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Estimating three-dimensional complex permittivity of a sample from the intensity recorded at the image plane
of a microscope for various angles of illumination, as in optical Fourier ptychography microscopy, permits one to
avoid the interferometric measurements of classical tomographic diffraction microscopes (TDMs). In this work,
we present a general inversion scheme for processing intensities that can be applied to any microscope configu-
ration (transmission or reflection, low or high numerical aperture), scattering regime (single or multiple scatter-
ing), or sample-holder geometries (with or without substrate). The inversion procedure is tested on a wide variety
of synthetic experiments, and the reconstructions are compared to that of TDMs. In most cases, phaseless
data yield the same result as complex data, thus paving the way toward a drastic simplification of TDM
implementation. © 2019 Optical Society of America

https://doi.org/10.1364/JOSAA.36.0000C1

1. INTRODUCTION

Optical diffraction tomography (ODT) [1], or tomographic
diffraction microscopy (TDM) [2], is a quantitative imaging
technique in which a sample is illuminated by a collimated laser
beam under various angles of incidence, and an interferometric
technique allows the recording of both the phase and intensity
of the image fields. The permittivity of the sample is recon-
structed numerically from the stack of complex fields using
an inversion procedure. This approach proved to be particularly
promising for obtaining three-dimensional images of marker-
free samples with a resolution better than that of the best
analogical microscopes and, in some cases, even beyond the
diffraction limit [3,4].

Unfortunately, despite these achievements, TDM has still
not been widely adopted as a reference imaging tool. In par-
ticular, the necessity to measure the phase of the image field,
which complicates the setup and prevents the use of conven-
tional microscopes, appears as a significant drawback. Thus,
achieving the same performances with a simpler tomographic
mounting in which only the intensity is recorded would en-
hance the interest for this computational imaging technique.

Phaseless diffraction tomography, in which the sample per-
mittivity is reconstructed from intensity images recorded under
various incident angles, has been recently popularized under
the name of optical Fourier ptychography (OFP) [5–8]. Yet,
up to now, it has been studied only in the case of transmission
configuration with low numerical aperture (NA) objectives.
These restrictions allow the use of approximate scalar forward
models (such as the beam propagation method), which eases

significantly the reconstruction procedure. Qualitative 3D im-
ages of large samples with a moderate resolution (about a few
micrometers) were obtained with this approach.

Now, to push forward the interest of phaseless tomography,
its performances should be investigated with high NA objec-
tives in both transmission and reflection geometries and for
samples that potentially support multiple scattering. In these
cases, the scalar approximate forward models on which the
inversion schemes of OFP are presently based are not always
valid. Hence, developing an inversion scheme that does not
depend on a specific forward model and can be applied to
any method for simulating the data would greatly enlarge
the application domain of phaseless tomography.

In this work, we describe a versatile inversion procedure for
phaseless diffraction tomography that provides reconstructions
of the sample permittivity distribution in any imaging configu-
ration. The key point of our inversion approach is that it does
not depend on the model linking the recorded intensities to the
sought permittivity distribution. Thus, it can be used with the
approach best adapted to the samples: Born approximation in
the weak scattering regime, beam propagation method in the
forward scattering regime, or rigorous solver of Maxwell equa-
tions in the multiple scattering regime.

2. DERIVATION OF THE INVERSION SCHEME

We derive the inversion procedure for a very general mono-
chromatic tomographic microscope in the rigorous framework
of electromagnetism [9,10].
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We introduce a reference geometry corresponding to the
microscope in the absence of the sample (encompassing the
lenses, glass slide, splitting cubes, sample holder, etc.), which is
described by a spatially varying relative permittivity εref. In the
presence of the sample, the relative permittivity of the entire
system becomes ε. Our aim is to estimate the sample contrast,
χ � ε − εref . Hereafter, the latter is assumed to be equal to 0
outside a predefined bounded domain Ω. In addition, we
assume that χ is scalar (isotropic media) but anisotropy can
be accounted for without major modifications, as shown in
Refs. [9,10].

The sample is lit by L different illuminations of wavenum-
ber k0 � 2π∕λ (which can be, but are not restricted to, colli-
mated beams under various incident angles) that are generated
by source distributions Q l �r� for l � 1,…, L (usually point
sources at the backfocal plane of the objective for providing
a collimated beam in Ω), and the field intensity is recorded
at the observation points om�1,…,M of a domain Γ (which is
generally the CCD camera).

We call El �r� the field generated by the l -th illumination
in the microscope in the presence of the sample. It satisfies
the equation

∇ × ∇ × El �r� − k20εref �r�El �r� � Q l �r� � k20χ�r�El �r�, (1)

with outgoing boundary condition. The total field El �r� can be
written as the sum of a reference field (i.e., the field that would
exist in the absence of the sample) generated by Q l �r�, Eref

l �r�,
and a sample field (or scattered field) Ediff

l �r� generated by the
induced source k20χ�r�El �r�.

We assume that we have a forward solver that is able to com-
pute this field, at any point o ∈ Γ and for any χ inΩ. Then, the
intensity recorded at the observation point o is modeled
by jEl �o�j2.

In addition, we assume that the forward solver is able to
simulate the field at any point r ∈ Ω that is radiated by any
point source Qδ�r − o� located at the observation domain,
o ∈ Γ. This field, hereafter denoted by E�r, o,Q �, is the sol-
ution of Eq. (1) with the source Qδ�r − o�.

The inversion scheme consists of estimating iteratively χ in
Ω so as to minimize the intensity-based diffractive tomography
(IDT) cost functional,

F �χ� �
PL

l�1 kImes
l − jEj2k2ΓPL

l�1 kImes
l k2Γ

, (2)

where Imes represents the actual intensities. The distance k · kΓ
is induced by the Hermitian product on Γ defined by
hf , giΓ � R

o∈Γ f
��o�g�o�do, where * is the complex number

conjugation. A similar distance will be defined for Ω.
For simplifying the notations, we introduce the residue

hl �o� � Imes
l �o� − jEl �o�j2 for any o ∈ Γ and introduce the

normalizing factor W Γ � 1∕
P

lkImes
l k2Γ.

The cost functional is minimized due to a classical gradient
technique that updates iteratively χ with the relation

χn � χn−1 � αnd n, (3)

where dn is the Polak–Ribière descent
dn � gn � andn−1, (4)

with

an �
hgn, gn − gn−1iΩ

kgn−1k2Ω
, (5)

and gn is the gradient at the n-th iteration of F with respect to
χ, and α is real. Introducing Eq. (3) into Eq. (2), the cost func-
tional is transformed into a polynomial with respect to α. Then,
α is chosen so as to minimize this polynomial. The minimiza-
tion can be performed analytically by finding the root of the
polynomial, or it can be done numerically using a standard gra-
dient algorithm. The main difficulty of the approach is to find
the expression of the gradient, as jEl j2 is related to χ in a non-
explicit and non-linear form through Eq. (1). The most impor-
tant result of this work lies in the rigorous expression of the
gradient gn�r ∈ Ω�, which is derived in Appendix A:

gn�r�

� −4W Γ

XL
l�1

Z
o∈Γ

do�El ,n−1�r,o,hl ,n−1�o�E�
l ,n−1�o�� ·El ,n−1�r���:

(6)

It is seen that the gradient at the n-th iteration is the sum over
the illuminations of the dot product between the field gener-
ated by the l -th illumination inΩ for the previous estimation of
χ, El ,n−1, and the adjoint field created in Ω by a source distri-
bution restricted to the observation domain Γ with amplitude,
hl ,n−1�o�El ,n−1�o�, o ∈ Γ.

The main interest of this gradient expression is that it does
not depend on the model chosen for simulating the fields.
Thus, if the samples are highly contrasted and support multiple
scattering, the fields can be estimated with a rigorous Maxwell
equation solver. On the contrary, if the samples are weakly
scattering, the fields can be estimated with the first-order
Born approximation or, if the forward scattering is dominant
(as is assumed in most OFP applications), with the beam
propagation method.

At this point, it is worth noting that a similar inversion
scheme has been developed in Ref. [9] for inverting the data
of imaging configurations that give access to the full-vectorial
field Emes

l (such as the tomographic microscope used in
Ref. [11]). In this case, one estimates iteratively χ so as to min-
imize the vectorial-based diffractive tomography (VDT) cost
functional,

FE �χ� �
PL

l�1 kEmes
l − Elk2ΓPL

l�1 kEmes
l k2Γ

, (7)

with the same approach. The only difference lies in the gradient
expression at the n-th iteration, which now reads

gEn �r� � −4W Γ

XL
l�1

Z
o∈Γ

do�El ,n−1�r, o, hE ,�l ,n−1�o�� · El ,n−1�r���:

(8)

In the field case, the amplitude of the source distribution
restricted to Γ that generates the adjoint field is simply the
vectorial residue hEl ,n−1�o� � Emes

l �o� − El ,n−1�o�. The two in-
version schemes are thus very close to each other, which makes
it easy to switch from one problem to the other.

In the following, we will study in synthetic experiments the
performances of phaseless diffraction tomography for a wide
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range of configurations, (microscopes in transmission, in reflec-
tion, with and without substrate) and several samples (finely
structured in the transverse plane, extended along the optical
axis, highly contrasted, with and without absorption) to point
out the assets and limits of this imaging tool.

3. SYNTHETIC IMAGING EXPERIMENTS

A. Imaging Configuration

We consider a microscope made of an objective and a tube lens
in a 4f mounting with NA, magnificationM , and optical axis z
oriented from the objective to the tube lens. The modeling of
the microscope has been kept simple following [12], but more
sophisticated point spread functions, taking into account,
e.g., possible refractive mismatch [13,14] and aberrations,
can be easily implemented by solely modifying the forward
solver. We define the object space as the medium before the
objective. For encompassing most imaging configurations,
the sample in the object space is placed on a planar substrate
(usually a glass slide) with interface placed at z � 0. The object
space is described by its permittivity εref �z� � ε1 for z > 0 and
εref �z� � ε2 for z < 0. The equality between ε1 and ε2 corre-
sponds typically to cases where the samples are plunged in a
solution whose permittivity matches that of the glass slide
and are imaged with an oil-immersion objective.

The sample is illuminated by a monochromatic collimated
beam under various incident angles. The latter is assimilated
to a linearly polarized plane wave with varying transverse
wavevector �kincx , kincy �. In the reflection configuration, the in-
cident beam is generated by a source at z > 0 and propagates
towards the negative z, while in the transmission configuration,
it is generated by a source at z < 0 and propagates towards
positive z.

All the synthetic data are obtained using a rigorous solver of
Maxwell equations [15] based on volume elements for calcu-
lating the field scattered by the sample and a rigorous modeling
of the microscope following [12,16,17] for estimating the field
at the image focal plane. The magnification of the microscope is
assumed to be one, and the field at the image focal plane is
calculated on a regular grid of 256 × 256 observation points
to mimic the camera pixels. The simulation tool (including
the Maxwell Solver and the microscope) is freely accessible
at [18].

The discretization step used for the investigation domain Ω
is the same as the one used for recording the data at the image
focal plane. It depends on the sample refractive index n and is
always smaller than λ∕�5n� to describe smoothly the electric
field inside Ω. The synthetic data are deteriorated with additive
white noise on the real and imaginary parts of the scattered
field. For each illumination, the magnitude of the noise is
chosen equal to κ times the difference between the maximum
and the minimum of the values taken by the real part (resp.
imaginary part) of the scattered field. Except in the last section,
where a specific study with respect to noise has been conducted,
the noise level, κ, is taken equal to 15% in all the numerical
experiments.

For each numerical experiment, less than 10 different
incident angles have been used for generating the data.
Reconstructions using more incident angles (not shown) were

not significantly better. The important point is to choose the
incident illuminations so as to ensure a good coverage of the
accessible sample Fourier coefficients: in the single scattering
regime, the scattered field in direction k obtained under inci-
dence kinc is proportional to the sample Fourier coefficient
taken at k − kinc. The angular step and span of the incident
directions is determined by the size of the sample and the
NA of the objective. Then, adding illuminations yields redun-
dant information and is useful only to increase the signal-to-
noise ratio.

All the iterative inversions are initialized with a constant χ �
0.001 in the investigating domain Ω and are stopped when the
cost functional reaches a plateau. To quantify the performance
of the reconstruction at the last iteration, we introduce Err�χ�
as the relative error kχ−χexactk2Ω

kχexactk2Ω
, where χexact is the actual permit-

tivity contrast of the sample.

B. Investigating the Transverse Resolution of
Phaseless Diffraction Tomography

One of the big achievements of TDM using complex field
data is the significant improvement in transverse resolution
compared to the equivalent conventional microscopes [11].
In this paragraph, we check if this gain is conserved with
intensity data.

We consider a thin resin star (target A) made of 12 identical
branches, with permittivity 2, height 160 nm, length 400 nm,
and width 100 nm placed on a glass substrate that has already
been used as a transverse resolution target in TDM studies [19].
The star is illuminated from the substrate, under total internal
reflection, by six TM-polarized plane waves with wavelength
475 nm and wavevectors equally distributed along a 60° angle
cone about the optical axis. The image field is obtained in the
reflection configuration via an oil-objective (the oil index
matching that of the glass slide) ofNA � 0.95, discretized over
a square grid of 256 × 256 pixels with step 50 nm. The object
focal plane is taken at the air–glass interface, and the investi-
gation domain Ω chosen for the inversion is a box of width
1900 nm and height 300 nm located on the glass slide. The
simulations are performed with a rigorous solver of Maxwell
equations.

We first study the brightfield configuration in which the
specular reflection of the incident beam at the air–glass inter-
face reaches the image plane. We thus record jEref

l � Ediff
l j2.

We compare the analogical brightfield image [Fig. 1(a)], ob-
tained by summing the image intensities for all illuminations,
to the numerical reconstruction, Fig. 1(d), obtained with our
intensity inversion scheme in taking into account the specular
reflection. As expected, the resolution of the latter is much bet-
ter than that of the former. The stack of each intensity image
conveys more information on the sample than the sum of these
intensities.

We conduct a similar analysis in the darkfield configuration
in which the specular reflection of the incident beam is filtered
out and does not reach the image plane. We thus record jEdiff

l j2.
The darkfield image, Fig. 1(b), obtained by summing the inten-
sities, is compared to the numerical reconstruction, Fig. 1(e),
obtained with our intensity inversion scheme without the
specular reflection. The darkfield reconstruction (final relative
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error Err�χ� � 79%), Fig. 1(e), remains better than the
analogical darkfield image, Fig. 1(b), but is not as good as the
brightfield reconstruction (final relative error Err�χ� � 62%),
Fig. 1(d). This result does not come as a surprise, since the
interference between the reference field and the sample field
bring important information for the phase retrieval issue (as
in line holography). Of course, the best reconstruction is still
obtained with vectorial complex field data (final relative error
Err�χ� � 57%); see Fig. 1(c). However, the difference between
the reconstructions being relatively small, phaseless tomogra-
phy appears as a very interesting option.

C. Investigating the Axial Resolution of Phaseless
Diffractive Tomography

A key point of field tomography is its ability to reconstruct a
3D sample from 2D images that are recorded at a fixed plane
for different angles of illumination. Under Born approxima-
tion, it can be shown that there is a one-to-one correspondence
between the 2D stack of complex field data and the 3D Fourier
transform of the sample restricted to the support of the optical
transfer function of the microscope (which depends on the
imaging configuration, reflection, or transmission and the NA)
[20]. It is thus important to check whether this property is con-
served with intensity data only. We consider a sample (target B)
composed of two identical cuboids (edges along x and y axes
250 nm, edge along z axis 1 μm, ε � 1.05) separated by 2 μm
along the optical axis. The cuboids are centered at 3.5 μm and
6.5 μm from the microscope focal plane; see Fig. 2(a). In a first
numerical experiment, the sample is imaged in transmission

with an air objective of NA � 0.95. It is illuminated by nine
TM-polarized plane waves with illumination wavevectors
equally distributed within a 30° angle cone about the optical
axis, and the wavelength is λ � 500 nm. The discretization
step at the image plane is 50 nm � λ∕10. The simulations
are performed with a rigorous solver of Maxwell equations.

In this configuration, the specular transmitted beam inter-
feres with the sample field, and we observe that the 3D
reconstruction obtained from the intensity data, Fig. 2(c), is
very similar to that obtained from the full-vectorial field data,
Fig. 2(b). If we artificially filter out the transmitted specular
beams so that only the sample field reaches the image plane
(darkfield configuration), the reconstruction is not as good;
see Fig. 2(d), but still meaningful. As observed in Fig. 1, the
interference with a specular field is useful, but its absence does
not preclude totally the reconstruction.

In a second numerical experiment, the sample is imaged in
the reflection configuration. The reconstructions obtained
from the complex field and the intensity data, displayed in
Figs. 2(e) and 2(f ), look alike. The cubes are poorly retrieved,
and only the interfaces can be located. This disappointing result
does not come from a failure of the inversion algorithm. It is a
direct illustration of the band-pass filtering of the reflection
imaging system, which cuts the low spatial frequencies of
the sample [10]. Without regularization, one cannot expect
a better reconstruction in this case.

In a third numerical experiment, we aim at improving the
imaging of the cubes by combining the transmission and reflec-
tion configurations. The two cubes are placed above a mirror
that is placed at the focal plane of the microscope z � 0. By
reflecting the illumination and the scattered field, the mirror
sends both the transmitted and reflected fields toward the im-
age plane [21]. As expected, the reconstruction of the cubes
[Fig. 2(g)] is significantly improved compared to that obtained
in transmission [Fig. 2(c)] or reflection [Fig. 2(f )] in agreement
with the enlarged support of the optical transfer function [21].
Note that the data provided by other techniques specifically

Fig. 2. (a) Theoretical permittivity of target B (ε � 1.05).
Estimated permittivity of target B in transmission: (b) with complex
vectorial data, (c) with intensity data, and (d) with intensity data where
the specular reflection of the incident beam has been filtered out.
Estimated permittivity of target B in reflection: (e) with complex vec-
torial data, (f ) with intensity data in free space, and (g) with intensity
data above a mirror. The final iteration is shown.Fig. 1. (a) Brightfield image obtained by summing the image inten-

sities for all illuminations. (b) Darkfield image obtained by filtering
out the specular reflection of the incident beam and summing the im-
age intensities for all illuminations. (c) Permittivity estimated of target
A in reflection on a glass substrate with vectorial complex field data.
(d) Permittivity estimated of target A in reflection on a glass substrate
with intensity data. (e) Permittivity estimated of target A in reflection
on a glass substrate with intensity data where the specular reflection of
the incident beam has been filtered out. The green bar represents
200 nm. The final iteration is shown.
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developed for improving the resolution about the z axis, using
sample rotation [22–24] or 4π configuration, e.g., could also be
handled by the IDT algorithm.

D. Phaseless Tomography for Imaging Transparent
and Absorbing Objects

An important limitation of the conventional brightfield micro-
scopes [25] is that transparent (i.e., lossless) objects are
invisible, while in darkfield configuration, they cannot be dis-
criminated against lossy objects [26,27].

To be sensitive to these different contrasts, several imaging
techniques, such as phase or differential interference contrast
(DIC) microscopes have been developed. Now, if the recording
of intensity images for various angles of incidence is sufficient
for simulating a standard microscope, mimicking phase or DIC
microscopy requires a priori the knowledge of the complex field
at the image plane. The latter is obtained with the interfero-
metric mounting of a tomographic diffraction microscope
(TDM) and confers to this technique an interesting all-in-
one multimodal imaging capability [28–31], but it is not acces-
sible to our simpler configuration where phaseless data are
recorded. The ability to obtain quantitative information on
the complex permittivity of the sample from intensity data only
is thus an important question.

In this paragraph, we consider a sample (target C) made of
four cubes with different complex permittivities. The cubes of
side 150 nm centered at the corners of a square of side 450 nm
are placed (in air) at the object focal plane [Figs. 3(a) and 3(b)].
The cube permittivities, ε � 1.1� i0.1, ε � 1.0� 1.0,
ε � 2.0� i0.5, ε � 1.5, exhibit different levels of real and
imaginary parts. Target C is illuminated by nine TM-polarized
plane waves with polar angle 60°, azimuthal angle q2π∕9
with q � 0,…, 8 and λ � 700 nm. The discretization step
at the image plane is 75 nm � λ∕9. The simulations are
performed with a rigorous solver of Maxwell equations. The
reconstruction in the transmission configuration is given in
Figs. 3(c) and 2(d). We observe that the variation on the real
and imaginary levels of the permittivity of the cubes is

accurately retrieved. On the other hand, the reconstruction
in the reflection configuration, in Figs. 3(e) and 2(f ), does
not permit one to distinguish the absorbing objects from
the non-absorbing ones. This phenomenon was to be expected
as, without the interference with a specular reflected or trans-
mitted beam, a cube with a given imaginary contrast signs in
the same way as a cube with the same contrast made real.

These synthetic experiments show that it is possible to re-
trieve the nature of the targets (phase or absorbing or mixed) by
measuring the intensity as long as the scattered field interferes
with a reference beam. An interesting perspective would be to
investigate the ability of tomographic microscopy to image
anisotropic samples. Our recent theoretical work on inversion
scheme shows that this kind of extension would require only
minor changes in the reconstruction algorithm [9].

E. Phaseless Tomography in the Multiple Scattering
Regime

Up to now, we have considered small targets or targets with low
contrast for which the single scattering approximation (or Born
approximation) is valid. In this paragraph, we investigate the
performance of the intensity inversion scheme for a target that
supports multiple scattering. The sample (target D) is made of
two identical spheres in contact of diameter 250 nm (ε � 2.05
aligned along the x axis, Fig. 4. The contact point is placed at
the object focal plane. The spheres are embedded in air and
illuminated by nine TM-polarized plane waves with wave-
length 450 nm and wavevectors regularly chosen along a 60°
angle cone with the optical axis. The target is imaged in

Fig. 3. Theoretical permittivity of target C: (a) real part and
(b) imaginary part. Estimated permittivity of target C with intensity
data in transmission: (c) real part and (d) imaginary part. Estimated
permittivity of target C with intensity data in reflection: (e) real part
and (f ) imaginary part. The final iteration is shown. The green bar
measures 200 nm.

r = 250 nm

X

Y

Z

ε = 2.05

Fig. 4. Permittivity estimated of target D in transmission with com-
plex vectorial data with rigorous computation of the field: (a) transver-
sal plane and (b) axial plane. Permittivity estimated of target D in
transmission with intensity data with rigorous computation of the
field: (c) transversal plane and (d) axial plane. Permittivity estimated
of target D in transmission with complex vectorial data with Born
approximation: (e) transversal plane and (f ) axial plane. Permittivity
estimated of target D in transmission with intensity data with Born
approximation: (g) transversal plane and (h) axial plane. The green
bar measures 200 nm. The final iteration is shown.
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transmission configuration with NA � 0.95, and the inten-
sities are recorded at the image plane with a discretization step
of 25 nm, i.e., λ∕18.

We plot in Fig. 4 the reconstructions obtained from the
intensities and the full vectorial field using either a rigorous
solver of Maxwell equations for calculating the gradients
or the Born approximation. As expected, a more accurate
reconstruction is obtained when the gradients are estimated rig-
orously, as under the Born approximation, the inversion
scheme fails to retrieve the two spheres; see Figs. 4(e)–4(h).
With the rigorous solver, both spheres are retrieved. The recon-
structions obtained from the intensities and the full vectorial
field with rigorous computation of the field are close to final
relative errors Err�χ�, equal to 45% and 41%, respectively.

F. Robustness of the Reconstructions with Respect
to Noise

In this paragraph, we investigate the performance of the
reconstruction algorithms when the noise is increased. We con-
sider two targets, the resin star (target A), which exhibits high
spatial frequency features, and the bisphere (target D), which
has a more regular shape but supports multiple scattering, in
the same configurations as those in Sections B and E.

We increase the noise level κ from 0% to 50% and plot the
reconstruction relative error Err�χ� in Fig. 5. We observe with-
out surprise that Err�χ� increases with the noise level but that
the reconstructions are always significantly better than the
standard microscopy images obtained by summing all the
intensities. In addition, the deterioration of the intensity-based
reconstruction remains comparable to that of the field-based
reconstruction. Thus, it is expected that the sensitivity to noise
of the IDT algorithm be similar to that of VDT, which has
been shown to be able to handle experimental data with more
than 80% of noise [4].

4. CONCLUSION

In conclusion, we have presented an inversion scheme able to
reconstruct the complex permittivity of a sample from intensity
images obtained under various incident angles. Our algorithm
can be adapted to any model used for simulating the images and
to any microscope configuration (in reflection or transmission
with low or high NA). We have investigated the phaseless
tomography performances on four main issues—transverse
super-resolution, three-dimensional reconstruction (in reflec-
tion and transmission), contrast detection, and multiple scat-
tering regime—and compared them to that of tomography
using complex field data. We have found that, in most cases,
phaseless tomography exhibited the same gain in resolution and
contrast as field tomography. It is thus a very interesting option
for popularizing computational tomographic microscopy, as it
requires minor changes in the microscope setup.

APPENDIX A: DERIVATION OF THE GRADIENT

In Appendix A, we detail the derivation of the gradient.

A. Linearization of the Scattering Model: Fréchet
Derivative

Hereafter, Eχ denotes the field existing in the medium of
contrast χ for a given illumination (the subscript l is omitted).
It is non-linearly linked to χ through a differential equation,
given by Eq. (1). The calculation of the gradient of the
cost functional requires to linearize the model linking the
field Eχ to χ. We thus introduce the Fréchet derivative,
which is the unique linear operator Dχ, which gives a linear
variation of the field with respect to a small variation of the
contrast δχ:

Eχ�δχ � Eχ �Dχδχ � o�δχ�: (A1)

To estimate the Fréchet derivative, we rewrite the differential
equation satisfied by Eχ, Eq. (1), into the integral equation

Eχ�r� � Eref �r� �
Z
r 0∈Ω

dr 0G�r, r 0�χ�r 0�Eχ�r 0�, (A2)
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Fig. 5. Robustness of the reconstruction of target A (left column)
and target D (right column) with respect to noise. Top row: evolution
of the reconstruction error Err�χ� with respect to the noise level κ (red
“�” curve: intensity data; blue “×” curve: complex vectorial data).
Second row: final reconstructions obtained from vectorial field data
with κ � 25%. Third row: final reconstructions obtained from inten-
sity data with κ � 25%. Bottom row: images obtained by summing
the noisy intensities. The numerical reconstructions are significantly
better than the “analogical” images.
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where G�r, r 0�χ�r 0�Eχ�r 0� is the field existing at r in the micro-
scope without the sample radiated by a source χ�r 0�Eχ�r 0� placed
at r 0. If we modify χ by a small perturbation δχ, we have

Eχ�δχ�r� � Eref �r� �
Z
r 0∈Ω

dr 0G�r, r 0��χ � δχ��r 0�Eχ�δχ�r 0�:

(A3)

Neglecting the terms of second order in δχ yields

Eχ�δχ�r� � Eχ�r� �
Z
r 0∈Ω

dr 0G�r, r 0�δχ�r 0�Eχ�r 0� � o�δχ�:

(A4)

Since Eref �o� does not depend on the media, we have for a
dipole p located at an observation position o

p · δEχ�o� � p · �Eχ�δχ − Eχ ��o�

�
Z
r 0∈Ω

dr 0p · G�o, r 0��δχ�r 0�Eχ�r 0��: (A5)

Now, the Lorentz reciprocity theorem states that if the two
sources u and v are located at positions r and r 0, respectively,
we have u · �G�r, r 0�v� � v · �G�r 0, r�u�. We apply the reciproc-
ity theorem on Eq. (A5) and obtain

p · δEχ�o� �
Z
r 0∈Ω

dr 0�δχ�r 0�Eχ�r 0�� · G�r 0, o�p: (A6)

Introducing Eχ�r 0, o, p� � G�r 0, o�p, the field in the medium
with contrast χ radiated by a source p located at o, we obtain

p · δEχ�o� �
Z
r 0∈Ω

dr 0�Eχ�r 0, o, p� · Eχ ��r 0�δχ�r 0�: (A7)

By identification with Eq. (A1), we have

p ·D�o, r� � Eχ�r� · Eχ�r, o, p�: (A8)

B. Detailed Derivation of the Gradient

Once the Fréchet operator is known, we introduce the gradient
g of the cost functional F �χ� with respect to χ as

F �χ � δχ� � F �χ� � Rehg, δχiΩ � o�δχ�: (A9)

Now, let us differentiate F with respect to χ:

F �χ � δχ� � W Γ

X
l

kImes
l − �Eχ

l �Dlδχ�� · �Eχ
l �Dlδχ�k2Γ,

� W Γ

X
l

khl − 2Re�Eχ�
l · �Dlδχ�� � o�δχ�k2Γ,

� F �χ� − 2W Γ

X
l

Rehhl , 2Re�Eχ�
l · �Dlδχ��iΓ

� o�δχ�, (A10)

and since h is real,

F �χ � δχ� � F �χ� − 4W Γ

X
l

Rehhl ,Eχ�
l · �Dlδχ�iΓ � o�δχ�:

(A11)

We have

hhlEχ�
l ·�Dlδχ�iΓ�

Z
Γ
dr 0hl �r 0�Eχ� · �Dδχ��r 0�,

�
Z
Γ
dr 0

Z
Ω
drhl �r 0�Eχ�

l �r 0� ·Dl �r 0,r�δχ�r�,

�
Z
Ω
drδχ�r�

�Z
Γ
dr 0h�r 0�Eχ�

l �r 0� ·Dl �r 0,r�
�
,

�
Z
Ω
drδχ�r�

�
−

1

4W Γ
g�χl �r�

�
: (A12)

Finally,

g�r� � −4W Γ

X
l

gl �r�,

� −4W Γ

X
l

�Z
Γ
dr 0h�r 0�Eχ�

l �r 0� ·Dl �r 0, r�
��

: (A13)

APPENDIX B: HOW αn AND βn ARE
DETERMINED

In Appendix B, we detail the choice of the scalars αn and βn in
the iterative intensity and field inversion procedures.

A. Inversion from Intensity Data

The cost functional reads

F �χ�δχ� ≈ W Γ

X
l

khl − 2Re�Eχ�
l ·Dlδχ� − jDlδχj2k2Γ:

(B1)

If we set

P0
l �r� � hl �r�, (B2)

P1
l �r� � 2Re�Eχ�

l ·Dlδχ��r�, (B3)

P2
l �r� � jDlδχj2�r�, (B4)

P00
l � kP0

l k2Γ, (B5)

P11
l � kP1

l k2Γ, (B6)

P22
l � kP2

l k2Γ, (B7)

P01
l � hP0

l ,P
1
l iΓ, (B8)

P02
l � hP0

l ,P
2
l iΓ, (B9)

P12
l � hP1

l ,P
2
l iΓ, (B10)

we have

F �χ � δχ� ≈ W Γ

X
l

�P00
l � P11

l � P22
l

− 2P01
l − 2P02

l � 2P12
l �: (B11)

At iteration n� 1, χn�1 � χn � δχ. We choose δχ � αndn,
and by redefining the coefficients introduced in Eqs. (B2) to
(B10), we transform the cost functional into a polynomial
in αn:
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F �αn� � W Γ

X
l

�P00
l � α2nP11

l � α4nP22
l

− 2αnP01
l − 2α2nP02

l � 2α3nP12
l �: (B12)

The coefficient αn is determined by minimizing the polyno-
mial F �αn�.
B. Inversion of Complex-Field Data

Setting δχ � βnd n, the cost functional reads

Q�χ�δχ�≈W Γ

X
l

�kvlk2Γ −2RehEd
l ,DlδχiΓ�kDlδχk2Γ�,

≈W Γ

X
l

�kvlk2Γ −2βnRehEd
l ,Dl tχiΓ�β2nkDl tχk2Γ�:

(B13)

The function Q�βn� is a parabola, and its minimum is at the
abscissa

βn � W Γ

P
lRehEd

l ,Dl tχl iΓP
lkDl tχnk2Γ

: (B14)

To speed up the computations, the coefficients of the
polynomial (see Appendix A) are computed with a Born
approximation on the adjoint field, i.e., that u�o� ·D�o, r� ≈
�Eu�o� · E��r�, where Eu�o� is the field in the absence of the sam-
ple with a dipole u�o� at observation o.
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