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We consider a fluorescence microscope in which several three-dimensional images of a sample are recorded for
different speckle illuminations. We show, on synthetic data, that by summing the positive deconvolution of each

speckle image, one obtains a sample reconstruction with axial and transverse resolutions that compare favorably

to that of an ideal confocal microscope.
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1. INTRODUCTION

Improving the resolution and contrast of three-dimensional im-
ages of fluorescent samples while conserving the ease of use and
noninvasiveness of classical microscopy is a major challenge.
Classical brightfield microscopes, in which the fluorescence
is excited by a homogeneous intensity, exhibit, in the best case,
a lateral resolution about half the emitted wavelength with an
axial resolution three times bigger [1]. In addition, due to the
specific shape of the optical transfer function, it is plagued by
an important out-of-focus signal coming from the low-
frequency sample structures which deteriorates significantly
the image contrast.

Optical sectioning techniques, such as confocal microscopy,
light sheet microscopy [2], and others [3,4], ameliorate the im-
age contrast but give little resolution improvement over bright-
field. In contrast, structured illumination microscopy (SIM)
improves both the image contrast and the transverse and axial
resolutions [5], but it requires careful control of the three-
dimensional excitation pattern which is not always possible
in thick samples.

In this paper, we present a technique that provides optical
sectioning and transverse and axial resolution improvement
without requiring control of the illuminations. Our approach
is inspired from the blind structured illumination microscopy
technique developed in Refs. [6-8] in simplified bidimensional
configurations. It consists of recording several images of the
sample for different speckles and processing the data with an
appropriate reconstruction algorithm that does not require
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knowledge of the illuminations. We demonstrate this approach
on synthetic data, mimicking that of standard fluorescence
microscopes.

2. RECONSTRUCTION ALGORITHMS

In the three-dimensional (3D) blind-SIM approach, the sample
is illuminated with L different 3D intensity patterns /7,
/=1, .., L. For each illumination, a 3D fluorescence image
of the sample M is recorded. To keep the illumination un-
changed, the scanning along the optical axis should be done
by remote focusing [9] or by using a specific device that projects
on the camera, within one shot, several images taken at differ-
ent focal planes [10]. Under these experimental conditions, the
recorded 3D data, M,(r,—; ), wherer,_; _ are the cen-
ters of the V voxels forming the investigated volume, can be
modeled as in Ref. [5] as

M,(r,) = [(pl)) * h)(r,) + € 0]

where p is the sample fluorescence density, /4 is the three-
dimensional point spread function of the microscope, € is the
experimental noise, and * stands for the convolution operator.
For the sake of simplicity, Eq. (1) is rewritten using notations of
operators as

M;=A(pl)) + ¢ (2

where the linear operator A describes the convolution of
Eq. (1). The issue is to estimate p from the L images
M,_, . ; obtained under different speckle realizations 7,_; _;
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and to obtain a better reconstruction than that given by the
deconvolution of a 3D brightfield microscope image.

Different inversion techniques able to produce high-
resolution sample reconstructions from low-resolution speckle
images have been proposed in the two-dimensional blind-SIM
configuration. They can be fundamentally distinguished by the
way the sample is represented, either as a set of single emitters
[7,8] or as a continuously varying fluorescence density [6,12].
In this work, we were inspired by the latter approach, in agree-
ment with the modeling of the data given by Eq. (1).

We have first adapted to the three-dimensional configura-
tion the blind-SIM inversion algorithm presented in Ref. [6].
This inversion technique, hereafter denoted as blind-SIM
simultaneous inversion (blind-SIM-SI), consists of estimating
simultaneously the sample p and the illuminations /,_; _;
so as to minimize a cost functional indicating the mismatch
between the data and the model. Since all the details are pro-
vided in Ref. [6], we only recall the main points of the ap-
proach. First, the number of unknowns is lessened using the
a priori information that the sum of the illuminations is homo-
geneous. This assumption is generally verified in classical struc-
tured illumination schemes and applies if enough speckle
realizations are considered. The homogeneity constraint is
introduced in the inversion scheme by writing /; as
Iy - >"F1 1), where I is a constant over the whole 3D image.
In addition, both p and 7, ;| are considered positive and
written with auxiliary variables as p = £? and 7; = i7 [6]. Then
the simultaneous estimations of p and /,_; ;| are obtained
by minimizing the cost functional,

L N
F&ipy,.0) =W > IM)r,)-AEH: @)
/=1 n=1
where W =1/(3 5, " IM,(r,)]|?). The minimization
is performed with a classical conjugate gradient algorithm.
All the details about this algorithm are provided in the
supplementary methods of Ref. [6].

In a second study, aimed at accelerating the inversion pro-
cedure, we derived a simpler reconstruction scheme, hereafter
denoted as blind-SIM separate deconvolution (blind-SIM-SD),
that does not reconstruct explicitly the illuminations.
Introducing the auxiliary variable ¢, = p/; for [ =1, ..., L,
the blind-SIM problem can be stated as finding ¢, positive

SO as to minimize

L N
H(giey, ) =W 1M (r,) -A@g)I-. (4)

/=1 n=1

Once the g, are known, the indetermination on p and /; is
removed by using the homogeneity constraint on the illumina-
tions Y+, [, = I, to form p = (3°F_, 9,)/1,. The minimi-
zation of H can be done by deconvolving separately each
speckle image under the positivity constraint which fastens
remarkably the inversion procedure. In this work, we use an
original deconvolution technique which is straightforwardly
adapted from the previous blind-SIM-SI algorithm. We write
q, = 7 and estimate 77, by minimizing

N
G = Wiy _ 1M (x,) - AG)II (5)
n=1
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where W, =1/ IM)(r,)|I*). As for the previous
algorithm, the minimization is performed with a conjugate gra-
dient technique (more details are provided in Appendix A).
Comparing the cost functional F, Eq. (3), to G, Eq. (5), and
bearing in mind the homogeneity constraint, one observes that
the two reconstruction schemes are basically solving the same
problem. The main difference is that, in the first approach, the
Leh intensity, written as /o — > 4~} 1, is not positive, while, in
the second approach, all the intensities are positive. The equal
treatment of all the speckle intensities and the rapidity of the
minimization of G compared to that of F are strong assets in
favor of the second scheme. However, when the illuminations
are partially known, as in classical SIM with distorted illumi-
nations, blind-SIM-SI remains a better option as it can easily
incorporate a priori information on the illumination patterns

[11,12] contrary to blind-SIM-SD.

3. ANALYSIS OF THE OPTICAL SECTIONING
AND RESOLUTION IMPROVEMENT OF BLIND
SIM

In this section, we investigate the performances of the blind-
SIM approach on synthetic data stemming from various
samples. The blind-SIM 3D reconstructions are compared
to the positive deconvolutions of “standard” brightfield and
confocal images. The brightfield image is obtained by summing
all the speckle images, which ensures that the comparison is
performed with the same photon budget. The ideal confocal
image (obtained with an infinitely small pinhole) is simulated
by convolving the actual fluorescence distribution of the sample
with the square of the point spread function 4* [13] and
deteriorating it with Poisson noise using the same photon
budget as the other techniques. In both cases, the positive de-
convolution is performed with the same algorithm as that used
in blind-SIM-SD. It is worth noting that the confocal image is
unrealistic as it combines the use of an infinitely small pinhole
with a large number of collected photons. Actually, it should
rather be considered as an indication of the ultimate resolution
that can possibly be achieved using structured illumination
than as a feasible experiment.

In all the following numerical experiments, we consider a
microscope objective with NA = 0.95 and 4 = 550 nm,
where 1 is the excitation and fluorescence wavelength. The
voxel size of the image is A/(8NA) in all directions. To be
realistic from an experimental point of view, only one hundred
different speckles were considered to generate the data. Note
that with this limited number of illuminations, the speckle
average exhibits a non-negligible inhomogeneity. Except for
the last simulation, we have considered data with an average
global photon budget per pixel of about 10° so that Poisson
noise is negligible.

The speckle and the point spread function of the micro-
scope, displayed in Figs. 1(a) and 1(b), are modeled using a
simple scalar model. Noting the space variable r = r|| + 22,
where Z indicates the optical axis, the speckle is approxi-
mated by

i = ’/ Ei@(k”)fi\/Mze"ku"ndkll 2) (6)
D
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Fig. 1. (a) Cut in the y = 0 plane of the normalized point spread
function, and (b) the normalized speckle intensity.

where ky = 27 /2 is the illumination wavenumber, ¢, (k”) is
an uncorrelated random variable uniformly distributed between
0 and 27, and D is a disk of radius NAk,. The point spread
function is given by

s 2
h(r) = C‘ / e //en*/euzeiku.rudk” , (7)
D

where C ensures that [ A(r)dr = 1.
In a first example, we consider a thin fluorescent star-like
sample in the y = 0 plane whose fluorescence density is de-

fined by
p(x 3, 2) o« [1 + cos(300)16(y), @)

where tan 6 = z/x; see Fig. 2(a). This kind of target permits an
easy visualization of the resolution improvement as its spatial
frequencies increase as one gets closer to the star center. To get
an idea about the data being processed, we display in Fig. 2(b) an
image of the sample obtained under one speckle illumination.

In Figs. 2(c) and 2(d), the brightfield image and its decon-
volution are shown. As expected, the image resolution is not
isotropic, in contrast to that obtained with the same sample
placed in the (x—y) transverse plane [6]. The lack of resolution
for the quasi-horizontal sample features is the signature of the
tore-shaped support of the microscope optical transfer function
b [13]. The grainy aspect of the reconstruction stems from the
residual inhomogeneity of the speckle average which is clearly
visible in Fig. 2(c).

The reconstructions obtained with blind-SIM-SI and blind-
SIM-SD are given in Figs. 2(g) and 2(h), respectively. Apart
from the presence of some hot spots in Fig. 2(g) which dete-
riorates slightly the image rendering, both reconstructions
exhibit similar performances. The transverse and axial resolu-
tions are significantly better than that of the brightfield image
and comparable to that of the ideal confocal image, Figs. 2(e) and
2(f). These observations, which have been confirmed by many
other examples (not shown), leads to two important comments.

First, when there is no @ priori information on the illumi-
nations except the homogeneity of their sum, blind-SIM-SD is
a much better option than blind-SIM-SI as it is faster and less
prone to the apparition of hot spots. Hereafter, all the blind-
SIM reconstructions will be performed with the blind-SIM-SD
algorithm.

Second, the blind-SIM-SD scheme corresponding to a simple
positive deconvolution of each speckle image implies that the
recovery of sample frequencies beyond the optical transfer func-
tion cutoff can only be explained by the positivity constraint
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Fig. 2. Reconstructions of a thin fluorescent (x—z) plane with an
oscillating radial fluorescence distribution (star-type sample). The
sample is illuminated by 100 different speckles. (a) Fluorescence den-
sity of the sample. (b) Example of one intensity image obtained for a
given speckle illumination. (c) Brightfield image of the sample
obtained by summing the 100 speckles images. (d) Positive deconvo-
lution of the brightfield image (c). (¢) Image of an ideal confocal
microscope. (f) Positive deconvolution of the confocal image (e).
(g) Reconstruction with the blind-SIM-SI algorithm. (h) Recon-
struction with the blind-SIM-SD algorithm. In (b), (c), and (e),
the colorbar indicates the number of recorded photons. In (a), (d),
and (f)—(h), the colorbar indicates the normalized fluorescence density.

[14]. The better resolution of blind-SIM-SD reconstruction
compared to the positive deconvolution of the brightfield data
stems from the more frequent activation of the positivity
constraint on the speckle images than on the brightfield one.
Yet, it is observed that the recovery of the sample high spatial
frequencies remains limited to the sample spectrum participat-
ing in the image formation Eq. (1). In our case, with speckle
generated with the same objective as the point spread function,
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the speckle images depend on the sample spectrum within the
support of #%. This property can explain the similarity between
the blind-SIM and confocal images.

In Fig. 3, we investigate more specifically the optical section-
ing ability of blind-SIM-SD by considering a sample made of
thin fluorescent transverse planes placed at various z. As in the
previous experiment, the sample is illuminated by 100 different
speckles. A cut of the sample is depicted in Fig. 3(a). In this
example, the sample spatial frequencies are located along the
z axis only. Since the optical transfer function of fluorescence
microscopy removes all the sample spatial frequencies but 0
along the z axis, the theoretical brightfield image of fluorescent
(x—y) planes is a constant in the whole volume and so is its
deconvolution. In our experiment, the speckle average being
still inhomogeneous, the deconvolution of the brightfield im-
age, Fig. 3(c), is not a constant but the fluorescent planes po-
sitions are not visible. In contrast, the reconstruction obtained
with blind-SIM-SD permits us to distinguish the fluorescent
planes [Fig. 3(d)] with an accuracy approaching that of the con-
focal deconvolved image [Fig. 3(b)]. Note that the spectacular
accuracy of the deconvolved confocal image is attributable to
the positivity constraint which is particularly efficient on sparse
samples [14].

Last, in Figs. 4 and 5 we study a more complex three-
dimensional sample made of beads inside and outside two
halves of a big sphere. This specific geometry was chosen to
investigate the performance of the imaging technique for sur-
face-like objects (such as membranes) and volumic objects.
Cuts of the sample in the y = 2.64 and z = -1.64 planes are
displayed in Figs. 4(a) and 5(a), respectively. The deconvolved
confocal and brightfield images and the blind-SIM-SD recon-
struction in the two planes are shown in Figs. 4(b)-4(d) and
Figs. 5(b)-5(d), respectively. These results confirm the interest

x/A

Fig. 3. Reconstruction of a sample made of fluorescent thin (x—y)
planes placed at different distances from the focal plane. (a) Cut of the
actual fluorescence distribution in the y = 0 plane. (b) Positive decon-
volution of the ideal confocal microscope image. (c) Positive decon-
volution of the brightfield image. (d) Reconstruction with blind-SIM-
SD. The blind-SIM approach yields an optical sectioning approaching
that of the confocal image. The colorbar indicates the normalized fluo-
rescence density.
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Fig. 4. Reconstruction of a fluorescent sample made of beads inside
and outside two halves of a big sphere (mimicking a membrane).
(a) Cut of the actual fluorescence distribution in the y = 2.64 plane.
(b) Positive deconvolution of the confocal microscope image. (c) Positive
deconvolution of the brightfield image. (d) Sample reconstruction with
blind-SIM-SD. The blind-SIM approach yields an optical sectioning
and axial resolution improvement approaching that of the confocal
image. The colorbar indicates the normalized fluorescence density.

of the blind-SIM-SD approach as compared to brightfield fluo-
rescence imaging. Except for the grainy aspect stemming from
the residual inhomogeneity of the speckle averages, the blind-
SIM reconstructions are roughly similar to that of the ideal con-
focal images and permit us to distinguish both the surface-like
and the volumic objects.

- =
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x/A x/A

Fig. 5. Same as Fig. 4, but the cut is done in the z = -1.64 plane.
The blind-SIM approach yields a transverse resolution improvement
comparable to that of the confocal image.
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Up to now, the simulations were performed with an impor-
tant global photon budget in order to check the behavior of the
algorithms in an optimal configuration. In the last example, we
consider the same sample as the one used in Figs. 4 and 5, but
we reduce the global average photon budget per pixel to 10%.
This value corresponds to an average of 100 photons per pixel
per speckle image. In this case, the Poisson noise is important as
illustrated by the x—z cut of a non-noisy [Fig. 6(a)] and noisy
[Fig. 6(b)] single speckle image. The brightfield image, ob-
tained by adding the 100 speckle images, is displayed in
Fig. 6(c), and its deconvolution is shown in Figs. 6(¢) and
6(g). Figure 6(d) shows the positive deconvolution of the noisy
single speckle image. Obviously, one cannot recover the fluo-
rescent sample from just one single speckle image. However,
when the 100 deconvolved speckle images are summed, see
Figs. 6(f) and 6(h), the sample is recovered with a better
resolution than that of the deconvolved brightfield image.

To complete the analysis of Blind-SIM-SD performances,
we have conducted, on the star sample depicted in Fig. 2, a
systematic study of the reconstruction accuracy with respect
to the number of illuminations Z and to the global photon
budget. We define the error of the reconstructed fluorescence
density p as

o TP - oI
' o)l

Table 1 shows the influence of the number of illuminations
on the reconstruction error. The photon budget per image pixel
is taken equal to 10,000 so that the photon noise is negligible.
We observe that the amelioration brought about by the increase
of illuminations is significant up to 100 speckles but remains
marginal beyond that limit. This behavior was to be expected as
the standard deviation of the speckle average decreases slowly
as 1/+/L.

Table 2 shows the role of the global photon budget on the
reconstruction accuracy for L = 100 speckles. It is observed
that, below 10,000 photons, the reconstruction is severely im-
pacted by the photon noise. On the other hand, above 10,000
photons, the reconstruction error is mainly due to the speckle
residual inhomogeneity. These results, in agreement with that
of Fig. 6, confirm that blind-SIM-SD can be used in realistic
microscopy experiments with a limited number of illumina-
tions and a reasonable global photon budget.

©)

4. CONCLUSION AND PERSPECTIVES

In conclusion, we have studied speckle illumination for three-
dimensional high-resolution fluorescence microscopy (3D
blind-SIM). By summing the deconvolution, under the posi-
tivity constraint, of each speckle image, we obtained an im-
proved reconstruction of the sample fluorescence that
compared favorably to that of an ideal confocal microscope.
We believe that speckle blind-SIM can be an interesting alter-
native to confocal microscopy. Its major advantage is that it is a
widefield technique without any control on the illuminations
and there is no loss of photons in the detection scheme.
Basically, one hundred speckles are enough to retrieve a satis-
factory image. Its drawback is that it requires recording a 3D
image for each speckle illumination. This task is delicate and,
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Fig. 6. Reconstructions of the same sample as that of Fig. (4) from
data corrupted with realistic Poisson noise. (a) Single speckle image
without noise in the y = 2.64 plane. (b) Same as (a), but the data
are corrupted with Poisson noise. (c) Noisy brightfield image obtained
by summing the 100 noisy speckle images. (d) Positive deconvolution
of a single speckle image in the y = 2.6/ plane. (e) Positive deconvo-
lution of the brightfield image in the y = 2.64 plane. (f) Blind-SIM-
SD reconstruction in the y = 2.64 plane. (g) Positive deconvolution of
the brightfield image in the z = -1.64 plane. (h) Blind-SIM-SD
reconstruction in the z = -1.6/ plane. In (a), (b), and (c), the colorbar
indicates the number of photons. In (d)—(h), the colorbar indicates the
normalized fluorescence density.

Table 1. Reconstruction Error of the Star Sample
Depicted in Fig. 2 Versus the Number of llluminations?®

Number of speckles 200 100 50 20
0.186 0.202 0.266 0.313

err,

“Almost no photon noise.
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Table 2. Reconstruction Error of the Star Sample Versus
the Global Photon Budget®

Photon budget 10° 10° 10* 5000
err, 0.189 0.203 0.215 0.318

“The number of illuminations is taken as equal to L = 100.

in practice, should be done via remote focusing or by using
a device projecting several foci planes on the camera in one

shot [10].

APPENDIX A: ANALYSIS OF THE INVERSION
PROCEDURE
In this appendix, we present the positive deconvolution that is

used in the blind-SIM-SD algorithm. We consider one image
M™ obtained for a given illumination / which is modeled as

M™s = A(g), (A1)

where ¢ = pI, and p is the sample fluorescence density. We
introduce the auxiliary function 7 such that > = ¢ in order
to enforce the positivity of the sought parameter ¢. The imaging
problem is stated as finding g such that the cost functional
F(n) is minimum,

Flr) = 5 147 - AGPI (a2)

This optimization problem is solved iteratively using a
Polak—Ribi¢re conjugate gradient method. A sequence (1,,)
is built up according to the following recursive relation:

My = Nn-1 + andn) (A3)

with 77, and 77,,_; as estimations of 77 for the iteration step 7 and
n -1, respectively. The function 4, represents the Polak—
Ribiére conjugate gradient direction

dn = gn;n + }/ndn—l) (A4)
with
_ (gn |g;7;n _gn;n—1>
’ g, I

The function g, is the gradient of the cost functional F (i7)
with respect to 7 evaluated for the estimation #,_;. This gra-
dient reads as

(A5)

gn,r] = _2’7AT (Vn—l )) (A6)

where v, = M™* -~ A(52_,) is the residual error at iteration
(n-1), and AT is the adjoint operator of A, given by

AT (u) = ux b, (A7)
where / is the symmetric function of 4. Once the updating

direction is computed, the real scalar @, is determined at each
iteration step by minimizing the cost function as

1
Fla,) =S IM™ - Am)II?

= Sl -20,Amd,) - CADI. (A8
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The minimization of this cost function, which is a polyno-
mial in a of the fourth order, is achieved numerically using the
Polak—Ribiére conjugation gradient method [15]. In all the
provided reconstructions, the initial estimate was a constant
over the volume and the iterations were stopped when the cost
functional reached a plateau.
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