clutter expansion, which is necessary for computation purposes, is chosen
wide enough for representing an ‘infinite’ clutter perturbation.
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Figure 1. Geometry of the problem. The transmitters and receivers are regularly distributed on a
plane, located on one side of the objects. The objects are confined in a disordered medium.

To simulate the data of the imaging experiment, we calculate at the position of the receivers
the field scattered by W when the latter is illuminated by an antenna. The forward scattering
problem is solved using the coupled dipole method (CDM) that was introduced by Purcell and
Pennypacker in 1973 [23]. The CDM method manipulates the local field but in [24] the authors
show that the CDM is equivalent to the moments method (MOM) which uses the macroscopic
field instead. The self-consistent macroscopic electric field is given by

El,α (r) = Einc
l,α (r) +

∫
W

G(r, r′)χ(r′)El,α (r′) dr′, (1)

and the observation equation is given by

Esca
l,α (r) =

∫
W

G(r, r′)χ(r′)El,α (r′) dr′, (2)

where E and Esca denote the total field and the scattered field, respectively. In the following,
the position vector r is written as

r = xex + yey + zez, (3)

where ex, ey and ez are unit vectors of a right-handed Cartesian coordinate frame; see figure 1.
The orientation of the dipole antenna which generates the electromagnetic incident field that
illuminates the scene can take the three orientations, along the x-axis, y-axis, or z-axis. In
equations (1) and (2), the subscript l is an integer indexing the dipole and α = x, y or z
indicates the direction of the emitting antenna direction. In other words, when α = x, Esca,
E and Einc correspond to the scattered, total and incident fields that are obtained when the
excitation dipole antenna is oriented along the x-axis. The function χ(r′), whose support is
restricted to the scattering domain W , is the linear susceptibility of the object

χ(r′) = ε(r′) − εb. (4)

G(r, r′) is the three-dimensional (3D) Green function in the homogeneous infinite medium
with permittivity εb. Details on the expression and on the numerical computation of 3D Green
function can be found in [24, 25].
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3. The DORT method

In this section, we recall the properties of the DORT method, especially in the three-
dimensional vectorial configuration. We consider an unknown three-dimensional object, made
of several scatterers, which is illuminated successively by l = 1, . . . , Ns electromagnetic
excitation, figure 1. For each source l, the scattered field is measured at m = 1, . . . , Nr

receivers. Assuming that each antenna can play the role of source and receiver, Ns = Nr = N.
The imaging experiment is summarized into a N × N symmetric matrix, denoted by K, such
that Ki j represents the scattered field recorded by the jth receiver when the ith antenna is
emitting.

In the case of a lossless embedding medium, the time reversal experiment is described
by the conjugate transpose matrix K†, and the TRO is represented by the self-adjoint matrix
L = K†K. In the acoustic case, it has been shown that each significant eigenvalue of the TRO
is associated with a single point-like scatterer [6]. In electromagnetism, localizing a scatterer
can be achieved by the backpropagation of the corresponding eigenvector, which synthesizes
a wave focusing on the scatterer [7, 8].

In the three-dimensional vectorial configuration, one can build the matrix K under the three
orthogonal linear polarizations in order to gain more information. More precisely, for each
α-direction of the polarization of the sources, three scattered field components (β = x, y, z)
are measured. Then a (3 × 3) matrix Ki j can be written as

Ki j =
⎡
⎣Kxx

i j Kxy
i j Kxz

i j

Kyx
i j Kyy

i j Kyz
i j

Kzx
i j Kzy

i j Kzz
i j

⎤
⎦ . (5)

Diagonal elements of the matrix Ki j describe the relation between receivers and emitters with
the same orientation. The off-diagonal elements describe the cross-polarizations. Ki j = KT

i j
due to reciprocity. Thus the 3N × 3N matrix K is assembled from all the matrix Ki j:

K =

⎡
⎢⎢⎢⎣

K11 K12 · · · K1N

K21 K22 · · · K2N
...

...
. . .

...
KN1 KN2 · · · KNN

⎤
⎥⎥⎥⎦ . (6)

By virtue of the reciprocity theorem, the matrix K is symmetric and the TRO is defined as
L = K†K. Since L is a self-adjoint matrix, one can determine the eigenvalues and eigenvectors

LV = ζV, (7)

where the eigenvalue ζ is real and the eigenvectors V are in the form of

V = [V1,x,V1,y,V1,z, . . . ,VN,x,VN,y,VN,z]. (8)

Each component of the eigenvector associated with the highest eigenvalue ζ provides the
complex amplitudes of the emitting dipoles (former receivers) such that they synthesize an
incident field focusing on the brightest scatterer:

Einc;DORT
ζ (r) =

N∑
l=1

x,y,z∑
α

Vl,α (ζ )Einc
l,α (r). (9)

The corresponding scattered field is now obtained with the same linear combination as one of
the incident fields (equation (9)):

Esca;DORT
ζ (r) =

N∑
l=1

x,y,z∑
α

Vl,α (ζ )Esca
l,α (r). (10)
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When considering the three-dimensional vectorial limited aspect imaging configuration, one
can show that each point-scatterer is associated with three dominant eigenvalues of the operator
L [26].

Hence, in this case, the DORT method provides a means for focusing selectively onto
each target with three different incident fields.

4. Inverse scattering problem

The inverse scattering problem is stated as finding the relative permittivity distribution εr inside
a bounded investigating (or test) domain � included intoW so that the associated scattered field
to a known incident field matches the measured scattered field fl,α . Many iterative methods
have been developed for solving such problems. Starting from an initial estimate, one can
adjust the parameters of interest by minimizing the cost function involved with the measured
scattered field and the incident field. The literature mainly shows two approaches. The first one
is the linearized method, including the Newton–Kantorovich method [27] and the distorted-
wave Born approach [28, 29]. The total field in the investigated domain is considered fixed at
each iteration step, and is the solution of the forward scattering problem equation (1) for the
best available estimation of the relative permittivity. The second approach is the nonlinearized
method, namely the modified gradient method [30, 31] and the contrast source inversion
method [32–34], which consist in updating simultaneously the permittivity as well as the
total field inside the test domain �. A hybrid method combining ideas from linearized and
nonlinearized methods is given in [35]. The reconstruction of several targets with different
shapes and constitutive materials using experimental data was presented. It was shown that the
best result was obtained with the hybrid method. Hence, we use this method to characterize
qualitatively (shape and relative permittivity) the targets present in a cluttered environment.

4.1. Principles of the algorithm

In this hybrid method [36], two sequences related to the contrast and total field inside the test
domain, χn and El,α,n, respectively, are built up according to the following recursive relations:

El,α,n = El,α,n−1 + κl,α,n;ννl,α,n + κl,α,n;ωωl,α,n, (11)

χn = χn−1 + βndn, (12)

where νl,α,n, ωl,α,n and dn are updating directions with respect to the total field El,α,n and the
contrast χn, respectively, and κl,α,n, βn are scalar coefficients. The updating directions νl,α,n

and dn are chosen as the standard Polak–Ribière conjugate-gradient directions [37], while
ωl,α,n is given by

ωl,α,n = Ẽl,α,n−1 − El,α,n−1 with Ẽl,α,n−1 = [I − G�χn−1]−1Einc
l,α, (13)

where Ẽl,α,n−1 represents the total field inside the test domain �, calculated from the coupling
equation with contrast χn−1. Indeed, the scalar weight κl,α,n and βn are chosen at each iteration
step n so as to minimize the normalized cost functional F (χn, El,α,n) given by

Fn(χn, El,α,n) = W�

N∑
l=1

x,y,z∑
α

∥∥h(1)

l,α,n

∥∥2
�

+ W	

N∑
l=1

x,y,z∑
α

∥∥h(2)

l,α,n

∥∥2
	
, (14)

where the normalizing coefficients W� and W	 are defined as

W� = 1∑N
l=1

∑x,y,z
α ‖Einc

l,α‖2
�

, W	 = 1∑N
l=1

∑x,y,z
α ‖fl,α‖2

	

. (15)
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The subscripts � and 	 are included in the norm ‖.‖ and later in the inner product 〈., .〉 to
indicate the domain of integration. The functions h(1)

l,α,n and h(2)

l,α,n are two residual errors. The
first one is the residual error with respect to the incident field in the test domain computed
from the self-consistent function. The second residual error is the error on the scattered field
computed from the observation equation

h(1)

l,α,n = −El,α,n + Einc
l,α + G�χnEl,α,n and h(2)

l,α,n = fl,α − G	χnEl,α,n. (16)

To ameliorate the inversion procedure, we have used the a priori information that both
the real and imaginary parts of the sought relative complex permittivity are real and non-
negative. Instead of retrieving a complex function χn, two real auxiliary functions ξn and ηn

are reconstructed such that

χn = 1 + ξ 2
n + jη2

n − εb. (17)

The recursive relation with respect to contrast χn (equation (12)) becomes

ξn = ξn−1 + βn;ξ dn;ξ and ηn = ηn−1 + βn;ηdn;η. (18)

As updating directions dn;ξ and dn;η, the authors take

dn;ξ = gn;ξ + γn;ξ dn−1;ξ , γn;ξ = 〈gn;ξ , gn;ξ − gn−1;ξ 〉�
‖gn−1;ξ‖2

�

, (19)

dn;η = gn;η + γn;ηdn−1;η, γn;η = 〈gn;η, gn;η − gn−1;η〉�
‖gn−1;η‖2

�

, (20)

where gξ and gη are the gradients of the cost functional F (ξ , η, El,α,n) with respect to ξ and η,
respectively, evaluated at the (n−1)th step, assuming that the total field inside the test domain
does not change. These gradients are given by

gn;ξ = 2ξn−1Re

[
W�

N∑
l=1

x,y,z∑
α

Ēl,α,n−1G†
�h(1)

l,α,n−1 − W	

N∑
l=1

x,y,z∑
α

Ēl,α,n−1G†
	h(2)

l,α,n−1

]
, (21)

gn;η = 2ηn−1Im

[
W�

N∑
l=1

x,y,z∑
α

Ēl,α,n−1G†
�h(1)

l,α,n−1 − W	

N∑
l=1

x,y,z∑
α

Ēl,α,n−1G†
	h(2)

l,α,n−1

]
, (22)

where the overbar denotes the complex conjugate, and G†
� and G†

	 are the adjoint operators of
G� and G	 , respectively. The search direction νl,α,n for the total field inside the test domain
is similar to those chosen for the contrast functions ξ and η:

νl,α,n = gl,α,n;El,α + γl,α,n;El,ανl,α,n−1, (23)

γl,α,n;El,α = 〈gl,α,n;El,α , gl,α,n;El,α − gl,α,n−1;El,α 〉�
‖gl,α,n−1;El,α‖2

�

, (24)

where gl,α,n;El,α is the gradient of the cost functional F (ξ , η, El,α,n) with respect to the field
El,α , evaluated at the (n − 1)th step, assuming that ξ and η does not change:

gl,α,n;El,α = W�

[
h(1)

l,α,n−1 − χ̄n−1G†
�h(1)

l,α,n−1

] − W	χ̄n−1G†
	h(2)

l,α,n−1. (25)

As initial estimate for ξ0 and η0, we use the backpropagation method provided by [38]. Note
that, in all the results presented in this work, we have simplified further the reconstruction
procedure by assuming that the sought permittivity was real and non-negative. In other words,
all the inversions were performed by setting η to zero.

6



Inverse Problems 28 (2012) 125008 T Zhang et al

4.2. Derivation of the hybrid inversion-DORT method

It has been shown that the DORT method provides a means for generating incident fields
focusing onto a given scatterer. We propose here to introduce this information in the inversion
procedure. This idea was first presented in [36] in the simplified 2D scalar configuration and
yielded a marked improvement of the targets reconstruction. The main difference between the
scalar and vectorial configuration, apart from the increased computational complexity, is that
the DORT analysis provides three eigenvectors focusing on each target in the 3D vectorial
case, whereas it provides only one eigenvector in the scalar case. Hence, we expect the hybrid
inversion-DORT approach to be even more interesting in the 3D vectorial configuration than
in the scalar configuration.

To introduce the DORT fields in the inversion procedure, we note Einc;DORT
ζ , ζ =

1, . . . , Nev, the DORT incident fields that focus onto the targets. Here, Nev is the number
of the eigenvalues associated with the targets. In our configuration, it is equal, in the absence
of noise, to three times the number of targets. The scattered field fDORT

ζ associated with the
incident field Einc;DORT

ζ is easily calculated through equation (9) and reads

fDORT
ζ (r) =

N∑
l=1

x,y,z∑
α

Vl,α (ζ )fl,α (r). (26)

As described in subsection 4.1, the authors suggest here to use Nev incident field Einc;DORT
ζ and

N scattered field fDORT
ζ derived from DORT in the iterative scheme, instead of the incident

field Einc
l,α and the scattered field fl,α . Therefore, the contrast and the total fields in the test

domain � are determined iteratively by minimizing a cost functional of the form

FDORT
n (χn, EDORT

ζ ,n ) = W DORT
�

Nev∑
ζ=1

∥∥h(1;DORT)
ζ ,n

∥∥2
�

+ W DORT
	

Nev∑
ζ=1

∥∥h(2;DORT)
ζ ,n

∥∥2
	
, (27)

where the residual errors h(1;DORT)
ζ ,n and h(2;DORT)

ζ ,n and the normalizing coefficients W DORT
� and

W DORT
	 are similar to those defined previously in equations (15) and (16) but in using the

DORT field.
Using the DORT incident fields in the cost functional instead of the fields generated by

each antenna (multiplied by the three possible orientations) permits to reduce significantly the
number of unknowns of the inverse problem. Indeed, in the latter case, the cost function Fn

is a nonlinear expression with respect to 6N complex unknown (κl,α,n;ν, κl,α,n;ω) and two real
unknown (βn;ξ , βn;η), while in the former case the cost function FDORT

n depends only on 2Nev

complex unknown (κζ ,n;ν, κζ ,n;ω) and two real unknown (βn;ξ , βn;η). Hence, it is expected to
reduce drastically the computation time with this procedure.

We now turn to the numerical demonstration of the interest of the inversion-DORT method.
Note that, in all the inversion procedures, the size of the investigating domain � is smaller
than that of the scattering domain W so that the theoretical ingredients that are employed to
synthesize and invert the data are different. Both the forward and inverse methods use a mesh
size of λ/10.

5. Numerical study of the performances of the hybrid inversion-DORT method

In this section, we first compare, on a given configuration, the performances of the hybrid
inversion-DORT method to that of the DORT or inversion methods alone. Then, we study the
robustness of the inversion-DORT technique with respect to the structural noise surrounding
the scatterers. Lastly, we point out the interest of using a nonlinear inversion scheme and the
full polarized data for retrieving the targets.

7
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5.1. Parameters of the imaging configuration

In most cases, the scattering domain W of the imaging configuration depicted in figure 1 is a
box with size (5λ×5λ×4λ) m3, centred at (0, 0,−λ) where λ is the illumination wavelength
in the homogeneous lossless medium. The radar array is described by a lattice of N = 81
antennas regularly distributed on a square of side of 8λ, which is located at z = 2λ, i.e. λ

above the cluttered environment.
The scattering domain includes two dielectric spheres embedded in a highly cluttered

environment. The smallest sphere, centred at the origin, has a radius of λ/6, with relative
permittivity ε = 3εb. The largest sphere is located at (0.5λ, 0,−0.7λ) and has a radius of λ/4
with the same relative permittivity.

The random permittivity of the clutter, ε f (r), is defined as a Gaussian variable with zero
mean and standard deviation h and Gaussian correlation function C(r) with correlation length
lc. The Gaussian correlation function C is defined as

C(r) = h2 exp

(
−‖r‖2

l2
c

)
. (28)

In addition to these statistical parameters, we introduce the realization-dependent standard
variation σ (ε f ), obtained through a volume averaging over W , to characterize specifically the
clutter strength of the given realization.

To quantify more precisely the influence of the clutter, two errors are defined,

Errs =
∑N

l=1

∑x,y,z
α

∥∥fl,α − fscatterers
l,α

∥∥2
	∑N

l=1

∑x,y,z
α

∥∥fscatterers
l,α

∥∥2
	

, (29)

Errd =
∑N

l=1

∑x,y,z
α

∥∥fl,α − fscatterers
l,α − fclutter

l,α

∥∥2
	∑N

l=1

∑x,y,z
α

∥∥fscatterers
l,α

∥∥2
	

, (30)

where fl,α and fscatterers
l,α denote the field scattered by the targets with or without the clutter,

respectively, and fclutter
l,α denotes the field scattered by the clutter alone. Errs is used to quantify

the noise level, and Errd indicates the amount of multiple scattering between the targets and the
clutter. If Errd is small, the targets and the clutter can be considered to radiate independently.
Note that for the same statistical parameters, the errors Errs and Errd may vary significantly
as they depend on the specific realization of the random process.

To quantify the quality of the image, we also define a contrast reconstruction error as

Errχ = ‖χactual − χrec‖2
�

‖χactual‖2
�

, (31)

where χactual is the permittivity contrast of the actual objects, while χrec is the reconstructed
permittivity contrast.

Lastly, to indicate the presence of multiple scattering within W , we introduce Errborn as

Errborn =
∑N

l=1

∑x,y,z
α

∥∥fl,α − fborn
l,α

∥∥2
	∑N

l=1

∑x,y,z
α

∥∥fl,α

∥∥2
	

, (32)

where fborn
l,α is the scattered field computed under the single approximation, i.e. the total field

inside the clutter and the targets is assumed to be equal to the incident field.

8
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Figure 2. Intensity map in W of the electric field formed by the three eigenvectors of the TRO
related to the three largest eigenvalues. These three eigenvectors focus on the sphere which is the
closest to the antennas. The clutter is described by lc = λ/10, σ (ε f ) = 0.068εb with Errs = 174%
Errd = 2% and Errborn = 48%. (a)–(c) Maps in the (x, y) plane at z = 0. (d)–(f) Maps in the (x, z)
plane at y = 0. Each column corresponds to the first, second and third eigenvalues. The dash box
indicates the investigating domain � used in the inversion procedure.

5.2. Comparison of the hybrid inversion-DORT method with the DORT and inversion
techniques. Influence of the size of the clutter and of its specific permittivity distribution

In this first study, we consider that an uncorrelated clutter (the correlation length lc = λ/10
being equal to the mesh size) with a realization-dependent standard deviation of ε f is σ (ε f )

= 0.068εb, yielding Errs = 174%, Errd = 2% and Errborn = 48%, respectively. The values of
Errborn and Errd indicate that the configuration supports moderate multiple scattering (within
the targets and within the clutter) but that the interaction between the targets and clutter is
weak.

We first perform the DORT analysis of the scattered field data. Figures 2 and 3 show
the intensity of the electric field radiated by the antennas in the homogeneous medium with
permittivity εb, with the currents given by the eigenvectors of the TRO. As expected, the first
three eigenvalues correspond to the scatterer whose signature on the antennas is dominant. In
our configuration, it corresponds to the smallest sphere which is closer to the antennas than
the largest one. The fourth to the sixth eigenvalues correspond to the second most important
signature, which is that of the largest sphere. There are three eigenvalues focusing on each
scatterer, depending on the polarization of the antennas. We have checked that if only one
component of polarization is used in the scattered field data, there is only one eigenvalue
related to the scatterer, in agreement with the conclusion of [7]. In this incomplete imaging
configuration, it is seen that the DORT eigenvectors allow the localization of the two scatterers
with a rather large imprecision along the z-axis.

In a second step, we apply the hybrid inversion-DORT method to the scattered field data
in order to reconstruct quantitatively the permittivity map of the investigation domain. The
investigation domain � is limited to the ‘brightest’ region given by the DORT field intensity
map, namely a box placed at [−0.75λ, 1.25λ] × [−λ, λ] × [−1.5λ, λ], which is indicated by
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Figure 3. The same as figure 2, but the eigenvectors correspond to the fourth, fifth and sixth
eigenvalues. They focus on the sphere which is the furthest from the antennas. (a)–(c) Maps in the
(x, y) plane at z = 0.7λ. (d)–(f) Maps in the (x, z) plane at y = 0. Each column corresponds to the
fourth, fifth and sixth eigenvalues.

the dashed squares plotted in figures 2 and 3. The inversion procedure is stopped when their
cost functions reach a plateau.

Then, we compare the inversion-DORT reconstruction to that obtained with the classical
inversion scheme without optimized incident fields, figure 5.

We observe that the inversion-DORT procedure gives a better localization than the DORT
method (especially in the z direction) and a better characterization than the classical inversion
method alone. The inversion-DORT procedure permits to avoid the ghosts that are present
around the targets in the classical reconstruction. This qualitative superiority of the inversion-
DORT method is confirmed by the contrast error criterion Errχ which is equal to 63% for
the inversion-DORT and to 153% for the classical inversion. Moreover, the cost function
converges more quickly with the hybrid method than with the classical one, the converged
value being one order of magnitude, lower in the former case than in the latter. The inversion-
DORT computation time, (206 s), is about 200 times shorter than that of the classical inversion
scheme. This discrepancy is explained by the number of unknowns and the convergence rate,
see figure 5. Indeed, the inversion-DORT method uses only 6 incidences (which correspond
to the significant eigenvectors of the TRO), whereas the classical inversion scheme uses 81×3
different incidences which yield 40 times more unknowns.

The inversion-DORT technique can also be used to reconstruct the targets sequentially. In
figure 6, we have restricted the investigation domain to a smaller domain �1 (�2) that surrounds
the first (second) target. In this case, solely the incident fields focusing on the chosen target are
kept in the inversion process. We observe in figure 4 that this sequential reconstruction yields
a better estimation of the targets while diminishing the computation time. Of course, with
the classical inversion method using non-optimized incident fields the selective reconstruction
on �1 and �2 is worse than that obtained with the initial larger investigation domain � (not
shown).

The size of the scattering domain chosen for these simulations may be thought of too
small to mimic accurately a realistic experiment where the targets are buried in an infinite
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Figure 4. Inversion-DORT reconstructed permittivity obtained for the same configuration as that
described in figure 2. (a), (b) Maps in the (x, y) plane at z = 0 and z = −0.7λ, respectively. (c)
Map in the (x, z) plane for y = 0.
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with DORT without DORT

Figure 5. The configuration is the same as that described in figure 2. (a) Iso-surface of the
reconstructed permittivity profile at ε = 2 using the inversion-DORT procedure; (b) the same as (a)
using the classical inversion procedure; (c) evolution of the cost function (log-scale representation)
versus the iteration step using the inversion-DORT method (dashed curve) and classical inversion
(solid curve). All these plots correspond to the reconstruction shown in figure 4.

inhomogeneous soil. Indeed, as it stands, the width of W is smaller than the antennas lattice
width. We have thus performed other experiments with twice bigger scattering domains to
check that the reconstructions provided by the hybrid DORT-inversion procedure were not
changed. More precisely, we considered a scattering domain W of size (10λ × 10λ × 10λ)

that is enlarged by a factor of 2 in the x, y directions and of 2.5 in the z direction as compared
to the one chosen in the previous simulation. For a meaningful comparison, we kept exactly
the same clutter around the objects as that used in figure 4.

We observe in figure 7 that the six dominant eigenvectors of the TRO for the large
scattering domain W yield intensity maps that are very similar to that obtained for the small
W , see figures 2 and 3. Hence, even though the noise level ratio Errs is changed from 171%
(small W ) to 541% (large W ), the DORT analysis still enables us to generate incident fields
that focus on the targets.

Then, we see, by comparing figures 4–8, that the reconstruction obtained with the
inversion-DORT procedure for large W is very close to that obtained with small W , with
similar contrast errors, Errχ = 68% and 62%, respectively.

This result is not surprising as, with the DORT focusing fields, solely the inhomogeneities
close to the targets participate in the scattered field data that are used in the inversion procedure.
Note that this property may also be considered a drawback, as it confers an increased
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Figure 6. Inversion-DORT reconstructions for the same configuration as that of figure 4, but with
investigation boxes that are restricted, successively, to domains surrounding each target, �1 and
�2. �1 is centred at the origin with size λ×λ×0.8λ, while �2 is centred at (0.5λ, 0,−0.7λ) with
the same size. (a) Map in the (x, y) plane at z = 0 in �1, (b) map in the (x, y) plane at z = −0.7λ

in �2; (c) map in the (x, z) plane at y = 0 in �1, (d) map in the (x, z) plane at y = 0 in �2.

(f)(e)(d)

(c)(b)(a)

Figure 7. Intensity map of the electric field formed by the eigenvectors of the TRO related to the
six largest eigenvalues in the (x, z) plane for y = 0 for a configuration similar to that used for
figures 2 and 3 except that the scattering domain W is ten times larger.
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Figure 8. Inversion-DORT reconstructed permittivity for a configuration similar to that used in
figure 4 except that the scattering domain W is ten times larger (the investigation domain � is kept
the same). (a), (b) Maps in the (x, y) plane at z = 0 and z = −0.7λ, respectively. (c) Map in the
(x, z) plane at y = 0.

importance to the specific clutter distribution surrounding the targets. Thus, to check the
generality of our results, we have also verified that the reconstructions obtained for different
clutter realizations with the same statistics, were similar [4].

The analysis presented in this section was repeated for different clutter types and always
led to the same conclusion: the inversion-DORT is always superior to the classical inversion
scheme without optimized incident fields for characterizing the targets and for limiting the
computational cost and it ameliorates significantly the information brought by the DORT
approach alone, in particular for localizing the target along the z-axis. Moreover, thanks to
the studies conducted on large scattering domain and many clutter realizations, we believe
that our simulations give a good estimate of the imaging achievements of the inversion-DORT
method for realistic geometries in which the targets are buried in an infinite clutter with given
statistics. We now describe more precisely the performances of the inversion-DORT method
for different clutter types.

5.3. Robustness of the inversion-DORT method with respect to the clutter statistics

In this section, we apply the inversion-DORT method to data stemming from targets buried in
different clutter types. We study the robustness of the reconstructions versus increasing clutter
standard deviation σ (ε f ), and versus the clutter correlation length lc.

5.3.1. Influence of the clutter standard deviation. In this section, the correlation length is
kept fixed at lc = λ/10, while the standard deviation is increased. In the first example, the
realization-dependent standard deviation of ε f , σ (ε f ) = 0.096εb, yields Errs ≈ 400% and
Errd = 2%. We observe in figure 9 that the two scatterers are still well localized.

In the second example, the standard deviation reaches σ (ε f ) = 0.125εb, leading to Errs =
682% and Errd = 2%. In this case, there are only two eigenvectors that focus on the deepest
scatterer (the least echogeneous one), as shown in figure 10 but the selective reconstruction
of the targets provided by the inversion-DORT method is still satisfactory, see figure 11. Note
that, in this case, the reconstruction of the least echogeneous target has been obtained using
the only two focusing incident DORT fields.

If the noise is further amplified to reach σ (ε f ) = 0.145εb, corresponding to Errs = 900%
and Errd = 2%, the DORT method does not provide any eigenvectors focusing on the deepest
scatterer and the reconstruction is impossible.
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Figure 9. The same as figure 4 but the clutter is defined by lc = λ/10, σ (ε f ) = 0.096εb yielding
Errs = 400% and Errd = 2%.
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Figure 10. Intensity in the (x, z) plane at y = 0 of the electric field given by the six eigenvectors
corresponding to the six highest eigenvalues. The structural noise, Errs = 682% and Errd = 2%,

is obtained with lc = λ/10 and σ (ε f ) = 0.125εb. Top: the intensity corresponding to the first,
second and third eigenvalues. Bottom: the intensity corresponding to the fourth, fifth and sixth
eigenvalues.

5.3.2. Influence of the correlation length. In this section, we analyse the influence of
the clutter correlation length on the reconstruction. We first consider clutters with standard
variations σ (ε f ) ≈ 0.06εb and noise levels Errs ≈ 200%, that are similar to the one taken
for figure 4 and increase the correlation lengths lc from λ/10 to λ. At this moderate noise
level, we observe that the DORT focusing properties weakly depend on the correlation lengths.
Whatever the correlation lengths, the six dominant eigenvectors yield incident fields that focus
on each scatterer. The inversion-DORT reconstructions are quite accurate and resemble that
obtained for the uncorrelated clutter, figure 4.

In contrast, at higher standard deviations, σ (ε f ) ≈ 0.1εb and higher noise levels
Errs ≈ 400%, the DORT focusing properties depend strongly on the correlation lengths.
At lc = λ/10, one obtains three eigenvectors focusing on each target and the reconstructions
are good and similar to that displayed in figure 9.
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Figure 11. The same as figure 4 but the clutter is defined by lc = λ/10, σ (ε f ) = 0.125εb yielding
Errs = 682% and Errd = 2%.
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Figure 12. The same as figure 10, but the clutter with the correlation length lc = λ/2,
σ (ε f ) = 0.1εb, where the clutter environment corresponds to 400% noise.

For lc = λ/2, it becomes difficult to localize the deepest scatterer with the first six
dominant eigenvector intensity maps, as seen in figure 12. However, the inversion-DORT
method permits to retrieve accurately both targets, figure 13.

When lc = λ, the focusing properties of the DORT fields are further deteriorated.
Moreover, the eigenvectors that are roughly focusing on the least echogeneous target do
not correspond to the third, fourth and sixth highest eigenvalues. In this case, a careful study of
the intensity maps of the eigenvectors in order to determine the most significant eigenvectors
is required. This analysis implies that we have some a priori information on the sought
targets. With this additional procedure, the inversion-DORT reconstruction obtained with the
six most significant eigenvectors yields a good estimate of the targets. Note that, similarly to
the lc = λ/2 case, the localization of the targets given by inversion-DORT is much better than
that obtained with DORT alone.
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Figure 13. The same as figure 4, except that the clutter environment corresponds to 400% noise,
with the correlation length lc = λ/2, σ (ε f ) = 0.1εb.
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Figure 14. The same as figure 4, the clutter is defined by lc = λ/10, σ (ε f ) = 0.055εb but one has
chosen a specific realization where Errs = 182% and Errd = 54%, implying a significant coupling
between the spheres and the clutter.

5.3.3. Influence of the coupling between the targets and the clutter. Up to now, we have
considered configurations in which the targets and the clutter are weakly coupled, Errd < 5%.
In other terms, the field detected by the antennas can be modelled by the coherent sum of
the field radiated by the spheres in the homogeneous background medium with the field
radiated by the clutter alone. In this section, we investigate the performance of the inversion-
DORT algorithm when there is multiple scattering between the targets and the clutter. We
chose a configuration with the same statistical parameters as that taken in figure 4 but used a
specific clutter realization that yielded Errd = 54%, Errborn = 123% while Errs = 182%. The
coupling between the targets and the clutter is caused by the presence of highly contrasted
inhomogeneities close to the targets. The inversion-DORT reconstruction displayed in figure 14
shows that this configuration can be handled without difficulty with our algorithm.

To summarize this part, we have shown that the inversion-DORT algorithm provides
satisfactory images of the targets even when they are buried in clutters with high standard
deviations (up to 0.125εb) or large correlation lengths in which the focusing properties of the
DORT fields are deteriorated. In the following section, we stress the importance of using a
nonlinear inversion scheme and the full polarized data to obtain this performance.

5.4. Interest of using a nonlinear inversion scheme and full polarized data

The hybrid inversion-DORT method used in this work is based on a nonlinear inversion scheme.
In other terms, both the permittivity and the total field inside the investigating domain � are

16



Inverse Problems 28 (2012) 125008 T Zhang et al

−0.5 0 0.5 1

−0.5

0

0.5

x/λ

y/
λ

1

2

3

−0.5 0 0.5 1

−0.5

0

0.5

x/λ

y/
λ

1

2

3

−0.5 0 0.5 1

−1

−0.5

0

0.5

x/λ

z/
λ

1

2

3

(a) (b) (c)

Figure 15. The same as figure 4 but a linear-inversion-DORT procedure assuming single scattering
is used for getting the reconstructions.

(a) (b)

Figure 16. Iso-surface of the reconstructed permittivity profile at ε = 2 using the inversion-DORT
procedure for the same configuration as that used in figure 5. (a) The antennas are oriented along
the x direction and the scattered field is detected along the x direction only. (b) The antennas are
oriented along the y direction and the scattered field is detected along the y direction only.

unknown and sought by the algorithm. In this section, we consider a simpler linear-inversion-
DORT technique in which the total field inside � is assumed to be the incident field (Born
approximation). The linear-inversion-DORT scheme is implemented easily from the inversion-
DORT algorithm by putting the search directions for the total field to zero and setting the total
field equal to the incident field. The interest of the linear-inversion technique is that it is
much faster than the nonlinear-inversion version. Unfortunately, it is seen in figure 15 that the
linear-inversion-DORT scheme fails to retrieve the targets even in the least noisy configuration,
Errs = 174%, corresponding to figure 4. In this configuration, the coupling between the targets
and the clutter is weak but there is some multiple scattering within the clutter and within the
targets as indicated by Errborn = 48%. The latter is sufficient to deteriorate significantly the
performances of the linear-inversion scheme. This example stresses the importance of using
nonlinear-inversion techniques even for moderately contrasted clutter σ (ε f ) ≈ 0.06εb and
even if there is no coupling between the targets and the clutter, Errd < 5%.

Another reason for the performance of our imaging scheme in highly noisy environment
is that we use the three orientations of the antennas for illuminating and observing the scene.
We are thus able to generate several DORT fields focusing on each target. We now consider
a simpler imaging configuration where the emitting and receiving antennas are oriented only
along the x- or y-axis so that only scalar data are collected as in an acoustical problem. In
this case, only one DORT field focusing on each target can be found. In figure 16, we plot
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the reconstructions obtained with these truncated data for the same geometry as that used in
figure 5. We observe a significant deterioration of the results as compared to figure 5(a), the
reconstruction error on the contrast reaching Errχ = 191% and Errχ = 177% for the x and y
orientations, to be compared to Errχ = 62% for the full polarized data. Hence, even for the
least noisy experiment (Errs = 171%), the use of the full polarized data appears to ameliorate
significantly the reconstruction.

6. Conclusion

In conclusion, we have numerically studied the imaging issue of targets buried in a random
inhomogeneous medium with monochromatic data. We have shown that using the three-
dimensional vectorial time reversal operator (DORT method), one can generate different
incident fields that focus selectively on each target. We have proposed a hybrid method, named
inversion-DORT, that uses the answer of the medium to these DORT fields for reconstructing
the permittivity of a region of interest with a nonlinear optimization scheme. The inversion-
DORT procedure localizes better the targets than the DORT procedure alone, especially in
the z direction, and is more efficient than a classical inversion scheme for characterizing
the targets, with significantly less computational burden. It permits us to handle very noisy
configurations, with clutter standard deviation up to 12%, that support multiple scattering.
Lastly, we have stressed the importance of using nonlinear inversion algorithms and full
polarized data for achieving this performance. A promising extension of this work will be
to use full time-domain data in order to consider targets that are buried further away from
the antennas [16, 39] or supporting stronger multiple scattering [15], and to consider more
complex configurations (targets buried in a half inhomogeneous medium or placed above a
substrate). Finally, we would like to stress that the combined DORT and inversion procedure
can be useful in imaging applications where there is no structural noise (such as optical imaging
of manufactured nanostructures), because it permits us to reduce drastically the computation
time and memory burden.
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